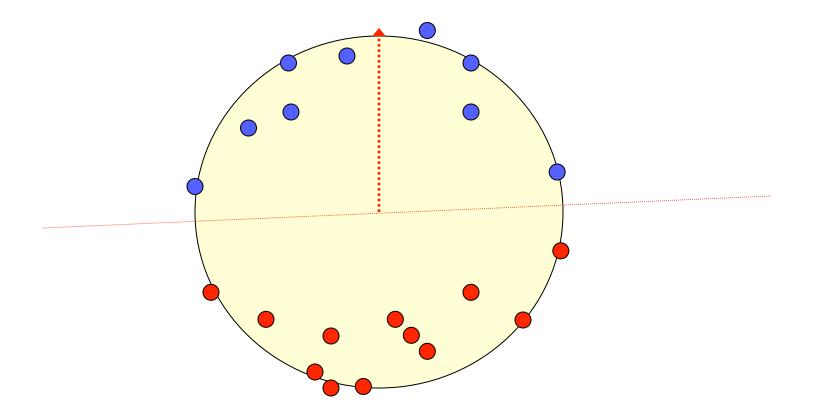
Sublinear Optimization

Elad Hazan @ Technion

Based on:

Clarkson, Hazan & Woodruff [FOCS '10, Journal of the ACM '12] + Garber, Hazan, [NIPS '11] Hazan, Koren, Srebro, [NIPS '11]

Linear Classification



Linear Classification

n vectors in d dimensions: $A_1,...,A_n$ in \mathbb{R}^d Labels $y_1,...,y_n$ in $\{-1,1\}$ Find vector x such that:

 $\forall i \in [n] . \operatorname{sign}(A_i^{\top} x) = y_i$

Linear Classification

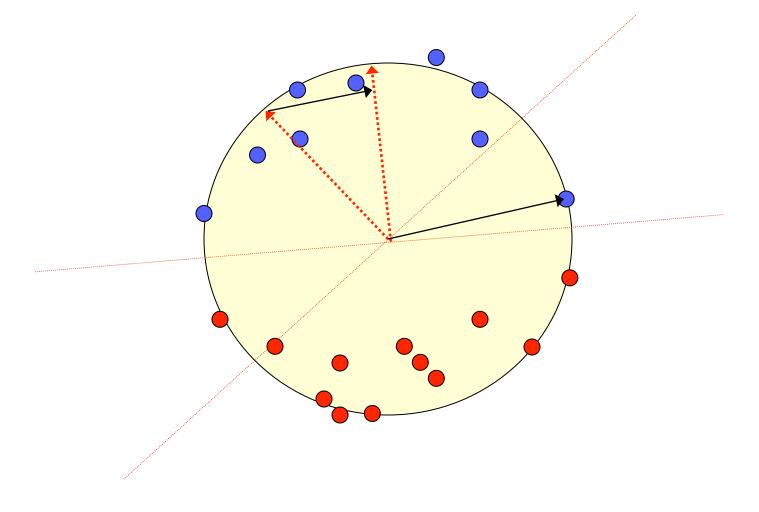
- Fundamental machine learning primitive
- Google(linear classification) ~ 126M [Bing~36M]
 Google(linear programming) ~ 50M [Bing~32M]
- Internet applications: spam detection, text categorization, image classification, ...
- Reuters RCV1 dataset: 800K docs, 2M dimensions

PROBLEMS ARE VERY LARGE !

["very-huge" on Nesterov's scale] Nesterov: "think twice before adding two vectors"

The Perceptron Algorithm

•[Rosenblatt 1957, Novikoff 1962, Minsky&Papert 1969]

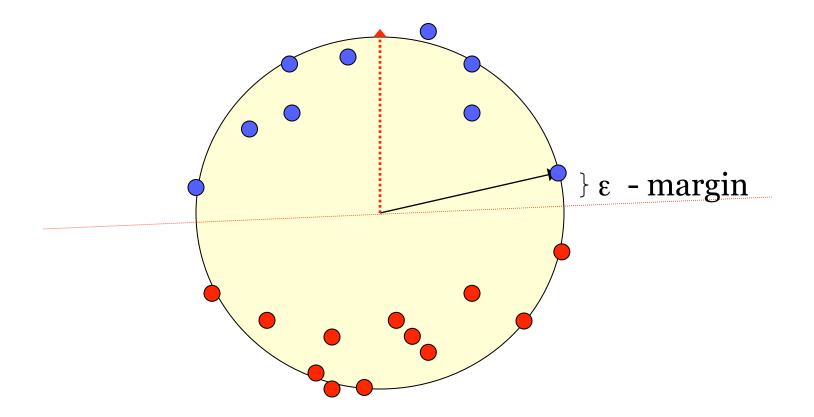


The Perceptron Algorithm

Iteratively:

