Stochastic gradient methods for machine learning

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - January 2013
Context

Machine learning for “big data”

- **Large-scale machine learning**: large \(p \), large \(n \), large \(k \)
 - \(p \) : dimension of each observation (input)
 - \(k \) : number of tasks (dimension of outputs)
 - \(n \) : number of observations

- **Examples**: computer vision, bioinformatics, signal processing

- **Ideal running-time complexity**: \(O(pn + kn) \)
Context

Machine learning for “big data”

- **Large-scale machine learning**: large p, large n, large k
 - p: dimension of each observation (input)
 - k: number of tasks (dimension of outputs)
 - n: number of observations

- **Examples**: computer vision, bioinformatics, signal processing

- **Ideal running-time complexity**: $O(pn + kn)$

- **Going back to simple methods**
 - Stochastic gradient methods (Robbins and Monro, 1951)
 - Mixing statistics and optimization
 - It is possible to improve on the sublinear convergence rate?
Outline

• Introduction
 – Supervised machine learning and convex optimization
 – Beyond the separation of statistics and optimization

• Stochastic approximation algorithms (Bach and Moulines, 2011)
 – Stochastic gradient and averaging
 – Strongly convex vs. non-strongly convex

• Going beyond stochastic gradient (Le Roux, Schmidt, and Bach, 2012)
 – More than a single pass through the data
 – Linear (exponential) convergence rate for strongly convex functions
Supervised machine learning

- **Data**: \(n \) observations \((x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, \ldots, n, \text{ i.i.d.}\)

- Prediction as a linear function \(\theta^\top \Phi(x) \) of features \(\Phi(x) \in \mathcal{F} = \mathbb{R}^p \)

- **(regularized) empirical risk minimization**: find \(\hat{\theta} \) solution of

\[
\min_{\theta \in \mathcal{F}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)
\]

convex data fitting term + regularizer
Supervised machine learning

- **Data:** n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, \ldots, n$, i.i.d.

- Prediction as a linear function $\theta^\top \Phi(x)$ of features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$

- **(regularized) empirical risk minimization:** find $\hat{\theta}$ solution of

 $$\min_{\theta \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$$

 convex data fitting term + regularizer

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i))$ training cost

- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^\top \Phi(x))$ testing cost

- **Two fundamental questions:** (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
Supervised machine learning

- **Data**: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.

- Prediction as a linear function $\theta^\top \Phi(x)$ of features $\Phi(x) \in \mathcal{F} = \mathbb{R}^p$

- **(regularized) empirical risk minimization**: find $\hat{\theta}$ solution of

 $$\min_{\theta \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$$

 convex data fitting term + regularizer

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i))$ training cost

- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^\top \Phi(x))$ testing cost

- **Two fundamental questions**: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
 - May be tackled simultaneously
Smoothness and strong convexity

- A function \(g : \mathbb{R}^p \rightarrow \mathbb{R} \) is \(L \)-smooth if and only if it is differentiable and its gradient is \(L \)-Lipschitz-continuous

\[
\forall \theta_1, \theta_2 \in \mathbb{R}^p, \|g'(\theta_1) - g'(\theta_2)\| \leq L\|\theta_1 - \theta_2\|
\]

- If \(g \) is twice differentiable: \(\forall \theta \in \mathbb{R}^p, g''(\theta) \preceq L \cdot Id \)

\[
\text{smooth} \quad \text{non-smooth}
\]
Smoothness and strong convexity

- A function $g : \mathbb{R}^p \to \mathbb{R}$ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-continuous

\[\forall \theta_1, \theta_2 \in \mathbb{R}^p, \|g'(\theta_1) - g'(\theta_2)\| \leq L\|\theta_1 - \theta_2\| \]

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, g''(\theta) \preceq L \cdot I_d$

- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i))$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^\top$
 - Bounded data
Smoothness and strong convexity

- A function $g: \mathbb{R}^p \to \mathbb{R}$ is μ-strongly convex if and only if

 $$\forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \geq g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2$$

- Equivalent definition: $\theta \mapsto g(\theta) - \frac{\mu}{2} \|\theta\|^2$ is convex

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \succeq \mu \cdot Id$

convex

strongly convex
Smoothness and strong convexity

- A function $g : \mathbb{R}^p \to \mathbb{R}$ is μ-strongly convex if and only if
 \[
 \forall \theta_1, \theta_2 \in \mathbb{R}^p, \ g(\theta_1) \geq g(\theta_2) + \langle g'(\theta_2), \theta_1 - \theta_2 \rangle + \frac{\mu}{2} \|\theta_1 - \theta_2\|^2
 \]

