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Abstract

Given a query image of an object, our objective is to re-
trieve all instances of that object in a large (1M+) image
database. We adopt the bag-of-visual-words architecture
which has proven successful in achieving high precision at
low recall. Unfortunately, feature detection and quantiza-
tion are noisy processes and this can result in variation in
the particular visual words that appear in different images
of the same object, leading to missed results.

In the text retrieval literature a standard method for im-
proving performance is query expansion. A number of the
highly ranked documents from the original query are reis-
sued as a new query. In this way, additional relevant terms
can be added to the query. This is a form of blind rele-
vance feedback and it can fail if ‘outlier’ (false positive)
documents are included in the reissued query.

In this paper we bring query expansion into the visual
domain via two novel contributions. Firstly, strong spatial
constraints between the query image and each result allow
us to accurately verify each return, suppressing the false
positives which typically ruin text-based query expansion.
Secondly, the verified images can be used to learn a latent
feature model to enable the controlled construction of ex-
panded queries.

We illustrate these ideas on the 5000 annotated im-
age Oxford building database together with more than 1M
Flickr images. We show that the precision is substantially
boosted, achieving total recall in many cases.

1. Introduction
The leading methods for object retrieval from large im-

age corpora all rely on variants of the same technique
[11, 12, 18]. First, each image in the corpus is processed to
extract features in some high-dimensional descriptor space.
These descriptors are quantized or clustered to map every
feature to a “visual word” in some much smaller discrete
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Figure 1. A sample of challenging results returned by our method
in answer to a visual query for the Tom Tower, Christ Church Col-
lege, Oxford (top left), which weren’t found by a simple bag-of-
visual-words method. This query was performed on a large dataset
of 1,145,645 images.

vocabulary. The corpus is then summarized using an index
where each image is represented by the visual words that
it contains. At query time the system is presented with a
query in the form of an image region. This region is it-
self processed to extract feature descriptors that are mapped
onto the visual word vocabulary, and these words are used
to query the index. The response set of the query is a set
of images from the corpus that contain a large number of
visual words in common with the query region. These re-
sponse images may subsequently be ranked using spatial
information to ensure that the response and the query not
only contain similar features, but that the features occur in
compatible spatial configurations [14, 17, 18, 20].

This procedure can be interpreted probabilistically as
follows: the system extracts a generative model of an ob-
ject from the query region; then forms the response set from
those images in the corpus that are likely to have been gen-
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erated from that model. The generative model in this case
is a spatial configuration of visual words extracted from the
query region, together with a “background” distribution of
words that encodes the overall frequency statistics of the
corpus.

In this paper we explore ways to derive better object
models given the query region, in order to improve retrieval
performance. We keep the form of the model fixed: it is
still a configuration of visual words. However, rather than
simply extracting the model from the single input query re-
gion, we enrich it with additional information from the cor-
pus; we refer to this as a latent model of the object. This
richer model achieves substantially better retrieval perfor-
mance than the state of the art [12] on the Oxford Buildings
dataset [2].

The latent model is a generalization of the idea of query
expansion, a well-known technique from the field of text-
based information retrieval [4, 16]. In text-based query ex-
pansion a number of the high ranked documents from the
original response set are used to generate a new query that
can be used to obtain a new response set. This is a form
of blind relevance feedback [16] in that it allows additional
relevant terms to be added to the query. It is particularly
well suited to our problem domain for two reasons.

First, the spatial structure of images allows us to be very
robust to false positives. In text retrieval, relevance feed-
back attempts to construct a topic model of relevance based
on terms in the documents. Due to the complexities of
natural language, the relevant terms may be spread arbi-
trarily throughout the returned documents, and the task is
complicated by the dramatic changes in meaning that can
arise from subtle rearrangement of language terms. Conse-
quently there is substantial danger of topic drift, where an
incorrect model is inferred from the initial result set, lead-
ing to divergence as the process is iterated. In the image
retrieval case we are greatly assisted by the fact that we can
construct a model of a region rather than the whole image,
and that the image data within the region is very likely to
correspond to the object of interest. While there may be
occlusions obscuring parts of some matching regions, it is
reasonable to expect them to be independent in different re-
sponse images, simplifying the task of inferring the latent
model.