- 1. Find vector A_i for which sign $(A_i x) \neq y_i$
- 2. Add A_i to x:

$$x_{t+1} \leftarrow x_t + y_i A_i$$



The Perceptron Algorithm

Thm [Novikoff 1962]: returns ϵ -approximate solution in $1/\epsilon^2$ iterations

(ϵ -far from optimal margin)

For n vectors in d dimensions: 1/ ϵ^2 iterations Each – n × d time total time: $O(\frac{nd}{\epsilon^2})$

Our new algorithm:

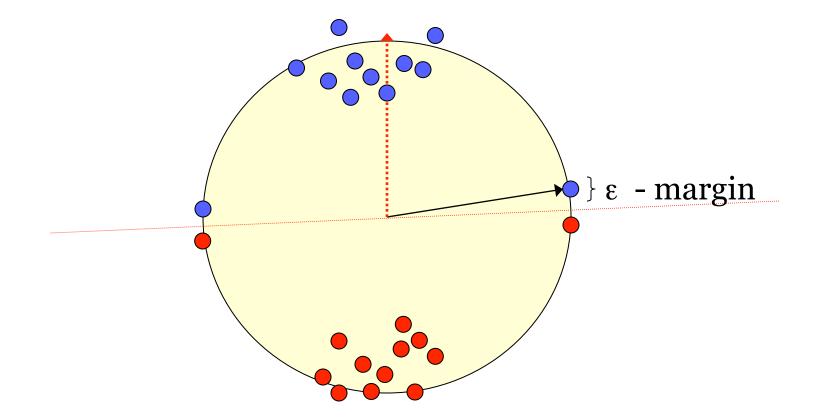
$$O(\frac{n+d}{\varepsilon^2}) \qquad \Omega(\frac{n+d}{\epsilon^2})$$

Sublinear (expected) time, leading order term improvement

(independently, Juditsky & Nemirovski (in running times, poly-log factors are omitted)

$$O(nd\log\frac{1}{\epsilon} + \frac{n+d}{\epsilon^2})$$

Why is it surprising ?



More results

- $O(\frac{n}{\varepsilon^2} + \frac{d}{\varepsilon})$ time alg for margin estimation / MEB
 - Sublinear time kernel versions, i.e. polynomial kernel of deg q: $\tilde{O}(\frac{q(n+d)}{c^2} + poly(\frac{1}{c}))$
- Poly-log space / low pass algorithms for these problems
 All running times are tight up to polylog factors
 (information theoretic lower bounds)

More results

Sublinear alg for semi-definite programming (w. Garber)

$$\tilde{O}(\frac{m}{\varepsilon^2} + \frac{n^2}{\varepsilon^{2.5}}) = \Omega(\frac{m}{\varepsilon^2} + \frac{n^2}{\varepsilon^2})$$

- Faster alg for soft-margin-SVM (w. Koren, Srebro)
- Generic sublinear-opt template for convex programming.

Talk outline

- describe new algorithm
- Analysis sketch
- Kernels
- Semidefinite programming / metric learning
- Errors (soft margin SVM)
- Lower bounds

A Primal-dual Perceptron

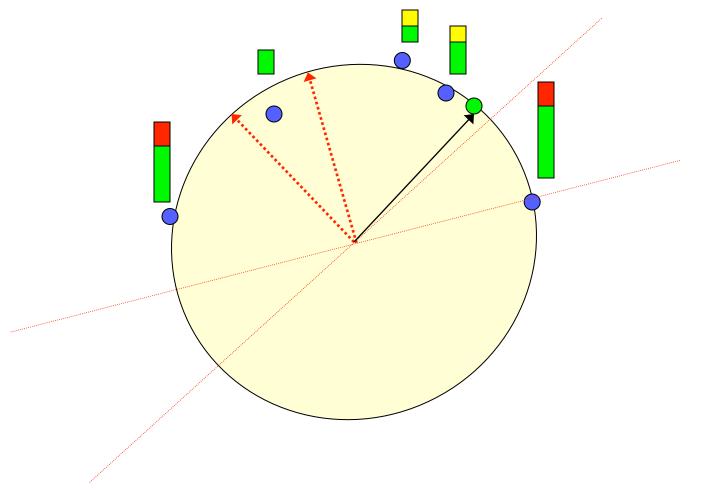
Iteratively:

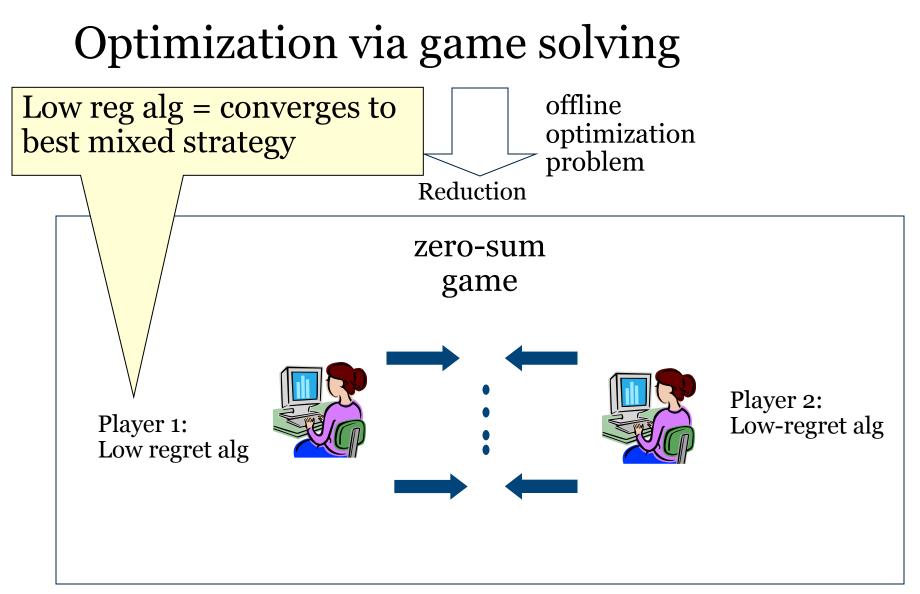
- 1. Primal player supplies hyperplane x_t
- 2. Dual player supplies distribution p_t
- 3. Updates: $x_{t+1} \leftarrow x_t + \eta \sum_{i=1}^n p_t(i) A_i$

 $p_{t+1}(i) \leftarrow p_t(i) \times e^{-\eta A_i x_t}$

The Primal-dual Perceptron

distribution over examples





Converges to the min-max solution

Thm : time to converge to ε -approximate solution is bounded by T for which: $\frac{\text{Regret}_1 + \text{Regret}_2}{T} \leq \varepsilon$

Total time = # iterations × time-per-iteration

Advantages:

- Generic optimization
- Learning algorithms (regret) are robust
- Easy to apply randomization

A Primal-dual Perceptron

Iteratively:

- 1. Primal player supplies hyperplane x_t
- 2. Dual player supplies distribution p_t
- 3. Updates: $x_{t+1} \leftarrow x_t + \eta \sum_{i=1}^n p_t(i) A_i$ $p_{t+1}(i) \leftarrow p_t(i) \times e^{-\eta A_i x_t}$
- # iterations via regret of OGD/MW: $\operatorname{Regret}_1 \leq 2\sqrt{T}$, $\operatorname{Regret}_2 \leq \sqrt{T \log n}$

 $\frac{\operatorname{Regret}_1 + \operatorname{Regret}_2}{T} \le \varepsilon \qquad \qquad \# \text{ iters} \le \frac{\log n}{\varepsilon^2}$

A Primal-dual Perceptron

Total time ? # iters × updates = $\frac{nd \log n}{\varepsilon^2}$

Speed up via randomization:

- 1. Sufficient to look at one example
- Sufficient to obtain crude estimates of inner products (main difficulty, new variance-MW lemma, Nemirovski: "you go inside the prox")

l_2 sampling

Consider two vectors from the d-dim sphere u,v

- Sample coordinate i w.p. v_i^2
- Return $X = \frac{u_i}{v_i}$

Notice that

- Expectation is correct

$$E[X] = \sum_{i} v_i^2 \times \frac{u_i}{v_i} = v^\top u$$

- Variance at most one (magnitude can be d)

$$E[X^{2}] = \sum_{i} v_{i}^{2} \times (\frac{u_{i}}{v_{i}})^{2} = \sum_{i} u_{i}^{2} = 1$$

Time: O(d)

The Sublinear Perceptron

Iteratively:

- 1. Primal player supplies hyperplane x_t , l_2 sample from x_t
- ^{2.} Dual player supplies distribution p_t , sample from it j_t
- 3. Updates:

 $x_{t+1} \leftarrow x_t + A_{j_t}$ $p_{t+1}(i) \not p_{t+1}(i) \times (1 p_t n_2) \times (1 p_t n_2) = \text{sample}(A_i x_t) + \eta^2 l_2 - \text{sample}(A_i x_t)^2)$

Important: preprocess x_t only once for all estimates

Running time:

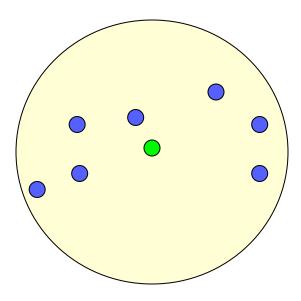
$$O(\frac{n+d}{\varepsilon^2})$$

Analysis

Difficulties:

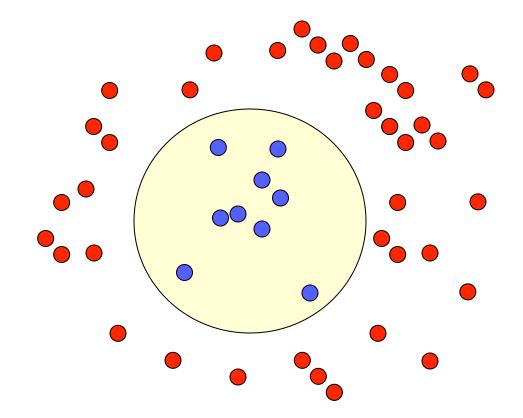
- 1. MW regret proportional to magnitude (which can be d)
- Overall magnitude of updates is not bounded w.h.p (only with constant prob.)
- 3. Verifying a solution (naively) takes O(nd) time
- -> New multiplicative update for bounded variance
- -> Result holds w.p. ½
- -> Exponential tail bounds possible

MEB (minimum enclosing ball)



 $\min_{x \in R^d} \max_{i \in [n]} \|x - A_i\|^2$

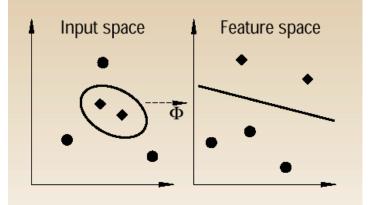
Kernels



Kernels

Map input to higher dimensional space via non-linear mapping. i.e. polynomial:

$$\Phi(x_1, x_2) = (x_1, x_2, \sqrt{2} \ x_1 \cdot x_2)$$



Classification via linear classifier in new space.

Efficient classification and optimization if inner products can

be computer efficiently (the "kernel function")

 $K(x,y) = \Phi(x) \times \Phi(y)$

polynomial: $K(x, y) = (x^{\top}y)^q$

The Sublinear Perceptron

Iteratively:

- 1. Primal player supplies hyperplane x_t , l_2 sample from x_t
- 2. Dual player supplies distribution p_t , sample from it j_t

3. Updates:

 $x_{t+1} \leftarrow x_t + \eta A_{j_t}$

 $p_{t+1}(i) \leftarrow p_t(i) \times (1 - \eta l_2 \text{-sample}(A_i x_t) + \eta^2 l_2 \text{-sample}(A_i x_t)^2)$

The Sublinear Kernel Perceptron

Iteratively:

- 1. Primal player supplies hyperplane x_t , l_2 sample from x_t
- 2. Dual player supplies distribution p_t , sample from it j_t

