
Sublinear Optimization

Elad Hazan @ Technion

Based on:

Clarkson, Hazan & Woodruff [FOCS ’10,
Journal of the ACM ‘12]

+ Garber, Hazan, [NIPS ‘11]
Hazan, Koren, Srebro, [NIPS ‘11]

!   TexPoint fonts used in EMF.
!   Read the TexPoint manual before you delete this box.:

AAAAAAAA

Linear Classification

Linear Classification

n vectors in d dimensions: A1,…,An in Rd

Labels y1,…,yn in {-1,1}

Find vector x such that:

Linear Classification

§  Fundamental machine learning primitive

§  Google(linear classification) ~ 126M [Bing~36M]
Google(linear programming) ~ 50M [Bing~32M]

§  Internet applications: spam detection, text categorization, image

classification, …

§  Reuters RCV1 dataset: 800K docs, 2M dimensions

PROBLEMS ARE VERY LARGE !
[“very-huge” on Nesterov’s scale]
Nesterov: “think twice before adding two vectors”

The Perceptron Algorithm
§ [Rosenblatt 1957, Novikoff 1962, Minsky&Papert 1969]

The Perceptron Algorithm

Iteratively:

1.  Find vector Ai for which sign(Ai x) ≠ yi

2.  Add Ai to x:

ε - margin

The Perceptron Algorithm

Thm [Novikoff 1962]: returns ε-approximate solution in

1/ε2 iterations

(ε-far from optimal margin)

For n vectors in d dimensions:

 1/ ε2 iterations

Each – n × d time total time:

Our new algorithm:

Sublinear (expected) time, leading order term improvement

(independently, Juditsky & Nemirovski
(in running times, poly-log factors are omitted)

O(nd log
1

✏
+

n+ d

✏2
)

⌦(
n+ d

✏2
)

Why is it surprising ?

ε - margin

More results

-  time alg for margin estimation / MEB

-  Sublinear time kernel versions, i.e. polynomial kernel
of deg q:

-  Poly-log space / low pass algorithms for these problems

All running times are tight up to polylog factors
(information theoretic lower bounds)

Õ(
q(n+ d)

"2
+ poly(

1

"
))

More results

-  Sublinear alg for semi-definite programming
 (w. Garber)

-  Faster alg for soft-margin-SVM (w. Koren, Srebro)

-  Generic sublinear-opt template for convex

programming.

Õ(
m

"2
+

n2

"2.5
) ⌦(

m

"2
+

n2

"2
)

Talk outline

-  describe new algorithm

-  Analysis sketch

-  Kernels

-  Semidefinite programming / metric learning

-  Errors (soft margin SVM)

-  Lower bounds

A Primal-dual Perceptron

Iteratively:

1.  Primal player supplies hyperplane xt

2.  Dual player supplies distribution pt

3.  Updates:

The Primal-dual Perceptron
distribution over examples

Optimization via game solving

zero-sum
game

offline
optimization
problem

Player 1:
Low regret alg

Player 2:
Low-regret alg

Converges to the min-max solution

Reduction

Low reg alg = converges to
best mixed strategy

Thm : time to converge to ε-approximate solution is
bounded by T for which:

Total time = # iterations × time-per-iteration

Advantages:

-  Generic optimization

-  Learning algorithms (regret) are robust

-  Easy to apply randomization

A Primal-dual Perceptron

Iteratively:

1.  Primal player supplies hyperplane xt

2.  Dual player supplies distribution pt

3.  Updates:

iterations via regret of OGD/MW:

A Primal-dual Perceptron

Total time ?