Second, the baseline image search without query expan-
sion suffers more acutely from false negatives than most
text retrieval systems. Because the “visual words” used
to index images are a synthetic projection from a high-
dimensional descriptor space, they suffer from substantial
noise and drop-outs. Two very similar image instances
of the same object typically have only partial overlap of
their visual words, especially when the features are sampled
sparsely as is common to many systems for performance
reasons [11, 18]. Consequently, as we show in section 5,

we can substantially improve recall at a given threshold of
precision simply by forming the union of features common
to a transitive closure of the response images.
An outline of our approach is as follows:
1. Given a query region, search the corpus and retrieve a

set of image regions that match the query object. We
use bag-of-visual-words retrieval together with spatial
verification, however the approach would apply to re-
trieval systems that use different object models.

2. Combine the retrieved regions, along with the original
query, to form a richer latent model of the object of in-
terest.

3. Re-query the corpus using this expanded model to re-
trieve an expanded set of matching regions.

4. Repeat the process as necessary, alternating between
model refinement and re-querying.

In the following we briefly outline our implementation
of the bag-of-visual-words retrieval in section 2 and spatial
verification in section 3. Section 4 then describes several al-
ternative mechanisms for constructing latent models in the
iterative framework described above. In section 5, the per-
formance of these mechanisms is assessed on a very chal-
lenging dataset of over 1M Flickr images.

Since our “generative model” outputs only visual words,
our system presents the results to the user as a set of match-
ing image regions from the corpus. However, as we argue in
section 6, there is a natural avenue of extensions to this work
that lead toward more complex models that might include
detailed intensity or structural information about the object.
With these more sophisticated models we could imagine re-
turning a synthesis of the queried object directly rather than
a set of matching images [19].

2. Real-time Object Retrieval
This section overviews our bag-of-visual-words real-

time object retrieval engine. Further details can be found
in [12].
Image description. For each image in the dataset (see sec-
tion 5), we find multi-scale Hessian interest points and fit an
affine invariant region to each using the semi-local second
moment matrix [10]. On average, there are 3,300 regions
detected on an image of size 1024× 768. For each of these
affine regions, we compute 128-dimensional SIFT descrip-
tors [9]. The number of descriptors generated for each of
our datasets is shown in table 1.
Quantization. A visual vocabulary of 1M words is gener-
ated using an approximate K-means clustering method [12]
based on randomized trees. This produces visual vocabu-
laries which perform as well as those generated by exact K-
means at a fraction of the computational cost. Each visual
descriptor is assigned, via approximate nearest neighbour
search, to a single cluster centre, giving a standard bag-of-
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Figure 2. Sample of 20 query images used in the ground truth eval-
uation. For all query images see [12].

visual-words model. These quantized visual features are
then used to index the images for the search engine.
Search Engine. Our search engine uses the vector-space
model of information-retrieval. The query and each doc-
ument in the corpus is represented as a sparse vector of
term (visual word) occurrences and search then proceeds
by calculating the similarity between the query vector and
each document vector. We use the standard tf-idf weighting
scheme [3], which down-weights the contribution that com-
monly occurring, and therefore less discriminative, words
make to the relevance score.

For computational speed, the engine stores word occur-
rences in an index, which maps individual words to the doc-
uments in which they occur. For sparse queries, this can
result in a substantial speedup over examining every doc-
ument vector, as only documents which contain common
(to the query) words need to be examined. The scores for
each document are accumulated so that they are identical to
explicitly computing the similarity.

With large corpora of images, memory usage becomes
a major concern. To help ameliorate this problem, the in-
verted file is stored in a space-efficient binary-packed struc-
ture. Additionally, when main memory is exhausted, the en-
gine can be switched to use an inverted file flattened to disk,
which caches the data for the most frequently requested
words.

3. Spatial Verification
The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-
nificant section of the corpus. Until now, we have consid-
ered the features in each image as a visual bag-of-words
and have ignored their spatial configurations. It is vital for
query-expansion that we do not expand using false positives
or use features which occur in the result image, but not on

the object of interest. To achieve this, we use a fast, ro-
bust, hypothesize and verify procedure to estimate an affine
homography between a query region and target image.