3. Updates:

 $x_{t+1} \leftarrow x_t + \eta \Phi(A_{j_t})$

 $p_{t+1}(i) \leftarrow p_t(i) \times (1 - \eta l_2 \text{-sample}(\Phi(A_i)\Phi(x_t)) + \eta^2 l_2 \text{-sample}(\Phi(A_i)\Phi(x_t))^2)$

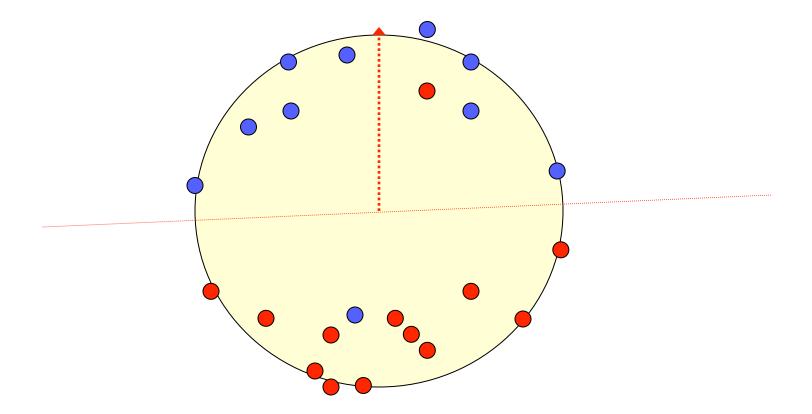
l_2 sampling for kernels

Polynomial kernel: $K(x, y) = (x^T y)^q$

Kernel l_2 sample = q independent l_2 samples of $x^T y$ Running time decreases by q

Efficient sampling for Gaussian, Exponential kernels

Soft-margin SVM [Cortez-Vapnik'95]



Soft-margin SVM

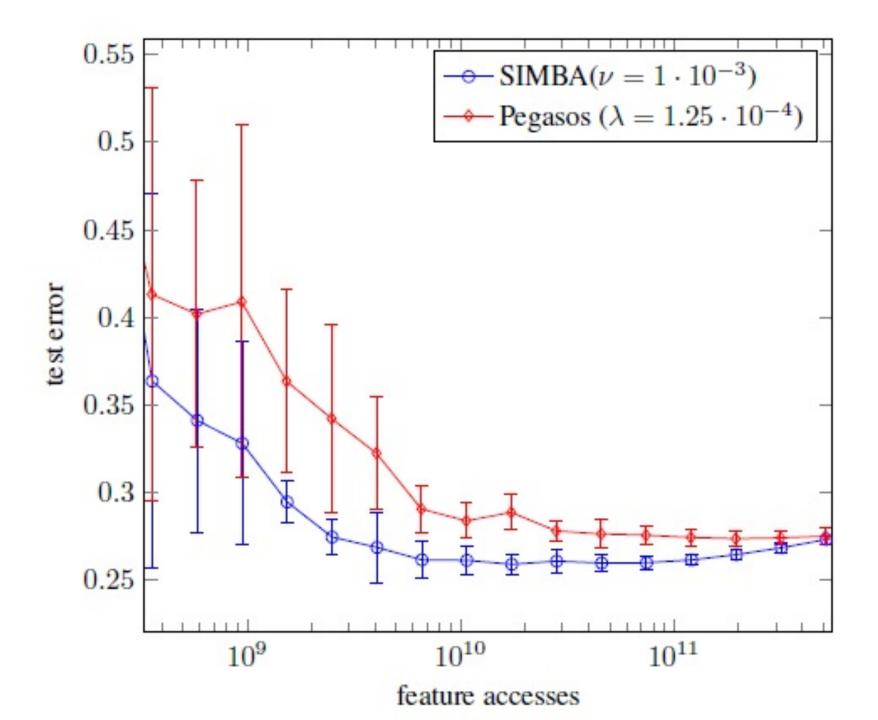
Minimize soft margin formulation:

$$\min_{w \in \mathcal{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y_i \cdot w^\top x_i\} + \frac{\lambda}{2} \|w\|^2 \right\}$$

Via stochastic gradient descent – easy to get $\epsilon\text{-approximation}$ in time d/ ϵ^2

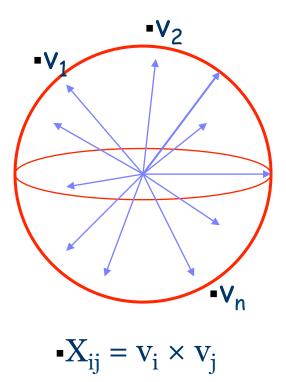
This is tight in the "example model" !!