- Equivalent definition: $\theta \mapsto g(\theta) - \frac{\mu}{2} \|\theta\|^2$ is convex

- If g is twice differentiable: $\forall \theta \in \mathbb{R}^p, \ g''(\theta) \succeq \mu \cdot Id$

- Machine learning
 - with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i))$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^\top$
 - Data with invertible covariance matrix (low correlation/dimension)
 - ... or with added regularization by $\frac{\mu}{2} \|\theta\|^2$
Stochastic approximation

- **Goal**: Minimizing a function f defined on a Hilbert space \mathcal{H}
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathcal{H}$

- **Stochastic approximation**
 - Observation of $f_n'(\theta_n) = f'(\theta_n) + \varepsilon_n$, with $\varepsilon_n =$ i.i.d. noise
 - Non-convex problems
Stochastic approximation

- **Goal**: Minimizing a function f defined on a Hilbert space \mathcal{H}
 - given only unbiased estimates $f'_n(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathcal{H}$

- **Stochastic approximation**
 - Observation of $f'_n(\theta_n) = f'(\theta_n) + \varepsilon_n$, with $\varepsilon_n = \text{i.i.d. noise}$
 - Non-convex problems

- **Machine learning - statistics**
 - loss for a single pair of observations: $f_n(\theta) = \ell(y_n, \theta^\top \Phi(x_n))$
 - $f(\theta) = \mathbb{E} f_n(\theta) = \mathbb{E} \ell(y_n, \theta^\top \Phi(x_n)) = \text{generalization error}$
 - Expected gradient: $f'(\theta) = \mathbb{E} f'_n(\theta) = \mathbb{E} \{ \ell'(y_n, \theta^\top \Phi(x_n)) \Phi(x_n) \}$
Convex smooth stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f_n L-smooth
 - Strong convexity: f μ-strongly convex
Convex smooth stochastic approximation

- **Key properties of** f and/or f_n
 - **Smoothness:** f_n L-smooth
 - **Strong convexity:** f μ-strongly convex

- **Key algorithm:** Stochastic gradient descent (a.k.a. Robbins-Monro)

 $$
 \theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})
 $$

 - Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
 - Which learning rate sequence γ_n? Classical setting: $\gamma_n = Cn^{-\alpha}$
Convex smooth stochastic approximation

- **Key properties of** f **and/or** f_n
 - **Smoothness**: f_n L-smooth
 - **Strong convexity**: f μ-strongly convex

- **Key algorithm**: Stochastic gradient descent (a.k.a. Robbins-Monro)
 \[
 \theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})
 \]
 - Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
 - Which learning rate sequence γ_n? Classical setting: $\gamma_n = C n^{-\alpha}$

- **Desirable practical behavior**
 - Applicable (at least) to least-squares and logistic regression
 - Robustness to (potentially unknown) constants (L, μ)
 - Adaptivity to difficulty of the problem (e.g., strong convexity)
Convex stochastic approximation
Related work

• Machine learning/optimization
 – Known minimax rates of convergence (Nemirovski and Yudin, 1983; Agarwal et al., 2010)
 – Strongly convex: $O(n^{-1})$
 – Non-strongly convex: $O(n^{-1/2})$
 – Achieved with and/or without averaging (up to log terms)
 – Non-asymptotic analysis (high-probability bounds)
 – Online setting and regret bounds
 – Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009)
 – Nesterov and Vial (2008); Nemirovski et al. (2009)
Convex stochastic approximation

Related work

- Stochastic approximation
 - Asymptotic analysis
 - Non convex case with strong convexity around the optimum
 - $\gamma_n = Cn^{-\alpha}$ with $\alpha = 1$ is not robust to the choice of C
 - $\alpha \in (1/2, 1)$ is robust with averaging
 - Broadie et al. (2009); Kushner and Yin (2003); Kul’chitskii and Mozgovoï (1991); Fabian (1968)
 - Polyak and Juditsky (1992); Ruppert (1988)
Problem set-up - General assumptions