Each interest point has an affine invariant semi-local re-
gion associated with it and we use this extra information to
hypothesize transformations using single correspondences.
This makes our procedure both fast (the number of hy-
potheses to test is simply the number of putative correspon-
dences) and deterministic (we examine every possible hy-
pothesis). A RANSAC-like scoring mechanism is used to
select the hypothesis with the greatest number of inliers.

Each single correspondence hypothesizes a three degree
of freedom (dof) transformation (isotropic scale & trans-
lation). For a typical query of 1000 features, with a dis-
criminative vocabulary, the number of correspondences and
hence hypotheses to test will be of the order of a few thou-
sand. The number of inliers to this transformation is found
using a symmetric transfer error [7] coupled with a scale
threshold which prevents mis-sized regions from scoring as
inliers. Each hypothesis is stored in a priority queue, keyed
by the number of inliers. For the top 10 hypotheses found,
we iteratively use a least-squares re-estimation method on
the initially found inliers to generate a full 6 dof affine trans-
formation, returning the best hypothesis as the one with the
most inliers after re-estimation [5]. Empirically, we find
that results with more than 20 inliers reliably contain the
object being sought for. We call such results spatially veri-
fied.

The spatial verification is applied up to a maximum of
the top 1000 results returned from the search engine. At
each result, a decision is made about whether to proceed
with the verification further down the ranked list based on
how recently a verified image has been seen. If no verified
result has been seen in the last 20 ranked images, then we
stop, returning the verified images seen so far. Empirically,
we find that increasing this threshold further does not sig-
nificantly increase the number of positively verified results.
This prevents us from needlessly verifying images for re-
sults where all the true positive images have already been
seen, or from prematurely bailing out of verification when
there are more true positives waiting to be found. The out-
put is a list of images ranked in non-increasing order of the
number of inliers. The threshold of 20 inliers is used to
produce a list of verified results and their associated trans-
formations. This list of known good results is essential for
the query expansion.

4. Generative Model
In this section, we describe several methods for com-

puting latent object models. These are based on generative
models of the features and their configuration, with different
levels of complexity. We account for quantization and de-
tection noise, and the effect of different image resolutions.



Each method starts by evaluating the original query Q0

composed of all the visual words which fall inside the query
region. A latent model is then constructed from the verified
images returned from Q0, and a new query Q1, or several
new queries, issued. This immediately raises two issues: (i)
how far should this sequence extend – should a new latent
model be built from the returns of Q1 and another query
issued, etc? (ii) how should the ranked lists returned from
Q0, Q1, . . . be combined? We explore both these questions.

Note that the bag-of-visual-word result set from Q1 must
be verified against Q1 – for example Q0 cannot be used for
verification since we are aiming to obtain images that were
not verified against Q0.

4.1. Methods

The methods can be divided into those that issue a single
new query and those that issue multiple queries. In the latter
case it is necessary to combine the returned ranked lists for
each query.
Query expansion baseline. This method is a straight for-
ward naı̈ve application of query expansion as is used in text-
retrieval. We take the top m = 5 results from the origi-
nal query (without spatial verification), average the term-
frequency vectors computed from the entire result image
and requery once. The results of Q1 are appended to those
of Q0 (the top 5).
Transitive closure expansion. A priority queue of verified
images is keyed by the number of inliers. Then, an image is
taken from the top of the queue and the region correspond-
ing to the original query region is used to issue a new query.
Verified results of the expanded query that have not been
inserted to the queue before are inserted (again in the order
of the number of inliers). The procedure repeats until the
queue is empty. The images in the final result are in the
same order in which they entered the queue.
Average query expansion. A new query is constructed by
averaging verified results of the original query. First, the top
m < 50 verified results returned by the search engine are
selected. A new query Qavg is then formed by taking the
average of the original query Q0 and the m results

davg =
1

m + 1

(
d0 +

m∑
i=1

di

)
,

where d0 is the normalized tf vector of the query region,
and di is the normalized tf vector of the i-th result. For this
average, we take the union of features of the original query,
combined with regions back-projected into the query region
by Hi – the estimated transformation. This is the simplest
form of latent model since no account is taken of the stabil-
ity of the features or the resolution of the images. Again we
requery once, and the results of Qavg are appended to those
(top m) of Q0.