In RA model, get faster running time to get δ generalization error.



Semidefinite Programming

 $A_1 \bullet X \ge b_1$ $A_2 \bullet X \ge b_2$ \dots $A_m \bullet X \ge b_m$ $X \in \mathbb{R}^{n \times n}$ $X \ge 0$ $\mathrm{Tr}(X) \le 1$



Semidefinite Programming

- Machine Learning: learning pseudo-metrics, HUGE instances
- Interior point methods [Nesterov & Nemirovski, Alizadeh] :

 $\tilde{O}(n^3\sqrt{m}\log\frac{1}{\epsilon})$

• Approximation algorithms: [Klein-Lu, AHK, Iyengar-Phillips-Stein]:

$$\tilde{O}(rac{mn^2}{poly(\epsilon)})$$

- Our new alg: $\tilde{O}(\frac{m}{\varepsilon^2} + \frac{n^2}{\varepsilon^{2.5}})$
- Technology: Frank-Wolfe technology, Matrix Bernstein thm [Recht '09]

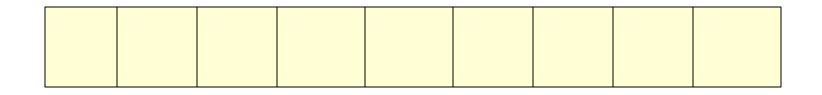
Semidefinite Programming

• Min-max formulation:

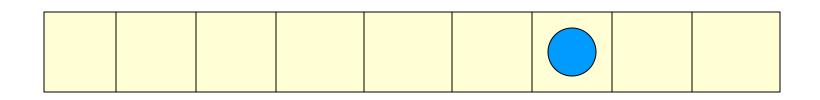
$$\max_{X} \min_{p,Z} \left\{ \sum_{i=1}^{m} p_i (A_i \bullet X - b_i) + Z \bullet X \right\}$$

- Gradient ascent primal step (no need to project onto SDP cone)
- Hybrid dual step: MW on p, optimization on Z (eigenvector)

Lower bounds

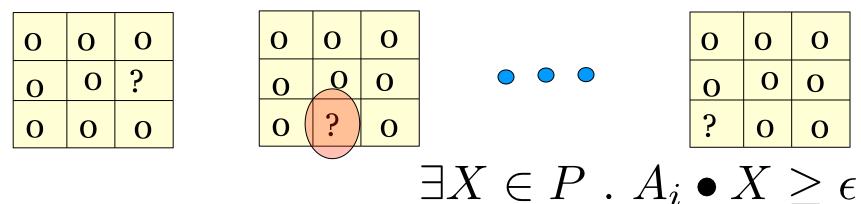


OR ??

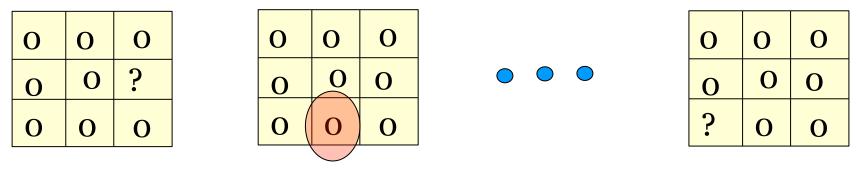


To decide w.p. >= 2/3, need to see >= 1/2 bins

"good SDP"



"bad SDP"



 $\exists i \in [m] \ . \ A_i = 0 \Rightarrow \forall X \in P \ . \ A_i \bullet X \le 0$

Summary / further directions / open questions

- First sublinear algs for optimization of classifiers, LP, faster SVM, SDP approximation.
- Optimize any convex opt. problem in "informationlimit" time!
- Assumptions on data that permit faster optimization ?
- Exploit computer architecture (non-RAM)
- Resolve "early global minimum" in experiments
- What if one pass is allowed ? (not truly sublinear)

100 € question

• Solve linear classification in time:

$$\tilde{O}(nd\log\frac{1}{\epsilon} + \frac{poly(\log n, \log d)}{\epsilon^2})$$

• Resolution = I pay ticket to para-gliding @ Chamonix