- **Unbiased gradient estimates:**
 - $f_n(\theta)$ is of the form $h(z_n, \theta)$, where z_n is an i.i.d. sequence
 - e.g., $f_n(\theta) = h(z_n, \theta) = \ell(y_n, \theta^\top \Phi(x_n))$ with $z_n = (x_n, y_n)$
 - NB: can be generalized

- **Variance of estimates:** There exists $\sigma^2 \geq 0$ such that for all $n \geq 1$,
 $\mathbb{E}(\|f'_n(\theta^*) - f'(\theta^*)\|^2) \leq \sigma^2$, where θ^* is a global minimizer of f
Problem set-up - Smoothness/convexity assumptions

- **Smoothness of** f_n: For each $n \geq 1$, the function f_n is a.s. convex, differentiable with L-Lipschitz-continuous gradient f'_n:
 - Bounded data
Problem set-up - Smoothness/convexity assumptions

- **Smoothness of** f_n: For each $n \geq 1$, the function f_n is a.s. convex, differentiable with L-Lipschitz-continuous gradient f'_n:

 - Bounded data

- **Strong convexity of** f: The function f is strongly convex with respect to the norm $\| \cdot \|$, with convexity constant $\mu > 0$:

 - Invertible population covariance matrix
 - or regularization by $\frac{\mu}{2} \| \theta \|^2$
Summary of new results (Bach and Moulines, 2011)

- Stochastic gradient descent with learning rate $\gamma_n = Cn^{-\alpha}$

- Strongly convex smooth objective functions
 - Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 - New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 - Non-asymptotic analysis with explicit constants
 - Forgetting of initial conditions
 - Robustness to the choice of C
Summary of new results (Bach and Moulines, 2011)

- Stochastic gradient descent with learning rate $\gamma_n = Cn^{-\alpha}$

- Strongly convex smooth objective functions
 - Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 - New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 - Non-asymptotic analysis with explicit constants
 - Forgetting of initial conditions
 - Robustness to the choice of C

- Proof technique
 - Derive deterministic recursion for $\delta_n = \mathbb{E} \| \theta_n - \theta^* \|^2$

 \[
 \delta_n \leq (1 - 2\mu \gamma_n + 2L^2 \gamma_n^2) \delta_{n-1} + 2\sigma^2 \gamma_n^2
 \]
 - Mimic SA proof techniques in a non-asymptotic way
Summary of new results (Bach and Moulines, 2011)

- Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$

- **Strongly convex smooth objective functions**
 - Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 - New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 - Non-asymptotic analysis with explicit constants
 - Forgetting of initial conditions
 - Robustness to the choice of C

- **Convergence rates** for $\mathbb{E}\|\theta_n - \theta^*\|^2$ and $\mathbb{E}\|\bar{\theta}_n - \theta^*\|^2$
 - no averaging: $O\left(\frac{\sigma^2 \gamma_n}{\mu}\right) + O(e^{-\mu n \gamma_n})\|\theta_0 - \theta^*\|^2$
 - averaging: $\frac{\text{tr} \ H(\theta^*)^{-1}}{n} + \mu^{-1} O(n^{-2\alpha} + n^{-2+\alpha}) + O\left(\frac{\|\theta_0 - \theta^*\|^2}{\mu^2 n^2}\right)$
Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$

• Strongly convex smooth objective functions
 – Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 – New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 – Non-asymptotic analysis with explicit constants
Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate $\gamma_n = Cn^{-\alpha}$

• Strongly convex smooth objective functions
 – Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 – New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 – Non-asymptotic analysis with explicit constants

• Non-strongly convex smooth objective functions
 – Old: $O(n^{-1/2})$ rate achieved with averaging for $\alpha = 1/2$
 – New: $O(\max\{n^{1/2-3\alpha/2}, n^{-\alpha/2}, n^{\alpha-1}\})$ rate achieved without averaging for $\alpha \in [1/3, 1]$

• Take-home message
 – Use $\alpha = 1/2$ with averaging to be adaptive to strong convexity
Conclusions / Extensions

Stochastic approximation for machine learning

• Mixing convex optimization and statistics
 – Non-asymptotic analysis through moment computations
 – Averaging with longer steps is (more) robust and adaptive
Conclusions / Extensions

Stochastic approximation for machine learning

• Mixing convex optimization and statistics
 – Non-asymptotic analysis through moment computations
 – Averaging with longer steps is (more) robust and adaptive

