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Linear Classification 



Linear Classification 

 

n vectors in d dimensions:   A1,…,An  in  Rd 

Labels y1,…,yn in {-1,1} 

Find vector x such that: 

 

 



Linear Classification 

§  Fundamental  machine learning primitive  

§  Google(linear classification) ~ 126M [Bing~36M]    
Google(linear programming) ~ 50M [Bing~32M] 

§  Internet applications: spam detection, text categorization,  image 

classification, … 

§  Reuters RCV1 dataset:  800K docs, 2M dimensions 

PROBLEMS ARE VERY LARGE ! 
[“very-huge” on Nesterov’s scale] 
Nesterov: “think twice before adding two vectors” 

 



The Perceptron Algorithm 
§ [Rosenblatt 1957, Novikoff 1962, Minsky&Papert 1969] 



The Perceptron Algorithm 

  

Iteratively: 

1.  Find vector Ai for which sign(Ai x) ≠ yi 

2.  Add Ai to x: 

 

 



ε  - margin 



The Perceptron Algorithm 

 

Thm [Novikoff 1962]: returns ε-approximate solution  in  

1/ε2 iterations 

(ε-far from optimal margin) 

 



For n vectors in d dimensions: 

 1/ ε2  iterations 

Each – n × d time  total time:     

 

 

Our new algorithm:  

  

Sublinear (expected) time, leading order term improvement 
  

(independently, Juditsky & Nemirovski        
(in running times, poly-log factors are omitted) 
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Why is it surprising ? 

ε  - margin 



More results 
      

-                   time alg for margin estimation / MEB 
 

-  Sublinear time kernel versions, i.e. polynomial kernel 
of deg q:  
 

-  Poly-log space / low pass algorithms for these problems 

All running times are tight up to polylog factors 
(information theoretic lower bounds) 

Õ(
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More results 
      

-  Sublinear alg for semi-definite programming 
 (w. Garber) 

-  Faster alg for soft-margin-SVM (w. Koren, Srebro) 

-  Generic sublinear-opt template for convex 

programming. 

Õ(
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Talk outline 

      

-  describe new algorithm 

-  Analysis sketch 

-  Kernels 

-  Semidefinite programming / metric learning 

-  Errors (soft margin SVM) 

-  Lower bounds 



A Primal-dual Perceptron 

Iteratively: 

1.  Primal player supplies hyperplane xt 

2.  Dual player supplies distribution pt 

3.  Updates: 

 

 



The Primal-dual Perceptron 
distribution over examples 



Optimization via game solving 

zero-sum 
game 

offline  
optimization  
problem 

Player 1: 
Low regret alg 

Player 2: 
Low-regret alg 

Converges to the min-max solution 

Reduction 

Low reg alg = converges to 
best mixed strategy 



  

Thm : time to converge to ε-approximate solution is 
bounded by T for which: 

    

Total time = # iterations × time-per-iteration 

 

Advantages: 

-  Generic optimization  

-  Learning algorithms (regret) are robust 

-  Easy to apply randomization 



A Primal-dual Perceptron 

Iteratively: 

1.  Primal player supplies hyperplane xt 

2.  Dual player supplies distribution pt 

3.  Updates: 

 

 

# iterations via regret of OGD/MW: 



A Primal-dual Perceptron 

Total time ?    

Speed up via randomization:  

1.  Sufficient to look at one example  

2.  Sufficient to obtain crude estimates of inner products 
(main difficulty, new variance-MW lemma,  

Nemirovski: “you go inside the prox”) 

 



l2 sampling 

Consider two vectors from the d-dim sphere u,v     

-  Sample coordinate i w.p. vi
2 

-  Return  

Notice that 

-  Expectation is correct   

-  Variance at most one (magnitude can be d) 

-  Time: O(d) 



The Sublinear Perceptron 

Iteratively: 

1.  Primal player supplies hyperplane xt, l2 sample from xt  

2.  Dual player supplies distribution pt, sample from it jt 

3.  Updates: 

 

 

Important: preprocess xt only once for all estimates 

Running time: 

p
t+1(i) p

t

(i)⇥ e�⌘`2-sample(Aixt)

xt+1  xt +Ajt



Analysis 

Difficulties: 

1.  MW regret proportional to magnitude (which can be d) 

2.  Overall magnitude of updates is not bounded w.h.p 

(only with constant prob.) 

3.  Verifying a solution (naively) takes O(nd) time 

-> New multiplicative update for bounded variance   

-> Result holds w.p. ½  

-> Exponential tail bounds possible 



MEB (minimum enclosing ball) 



Kernels 



Kernels 
Map input to higher dimensional  

space via non-linear  
mapping. i.e. polynomial: 

 

Classification via linear classifier in new space. 

Efficient classification and optimization if inner products can 
be computer efficiently (the “kernel function”) 



The Sublinear Perceptron 

Iteratively: 

1.  Primal player supplies hyperplane xt,  
l2 sample from xt  

2.  Dual player supplies distribution pt, sample from it jt 

3.  Updates: 

 

 
 



The Sublinear Kernel Perceptron 

Iteratively: 

1.  Primal player supplies hyperplane xt,  
l2 sample from xt  

2.  Dual player supplies distribution pt, sample from it jt 

3.  Updates: 

 

 
 



l2 sampling for kernels 

Polynomial kernel: 

 

Kernel l2 sample =  q independent l2 samples of xT y 

Running time decreases by q 

 

Efficient sampling for Gaussian, Exponential kernels 

 

 



Soft-margin SVM [Cortez-Vapnik’95] 



Minimize soft margin formulation: 

 

 

 

Via stochastic gradient descent – easy to get ε-approximation in time d/
ε2 

 

This is tight in the “example model” !! 

 

In RA model, get faster running time to get δ generalization error.  

Soft-margin SVM 





Semidefinite Programming 

§ Xij = vi × vj 

§ v1 

§ vn 

§ v2 



§  Machine Learning:  learning pseudo-metrics , HUGE instances 

§  Interior point methods [Nesterov & Nemirovski, Alizadeh] :    

§  Approximation algorithms: [Klein-Lu, AHK, Iyengar-Phillips-Stein]:    

 
 

§  Our new alg: 

 

 

§  Technology:     Frank-Wolfe technology, Matrix Bernstein thm 
[Recht ’09] 

 

Semidefinite Programming 
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§  Min-max formulation:  

§  Gradient ascent primal step (no need to project onto SDP cone) 

§  Hybrid dual step: MW on p, optimization on Z (eigenvector) 

 

 

Semidefinite Programming 

max

X
min

p,Z

(
mX

i=1

pi(Ai •X � bi) + Z •X
)



To decide w.p. >= 2/3 , need to see >= ½ bins 

Lower bounds 

OR ??	




“good SDP” 
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§  First sublinear algs for optimization of classifiers, LP, 
faster SVM, SDP approximation.  

§  Optimize any convex opt. problem in “information-

limit” time! 

§  Assumptions on data that permit faster optimization ? 

§  Exploit computer architecture (non-RAM) 

§  Resolve “early global minimum” in experiments 

§  What if one pass is allowed ? (not truly sublinear) 

 

Summary / further directions / open 
questions 



§  Solve linear classification in time: 

§  Resolution = I pay ticket to para-gliding @ Chamonix 

100 €  question 
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