Speed up via randomization:

1.  Sufficient to look at one example

2.  Sufficient to obtain crude estimates of inner products
(main difficulty, new variance-MW lemma,

Nemirovski: “you go inside the prox”)

l2 sampling

Consider two vectors from the d-dim sphere u,v

-  Sample coordinate i w.p. vi
2

-  Return

Notice that

-  Expectation is correct

-  Variance at most one (magnitude can be d)

-  Time: O(d)

The Sublinear Perceptron

Iteratively:

1.  Primal player supplies hyperplane xt, l2 sample from xt

2.  Dual player supplies distribution pt, sample from it jt

3.  Updates:

Important: preprocess xt only once for all estimates

Running time:

p
t+1(i) p

t

(i)⇥ e�⌘`2-sample(Aixt)

xt+1 xt +Ajt

Analysis

Difficulties:

1.  MW regret proportional to magnitude (which can be d)

2.  Overall magnitude of updates is not bounded w.h.p

(only with constant prob.)

3.  Verifying a solution (naively) takes O(nd) time

-> New multiplicative update for bounded variance

-> Result holds w.p. ½

-> Exponential tail bounds possible

MEB (minimum enclosing ball)

Kernels

Kernels
Map input to higher dimensional

space via non-linear
mapping. i.e. polynomial:

Classification via linear classifier in new space.

Efficient classification and optimization if inner products can
be computer efficiently (the “kernel function”)

The Sublinear Perceptron

Iteratively:

1.  Primal player supplies hyperplane xt,
l2 sample from xt

2.  Dual player supplies distribution pt, sample from it jt

3.  Updates:

The Sublinear Kernel Perceptron

Iteratively:

1.  Primal player supplies hyperplane xt,
l2 sample from xt

2.  Dual player supplies distribution pt, sample from it jt

3.  Updates:

l2 sampling for kernels

Polynomial kernel:

Kernel l2 sample = q independent l2 samples of xT y

Running time decreases by q

Efficient sampling for Gaussian, Exponential kernels

Soft-margin SVM [Cortez-Vapnik’95]

Minimize soft margin formulation:

Via stochastic gradient descent – easy to get ε-approximation in time d/
ε2

This is tight in the “example model” !!

In RA model, get faster running time to get δ generalization error.

Soft-margin SVM

Semidefinite Programming

§ Xij = vi × vj

§ v1

§ vn

§ v2

§  Machine Learning: learning pseudo-metrics , HUGE instances

§  Interior point methods [Nesterov & Nemirovski, Alizadeh] :

§  Approximation algorithms: [Klein-Lu, AHK, Iyengar-Phillips-Stein]:

§  Our new alg:

§  Technology: Frank-Wolfe technology, Matrix Bernstein thm
[Recht ’09]

Semidefinite Programming

Õ(
m

"2
+

n2

"2.5
)

§  Min-max formulation:

§  Gradient ascent primal step (no need to project onto SDP cone)

§  Hybrid dual step: MW on p, optimization on Z (eigenvector)

Semidefinite Programming

max

X
min

p,Z

(
mX

i=1

pi(Ai •X � bi) + Z •X
)

To decide w.p. >= 2/3 , need to see >= ½ bins

Lower bounds

OR ??	

“good SDP”

0	

0	

0	

0	

0	

0	

0	

0	
 ?	
 0	

0	

?	

0	

0	

0	

0	

0	
 0	
 0	

0	

0	

0	

0	

0	

?	

0	
 0	

“bad SDP”

0	

0	

0	

0	

0	

0	

0	

0	
 ?	
 0	

0	

0	

0	

0	

0	

0	

0	
 0	
 0	

0	

0	

0	

0	

0	

?	

0	
 0	

§  First sublinear algs for optimization of classifiers, LP,
faster SVM, SDP approximation.

§  Optimize any convex opt. problem in “information-

limit” time!

§  Assumptions on data that permit faster optimization ?

§  Exploit computer architecture (non-RAM)

§  Resolve “early global minimum” in experiments

§  What if one pass is allowed ? (not truly sublinear)

Summary / further directions / open
questions

§  Solve linear classification in time:

§  Resolution = I pay ticket to para-gliding @ Chamonix

100 € question

˜O(nd log
1

✏
+

poly(log n, log d)

✏2
)