Recursive average query expansion. This method im-
proves on the average query expansion method, by recur-
sively generating queries Qi from all spatially verified re-
sults returned so far. The method stops once more than 30
verified images have been found, or after no new images
have been positively verified.
Multiple image resolution expansion. The generative
model in this case also takes account of the probability of
observing a feature given an image of an object and its res-
olution. Features covering a small area of the object are
seen only in close-up images or images with high resolu-
tion. Similarly, features covering the whole object are not
seen on detailed views.

The latent image is constructed as before by back pro-
jecting verified regions of Q0 using the Hi transformations.
The number of pixels of the projected region defines the
resolution of each result image. An image with median
resolution is chosen as a resolution reference image and a
relative change of the resolution (with respect to the resolu-
tion reference image) is computed for each result image.
The resolution bands are given by the relative resolution
change as (0, 4/5), (2/3, 3/2), and (5/4,∞). We construct
an average query for each of the three different resolution
bands, using only images that have resolution within that
scale band. The queries are executed independently and the
results are merged. Verified images from Q0 are returned
first. Results from expanded queries follow in order of the
number of inliers (the maximum is taken if an image is re-
trieved in more than one resolution band).

5. Experiments
To evaluate our system, we use the Oxford dataset avail-

able from [2]. This is a relatively small set of 5K images
with an extensive associated ground truth. We also use two
additional unlabeled datasets, Flickr1 and Flickr2, which
are assumed not to contain images of the ground truth land-
marks. These additional datasets are used as “distractors”
for the system and provide an important test for the scal-
ability of our method. These three datasets are described
below and compared in table 1. The set of images down-
loaded from two or more of Flickr’s tags will not in general
be disjoint, so we remove exact duplicate images from all
our datasets.
The Oxford dataset. This dataset [2] was crawled from
Flickr using queries for famous Oxford landmarks, such as
“Oxford Christ Church” and “Oxford Radcliffe Camera”.
It consists of 5,062 high resolution (1024 × 768) images.
Ground truth labelling is provided for 11 landmarks with
four possible labels as follows: (1) Good – a nice, clear
picture of the object/building. (2) OK – more than 25%
of the object is clearly visible. (3) Bad – the object is not
present. (4) Junk – less than 25% of the object is visible, or
there is a very high level of occlusion or distortion. For each



Dataset Number of images Number of features
Oxford 5,062 16,334,970
Flickr1 99,782 277,770,833
Flickr2 1,040,801 1,186,469,709
Total 1,145,645 1,480,575,512

Table 1. The number of descriptors for each dataset.

landmark five standard queries are defined for evaluation. A
sample of 20 query images is shown in figure 2, for the rest
see [2].
Flickr1 dataset. This dataset was crawled from Flickr’s
145 most popular tags and consists of 99,782 high resolu-
tion images. Our search engine can query the combined
datasets of Oxford and Flickr, consisting of 104,844 images,
in around 0.1s for a typical query and the index consumes
1GB of main memory.
Flickr2 dataset. This dataset consists of 1,040,801 medium
resolution (500× 333) downloaded from Flickr’s 450 most
popular tags. The index for the combined Oxford, Flickr1
and Flickr2 corpus is 4.3GB, so we use an offline version
of the index which does not have to sit in main memory.
Querying this corpus from disk takes around 15s – 35s for
a typical query.

5.1. Evaluation procedure

To evaluate performance we use Average Precision (AP)
computed as the area under the precision-recall curve. Pre-
cision is the number of retrieved positive images relative to
the total number of images retrieved. Recall is the number
of retrieved positive images relative to the total number of
positives in the corpus. An ideal precision-recall curve has
precision 1 over all recall levels, which corresponds to an
Average Precision of 1. Note, a precision-recall curve does
not have to be monotonically decreasing. To illustrate this,
say there are 3 positives out of the first 4 retrieved, which
corresponds to precision 3/4 = 0.75. Then, if the next image
is positive the precision increases to 4/5 = 0.8.