• Future/current work - open problems
 – High-probability through all moments $\mathbb{E}\|\theta_n - \theta^*\|^{2d}$
 – Analysis for logistic regression using self-concordance (Bach, 2010)
 – Including a non-differentiable term (Xiao, 2010; Lan, 2010)
 – Non-random errors (Schmidt, Le Roux, and Bach, 2011)
 – Line search for stochastic gradient
 – Non-parametric stochastic approximation
 – Online estimation of uncertainty
 – Going beyond a single pass through the data
Going beyond a single pass over the data

- **Stochastic approximation**
 - Assumes infinite data stream
 - Observations are used only once
 - Directly minimizes testing cost $\mathbb{E}_zh(\theta, z) = \mathbb{E}_{(x,y)} \ell(y, \theta^\top \Phi(x))$
Going beyond a single pass over the data

- **Stochastic approximation**
 - Assumes infinite data stream
 - Observations are used only once
 - Directly minimizes testing cost $\mathbb{E}_zh(\theta, z) = \mathbb{E}_{(x,y)} \ell(y, \theta^\top \Phi(x))$

- **Machine learning practice**
 - Finite data set (z_1, \ldots, z_n)
 - Multiple passes
 - Minimizes training cost $\frac{1}{n} \sum_{i=1}^{n} h(\theta, z_i) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^\top \Phi(x_i))$
 - Need to regularize (e.g., by the ℓ_2-norm) to avoid overfitting
Stochastic vs. deterministic methods

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$

- Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^{n} f_i'(\theta_{t-1})$

 - Linear (e.g., exponential) convergence rate
 - Iteration complexity is linear in n
Stochastic vs. deterministic methods

- Minimizing \(g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \) with \(f_i(\theta) = \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta) \)

- Batch gradient descent: \(\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^{n} f_i'(\theta_{t-1}) \)
Stochastic vs. deterministic methods

- Minimizing \(g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) \) with \(f_i(\theta) = \ell(y_i, \theta^T \Phi(x_i)) + \mu \Omega(\theta) \)

- **Batch** gradient descent: \(\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^{n} f'_i(\theta_{t-1}) \)
 - Linear (e.g., exponential) convergence rate
 - Iteration complexity is linear in \(n \)

- **Stochastic** gradient descent: \(\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1}) \)
 - Sampling with replacement: \(i(t) \) random element of \(\{1, \ldots, n\} \)
 - Convergence rate in \(O(1/t) \)
 - Iteration complexity is independent of \(n \)
Stochastic vs. deterministic methods

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$

- **Batch gradient descent:** $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^{n} f_i'(\theta_{t-1})$

- **Stochastic gradient descent:** $\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1})$
Stochastic vs. deterministic methods

- **Goal** = best of both worlds: linear rate with $O(1)$ iteration cost
Stochastic vs. deterministic methods

- **Goal** = best of both worlds: linear rate with $O(1)$ iteration cost
Accelerating gradient methods - Related work

• **Nesterov acceleration**
 - Better linear rate but still $O(n)$ iteration cost

• **Hybrid methods, incremental average gradient, increasing batch size**
 - Bertsekas (1997); Blatt et al. (2008); Friedlander and Schmidt (2011)
 - Linear rate, but iterations make full passes through the data.
Accelerating gradient methods - Related work

- **Momentum, gradient/iterate averaging, stochastic version of accelerated batch gradient methods**
 - Polyak and Juditsky (1992); Tseng (1998); Sunehag et al. (2009); Ghadimi and Lan (2010); Xiao (2010)
 - Can improve constants, but still have sublinear $O(1/t)$ rate

- **Constant step-size stochastic gradient (SG), accelerated SG**
 - Kesten (1958); Delyon and Juditsky (1993); Solodov (1998); Nedic and Bertsekas (2000)
 - Linear convergence, but only up to a fixed tolerance.

- **Stochastic methods in the dual**
 - Shalev-Shwartz and Zhang (2012)
 - Linear rate but limited choice for the f_i's
Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

- **Stochastic average gradient (SAG) iteration**
 - Keep in memory the gradients of all functions \(f_i, i = 1, \ldots, n \)
 - Random selection \(i(t) \in \{1, \ldots, n\} \) with replacement
 - Iteration: \(\theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^{n} y_{i, t} \) with
 \[
 y_{i, t} = \begin{cases}
 f_i'(\theta_{t-1}) & \text{if } i = i(t) \\
 y_{i, t-1} & \text{otherwise}
 \end{cases}
 \]
Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

