

ERC ALLEGRO workshop INRIA Grenoble July 23, 2014

Weakly-supervised learning from videos and scripts

Ivan Laptev

ivan.laptev@inria.fr WILLOW, INRIA/ENS/CNRS, Paris

Joint work with: Piotr Bojanowski – Rémi Lajugie – Francis Bach – Jean Ponce – Cordelia Schmid – Josef Sivic

Computer vision grand challenge: Dynamic scene understanding

Where to get training data?

- Shoot actions in the lab KTH dataset Weizman dataset,...
 - Limited variability
 Unrealistic
- Manually annotate existing content HMDB, Olympic Sports, UCF50, UCF101, ...

- Very time-consuming
- Use readily-available video scripts
 - Scripts are available for 1000's of hours of movies and TV-series www.dailyscript.com, www.movie-page.com, www.weeklyscript.com
 - Scripts describe dynamic and static content of videos

Scripts as weak supervision

Challenges:

- Imprecise temporal localization
- No explicit spatial localization
- NLP problems, scripts ≠ training labels
 - "... Will gets out of the Chevrolet. ..." "... Erin exits her new truck..."

```
vs. Get-out-car
```


Previous work

Sivic, Everingham, and Zisserman, "Who are you?" -- Learning Person Specific Classifiers from Video, *In CVPR 2009.*

Buehler, Everingham, and Zisserman "Learning sign language by watching TV (using weakly aligned subtitles)", *In CVPR 2009.*

Duchenne, Laptev, Sivic, Bach and Ponce, "Automatic Annotation of Human Actions in Video", *In ICCV 2009.*

...wanted to know about the history of the trees

Joint Learning of Actors and Actions

[Bojanowski et al. ICCV 2013]

Joint Learning of Actors and Actions

[Bojanowski et al. ICCV 2013]

$$\frac{1}{N} \left\| \mathbf{Z} - \phi(X)w - b \right\|_F^2 + \lambda_1 \ Tr(w^T \ w)$$

z_{11} :		$egin{array}{c} z_{1p} \ dots \end{array}$		$\left. \begin{array}{c} z_{1P} \\ \vdots \end{array} \right $	
$z_{n_1 1}$		\cdot z_{n_1p}		z_{n_1P}	
$z_{n_2 1}$	• • •	z_{n_2p}		z_{n_2P}	(C)
$z_{n_{3}1}$	•••	z_{n_3p}	•••	z_{n_3P}	
÷		÷		÷	
z_{N1}	•••	z_{Np}		z_{NP}	

Weak supervision from scripts:

Person p appears at least once in clip N :

$$\sum_{n \in \mathcal{N}_i} z_{np} \ge 1$$

p = Rick

$$\frac{1}{N} \|Z - \phi(X)w - b\|_F^2 + \lambda_1 \ Tr(w^T \ w)$$

$$+\frac{1}{N} (T \psi(X)v - c \|_F^2 + \lambda_2 Tr(v^T v)$$

Weak supervision from scripts:

Action a appears at least once in clip N :

$$\sum_{n \in \mathcal{N}_i} t_{na} \ge 1$$

$\begin{bmatrix} t_{11} \\ \vdots \end{bmatrix}$		t_{1a} :		$\begin{bmatrix} t_{1A} \\ \vdots \end{bmatrix}$
$\begin{array}{c} t_{n_{1}1} \\ t_{n_{2}1} \\ t_{n_{3}1} \end{array}$	· · · · · · ·	$\begin{array}{c}t_{n_1a}\\t_{n_2a}\\t_{n_3a}\end{array}$	· · · · · · ·	$\begin{array}{c} t_{n_1A} \\ t_{n_2A} \\ t_{n_3A} \end{array}$
\vdots t_{N1}		\vdots t_{Na}		$\begin{bmatrix} \vdots \\ t_{NA} \end{bmatrix}$

a = Walk

$$\frac{1}{N} \|Z - \phi(X)w - b\|_F^2 + \lambda_1 \ Tr(w^T \ w)$$

+
$$\frac{1}{N} ||T - \psi(X)v - c||_F^2 + \lambda_2 Tr(v^T v)$$

Weak supervision from scripts:

 $\min_{Z,T,w,b,v,c}$

Person p appears in clip N :

 $\sum_{n \in \mathcal{N}_i} z_{np} \ge 1$

Action a appears in clip N :

$$\sum_{n \in \mathcal{N}_i} t_{na} \ge 1$$

Person p and Action a appear in clip N :

 $\sum_{n \in I} z_{np} \ t_{na} \ge 1$ $n \in \mathcal{N}_i$

Image and video features

Face features

$$\phi(X)$$

- Facial features [Everingham'06]
- HOG descriptor on normalized face image

Action features

 $\psi(X)$

 Dense Trajectory features in person bounding box [Wang et al.,'11]

Results for Person Labelling

Results for Person + Action Labelling

Casablanca, Walking 24

Finding Actions and Actors in Movies

[Bojanowski, Bach, Laptev, Ponce, Sivic, Schmid, 2013]

Action Learning with Ordering Constraints

[Bojanowski et al. ECCV 2014]

Action Learning with Ordering Constraints

[Bojanowski et al. ECCV 2014]

shake hand

open door

Cost Function

$$\frac{1}{T} \|Z - XW - b\|_F^2 + \frac{\lambda}{2} \|W\|_F^2$$

a

Z

Weak supervision from ordering constraints on Z:

Cost Function

$$\frac{1}{T} \|Z - XW - b\|_F^2 + \frac{\lambda}{2} \|W\|_F^2$$

a

Z

Weak supervision from ordering constraints on Z:

Cost Function

$$\frac{1}{T} \|Z - XW - b\|_F^2 + \frac{\lambda}{2} \|W\|_F^2$$

a

Z

Weak supervision from ordering constraints on Z:

Is the optimization tractable?

- Path constraints are implicit
- Cannot use off-the-shelf solvers
- Frank-Wolfe optimization algorithm

Results

- 937 video clips from 60 Hollywood movies
- 16 action classes
- Each clip is annotated by a sequence of n actions (2≤n≤11)

Clip number 0101

Summary

Joint Learning of Actors and Actions

- Reason about individual people.
- Weakly-supervised learning of actions and names.

Action learning with ordering constraints

- Reason about action sequences.
- Weakly-supervised learning using time ordering constraints.

Limitations / Future work

Joint Learning of Actors and Actions

- No temporal localization of actions within person tracks.
- Extracting action labels from scripts is a major (NLP+vision?) challenge.

• Finding people in movies is still a big challenge.

Action learning with ordering constraints

- No spatial localization. Want to answer questions:
 - Who is doing what?
 - Who interacts with whom?
- Actions are modeled at short time intervals (15 frames).
- Sequences of action labels are given manually. Want to jointly cluster videos and scripts.