We compute an Average Precision score for each of the
5 queries for a landmark, and then average these to obtain
a Mean Average Precision (MAP) for the landmark. For
some experiments, in addition to the MAP, we also display
precision-recall curves which can sometimes better illus-
trate the success of our system in improving recall.

In the evaluation the “Good” and “Ok” images are
treated as positives, “Bad” images as negative and “Junk”
images as “don’t care”. The “don’t care” images are han-
dled as if they were not present in the corpus, so that if our
system returns them, the score is not affected.

We evaluate our system on two databases – D1 composed
of Oxford + Flickr1 datasets (104,844 images) and D2 Ox-
ford + Flickr1 + Flickr2 datasets (1,040,801 images). The
effect of the size of the database on the performance is dis-
cussed in section 5.4.

A
ll

So
ul

s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A
sh

m
ol

ea
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

H
er

tf
or

d
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

K
eb

le

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
ag

da
le

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R
ad

cl
iff

e
ca

m
er

a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3. Precision recall curves before (left) and after (right)
query expansion on experiment D1. These results are for reso-
lution expansion, our best method. In each case the five curves
correspond to the five queries for that landmark.

5.2. Retrieval performance

In this section, we discuss some quantitative results of
our method evaluated against the ground truth gathered
from the Oxford dataset.

Table 2 summarizes the results of using our different
query expansion methods, measuring their relative perfor-
mance in terms of the MAP score. From the table, we can



Ground truth
OK Junk

All Souls 78 111
Ashmolean 25 31
Balliol 12 18
Bodleian 24 30
Christ Church 78 133
Cornmarket 9 13
Hertford 24 31
Keble 7 11
Magdalen 54 103
Pitt Rivers 7 9
Radcliffe Cam. 221 348
Total 539 838

Oxford + Flickr1 dataset
ori qeb trc avg rec sca

41.9 49.7 85.0 76.1 85.9 94.1
53.8 35.4 51.4 66.4 74.6 75.7
50.4 52.4 44.2 63.9 74.5 71.2
42.3 47.4 49.3 57.6 48.6 53.3
53.7 36.3 56.2 63.1 63.3 63.1
54.1 60.4 58.2 74.7 74.9 83.1
69.8 74.4 77.4 89.9 90.3 97.9
79.3 59.6 64.1 90.2 100 97.2
9.5 6.9 25.2 28.3 41.5 33.2
100 100 100 100 100 100
50.5 59.7 88.0 71.3 73.4 91.9
55.0 52.9 63.5 71.1 75.2 78.2

Oxford + Flickr1 + Flickr2 dataset
ori qeb trc avg rec sca

32.8 36.9 80.5 66.3 73.9 84.9
41.8 25.9 45.4 57.6 68.2 65.5
40.1 39.4 39.6 55.5 67.6 60.0
32.3 36.9 43.5 46.8 43.8 44.9
52.6 18.9 55.2 61.0 57.4 57.7
42.2 53.4 56.0 65.2 68.1 74.9
64.7 70.7 75.8 87.7 87.7 94.9
55.0 15.6 57.3 67.4 65.8 65.0
5.4 0.2 16.9 15.7 31.3 26.1
100 90.2 100 100 100 100
44.2 56.8 86.8 70.5 72.5 91.3
46.5 40.5 59.7 63.1 67.0 69.6

Table 2. Summary of ground truth, and the relative performance of the different expansion methods. The methods are as follows: ori
– original query, qeb – query expansion baseline, trc - transitive closure, avg – average query expansion, rec – recursive average query
expansion, sca – resolution expansion. The shade of each cell shows relative performance to the worst (dark) and the best (white) result for
a particular query (row).
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Figure 4. Histograms of the average precision for all 55 queries in
experiment D2. Note, that the query expansion moves the mass of
the histogram towards the right-hand side, i.e. towards total recall.