- **Stochastic average gradient (SAG) iteration**
 - Keep in memory the gradients of all functions f_i, $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \ldots, n\}$ with replacement
 - Iteration: $\theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^{n} y_i^t$ with $y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$

- **Stochastic version of incremental average gradient** (Blatt et al., 2008)

- **Extra memory requirement**
 - Supervised machine learning
 - If $f_i(\theta) = \ell_i(y_i, \Phi(x_i)^\top \theta)$, then $f_i'(\theta) = \ell_i'(y_i, \Phi(x_i)^\top \theta) \Phi(x_i)$
 - Only need to store n real numbers
Stochastic average gradient
Convergence analysis - I

• Assume each f_i is L-smooth and $\hat{f} = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ-strongly convex

• Constant step size $\gamma_t = \frac{1}{2nL}$:

$$\mathbb{E}[\|\theta_t - \theta^*\|^2] \leq \left(1 - \frac{\mu}{8Ln}\right)^t \left[3\|\theta_0 - \theta^*\|^2 + \frac{9\sigma^2}{4L^2}\right]$$

 – Linear rate with iteration cost independent of n ...
 – ... but, same behavior as batch gradient and IAG (cyclic version)

• Proof technique

 – Designing a quadratic Lyapunov function for a n-th order non-linear stochastic dynamical system
Stochastic average gradient
Convergence analysis - II

• Assume each f_i is L-smooth and $\hat{f} = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ-strongly convex

• Constant step size $\gamma_t = \frac{1}{2n\mu}$, if $\frac{\mu}{L} \geq \frac{8}{n}$

$$\mathbb{E}[\hat{f}(\theta_t) - \hat{f}(\theta^*)] \leq C\left(1 - \frac{1}{8n}\right)^t$$

with $C = \left[\frac{16L}{3n} \|\theta_0 - \theta^*\|^2 + \frac{4\sigma^2}{3n\mu} \left(8 \log \left(1 + \frac{\mu n}{4L}\right) + 1\right)\right]$

- Linear rate with iteration cost independent of n
- Linear convergence rate “independent” of the condition number
- After each pass through the data, constant error reduction
Rate of convergence comparison

• Assume that $L = 100$, $\mu = .01$, and $n = 80000$

 – Full gradient method has rate
 $$\left(1 - \frac{\mu}{L} \right) = 0.9999$$

 – Accelerated gradient method has rate
 $$\left(1 - \sqrt{\frac{\mu}{L}} \right) = 0.9900$$

 – Running n iterations of SAG for the same cost has rate
 $$\left(1 - \frac{1}{8n} \right)^n = 0.8825$$

 – Fastest possible first-order method has rate
 $$\left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}} \right)^2 = 0.9608$$

• Beating two lower bounds (with additional assumptions)

 – (1) stochastic gradient and (2) full gradient
Stochastic average gradient
Implementation details and extensions

- The algorithm can use sparsity in the features to reduce the storage and iteration cost

- Grouping functions together can further reduce the memory requirement

- We have obtained good performance when L is not known with a heuristic line-search

- Algorithm allows non-uniform sampling

- Possibility of making proximal, coordinate-wise, and Newton-like variants
Stochastic average gradient
Simulation experiments

- protein dataset \((n = 145751, p = 74) \)
- Dataset split in two (training/testing)

![Graph showing training and testing cost with various algorithms: Steepest, AFG, L-BFGS, pegasos, RDA, SAG \((2/(L+n\mu))\), SAG-LS.]
Stochastic average gradient
Simulation experiments

- cover type dataset \((n = 581012, p = 54)\)

- Dataset split in two (training/testing)
Conclusions / Extensions

Stochastic average gradient

- Going beyond a single pass through the data
 - Keep memory of all gradients for finite training sets
 - Linear convergence rate with $O(1)$ iteration complexity
 - Randomization leads to easier analysis and faster rates
 - Beyond machine learning
Conclusions / Extensions
Stochastic average gradient

- Going beyond a single pass through the data
 - Keep memory of all gradients for finite training sets
 - Linear convergence rate with $O(1)$ iteration complexity
 - Randomization leads to easier analysis and faster rates
 - Beyond machine learning

- Future/current work - open problems
 - Including a non-differentiable term
 - Line search
 - Using second-order information or non-uniform sampling
 - Going beyond finite training sets (bound on testing cost)
 - Non strongly-convex case
References