Figure 5. Some false positive images for Magdalen Tower query.
The tower shown is actually part of Merton College chapel.

see that all proposed query expansion (with the exception of
the query expansion baseline) methods perform much bet-
ter than the original bag-of-visual-words method, showing
a gain in the MAP from 55.0% to 78.2% on D1 and from
46.5% to 69.6% on D2 with the best method.

Figure 3 shows selected precision recall curves for the

plain bag-of-words method on the left, with the curves from
the resolution-based query expansion shown on the right. In
almost all cases, the precision recall curve hugs to the right
of the graph much more after the query expansion, demon-
strating the method’s power in dramatically improving the
recall of a query. Additionally, in the original bag-of-words
query, each individual query for the landmarks shows con-
siderable variance in the precision-recall plots, whereas af-
ter query expansion has been applied, in most cases, this
variance has been reduced, improving all the component
queries to a similar level of retrieval performance.

The plot for Magdalen in figure 3, shows failure in
achieving total recall. If the initial results returned from
the bag-of-words method are too bad, so that there are no
verified images with which to query expand, our method is
unable to improve the performance. This occurs for two of
the Magdalen queries.

Note, that since we are measuring the MAP over all
queries, the average result in table 2 is lowered by such
non-expandable queries. To eliminate the averaging effect
we study each query independently. Figure 4 compares two
histograms of AP for each of the 55 queries on experiment
D2. The top histogram displays results of the original query
and the bottom results of the best query expansion method.
The plot clearly shows the significant improvement brought
by the query expansion.

The performance of the system is hurt by incorrectly ver-
ified retrievals. No verification method is perfect, especially
when one has to deal with partial occlusions. Some of the
false positives are indeed difficult to distinguish, even for a
human, as demonstrated in figure 5.

Figure 6 shows some example images returned by our
method, which were not found in the original bag-of-words
query. After query expansion, we get many more examples



Figure 6. Demonstrating the performance of the method on a number of different queries. The image to the left shows the original query
image. The four images in the middle show the first four results returned by the original query before query expansion. The images to the
right show true positive images returned after query expansion which were not found from the bag-of-words method.

of the object, some of which would be extremely challeng-
ing to the traditional method, with, in some cases, very high
levels of occlusion or large scale changes.

5.3. Method comparison

We now compare our different query expansion methods,
referring to table 2 for the relative performances.
Query expansion baseline (qeb). This method does worse
than not using query expansion at all, as expected. Blindly
choosing the top m documents for expansion does not take
into account whether or not any of the top m are correct,
so the method suffers from serious drift. We can see this
by noting that queries which return lots of true positives
from the initial query, such as Radcliffe Camera and Hert-
ford perform much better than those with fewer initial true

positives, such as Ashmolean and Keble.
Transitive closure (trc). The method uses a single image to
query with each time. Since both the feature detection and
vocabulary generation are noisy processes, transitive clo-
sure has lower performance than methods constructing la-
tent image representation from several images. This method
the slowest since it generates by far the highest number of
query reissues.
Average query expansion (avg). This method performs
significantly better than just using the results from the stan-
dard bag-of-words methods, scoring on average 71.1% as
opposed to 55.0% in the case of D1. Additionally, the
method improves the results for every query in our scoring.
This method performs so much better mainly because the
spatial verification allows us to exclude false positives from



results to the original query, preventing the “drift” which
ruined the baseline method.
Recursive average query expansion (rec). This method
improves on the avg method, by recursively generating and
querying the system with spatially verified results. By
querying recursively, we can more thoroughly explore the
space of object features, giving us instances of the object
whose visual appearance can differ greatly from the origi-
nal query.
Resolution expansion (sca). The resolution expansion
method performs the best on our data. By grouping re-
sults based on the resolution of the object of interest, we
query expand using only features which reliably fire on the
object at a particular resolution. This prevents us from in-
cluding features which fire at different scales, which can
raise the chance of a false positive image being verified.
This method gets an MAP score of 78.2% on D1 and 69.6%
on D2 and most of the 55 queries exhibit near total re-
call, see figure 4. The percentage is brought down by a
few queries, which due to the initial bad performance of
the bag-of-words method are unable to be successfully ex-
panded. Such queries lie on the left-hand side of the lower
histogram in figure 4.

Also, note that the merging strategy does not rank all im-
ages in the database. This can be observed on the precision
recall (figure 3) where the curve does not reach the right
side of the plot.

5.4. Dataset comparison D1 vs. D2

The average precision measure is designed to capture
quality of retrieval with strong emphasis on the top ranked
results. Note, that additional negative images can only de-
crease (or leave unchanged) the average precision measure.
In the best case, if all of the additional negative images were
correctly classified, they could be appended at the tail of
the results which would leave average precision unchanged.
However, correct classification of all images rarely happens.
Our experiments show varying drop of performance after
increasing the size of the database (negative images) 10
times. The decrease in performance (relative and absolute)
is lower for query expansion methods than for the original
method.

6. Discussion
Given the set of retrieved images, which often cover a

variety of viewpoints, we now have the potential to con-
struct much richer latent feature models of the query re-
gion. Much previous work – Ferrari et al. [6], Lowe [8],
Rothganger et al. [15] – has explored combining features
from multiple views and this can now be harnessed for la-
tent model construction. It is also possible to move from
features to surfaces – where the latent model would consist
of a textured 3D surface reconstruction, which can be built

using standard methods [7, 13].
We view image-retrieval systems such as Video Google

as one extreme, and the “Photo Tourism” system [19] as
another, of examples drawn from a spectrum of possible
image-based object retrieval techniques. The common fea-
ture unifying this family of methods is that they construct a
“latent model” of the query object with the aid of the image
corpus, and return to the user some representation of that
latent model. The work of this paper defines another point
on the spectrum.
Acknowledgements We are grateful for support from an
EPSRC Platform grant, the Royal Academy of Engineering,
EU project CLASS and Microsoft.

References
[1] http://www.flickr.com/.
[2] http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/.
[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.

ACM Press, ISBN: 020139829, 1999.
[4] C. Buckley, G. Salton, J. Allan, and A. Singhal. Automatic query

expansion using smart. In TREC-3 Proc., 1995.
[5] O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In

DAGM, 2003.
[6] V. Ferrari, T. Tuytelaars, and L. Van Gool. Simultaneous object

recognition and segmentation by image exploration. In Proc. ECCV,
2004.

[7] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edi-
tion, 2004.

[8] D. Lowe. Local feature view clustering for 3D object recognition. In
Proc. CVPR, pages 682–688. Springer, 2001.

[9] D. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, 2004.

[10] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point
detectors. IJCV, 1(60):63–86, 2004.

[11] D. Nister and H. Stewenius. Scalable recognition with a vocabulary
tree. In Proc. CVPR, 2006.

[12] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object
retrieval with large vocabularies and fast spatial matching. In Proc.
CVPR, 2007.

[13] M. Pollefeys, L. Van Gool, and M. Proesmans. Euclidean 3D recon-
struction from image sequences with variable focal lengths. In Proc.
ECCV, LNCS 1064/1065. Springer-Verlag, 1996.

[14] T. Quack, V. Ferrari, and L. Van Gool. Video mining with frequent
itemset configurations. In Proc. CIVR, 2006.

[15] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 3D object
modeling and recognition using affine-invariant patches and multi-
view spatial constraints. In Proc. CVPR, 2003.

[16] G. Salton and C. Buckley. Improving retrieval performance by rel-
evance feedback. Journal of the American Society for Information
Science, 41(4):288–297, 1999.

[17] C. Schmid and R. Mohr. Combining greyvalue invariants with local
constraints for object recognition. In Proc. CVPR, pages 872–877,
1996.

[18] J. Sivic and A. Zisserman. Video Google: A text retrieval approach
to object matching in videos. In Proc. ICCV, Oct 2003.

[19] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: exploring photo
collections in 3d. In Proc. ACM SIGGRAPH, pages 835–846, 2006.

[20] D. Tell and S. Carlsson. Combining appearance and topology for
wide baseline matching. In Proc. ECCV, LNCS 2350, pages 68–81.
Springer-Verlag, May 2002.


