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Goal

Introducing two major paradigms in machine learning called kernel
methods and neural networks.

Ressources

check the website of the course. http://thoth.inrialpes.fr/

people/mairal/teaching/2018-2019/MSIAM/.

Grading

1 homework (30%), one data challenge (30%) and one exam (40%).

1 data challenge; can also be done by teams of two students;
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Common paradigm: optimization for machine learning

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...
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The scalars yi are in

{−1,+1} for binary classification problems.

{1, . . . ,K} for multi-class classification problems.

R for regression problems.

Rk for multivariate regression problems.

Julien Mairal Advanced Learning Models 3/16



Common paradigm: optimization for machine learning

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑
i=1
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.

Example with linear models: logistic regression, SVMs, etc.

assume there exists a linear relation between y and features x in Rp.

f(x) = w>x+ b is parametrized by w, b in Rp+1;

L is often a convex loss function;

Ω(f) is often the squared `2-norm ‖w‖2.
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Common paradigm: optimization for machine learning

A few examples of linear models with no bias b:

Ridge regression: min
w∈Rp

1

n

n∑
i=1

1

2
(yi − w>xi)2 + λ‖w‖22.

Linear SVM: min
w∈Rp

1

n

n∑
i=1

max(0, 1− yiw>xi) + λ‖w‖22.

Logistic regression: min
w∈Rp

1

n

n∑
i=1

log
(

1 + e−yiw
>xi

)
+ λ‖w‖22.
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

A general principle

It underlies many paradigms:

deep neural networks,

kernel methods,

sparse estimation.
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

Even with simple linear models, it leads to challenging problems in
optimization: develop algorithms that

scale both in the problem size n and dimension p;

are able to exploit the problem structure (sum, composite);

come with convergence and numerical stability guarantees;

come with statistical guarantees.
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

It is not limited to supervised learning

min
f∈F

1

n

n∑
i=1

L(f(xi)) + λΩ(f).

L is not a classification loss any more;

K-means, PCA, EM with mixture of Gaussian, matrix
factorization,... can be expressed that way.
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Paradigm 1: Deep neural networks

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The “deep learning” space F is parametrized:

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Finding the optimal A1, A2, . . . , Ak yields an (intractable)
non-convex optimization problem in huge dimension.

Linear operations are either unconstrained (fully connected) or
involve parameter sharing (e.g., convolutions).
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Paradigm 1: Deep neural networks

A quick zoom on convolutional neural networks

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales.

state-of-the-art in many fields.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...
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Paradigm 1: Deep neural networks

A quick zoom on convolutional neural networks

What are the main open problems?

very little theoretical understanding;

they require large amounts of labeled data;

they require manual design and parameter tuning;

how to regularize is unclear;

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...
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Paradigm 1: Deep neural networks

A quick zoom on convolutional neural networks

How to use them?

they are the focus of a huge academic and industrial effort;

there is efficient and well-documented open-source software;

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...
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Paradigm 2: Kernel methods

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H.

map data x in X to a Hilbert space and work with linear forms:

ϕ : X → H and f(x) = 〈ϕ(x), f〉H.

φ
X F

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002]...
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Paradigm 2: Kernel methods

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H.

First purpose: embed data in a vectorial space where

many geometrical operations exist (angle computation, projection
on linear subspaces, definition of barycenters....).

one may learn potentially rich infinite-dimensional models.

regularization is natural (see next...)

The principle is generic and does not assume anything about the nature
of the set X (vectors, sets, graphs, sequences).
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Paradigm 2: Kernel methods

Second purpose: unhappy with the current Euclidean structure?

lift data to a higher-dimensional space with nicer properties (e.g.,
linear separability, clustering structure).

then, the linear form f(x) = 〈ϕ(x), f〉H in H may correspond to a
non-linear model in X .

2R

x1

x2

x1

x2

2
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Paradigm 2: Kernel methods

How does it work? representation by pairwise comparisons

Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1, . . . , xn} by the n× n
matrix:

Kij := K(xi, xj).

1    0.5  0.3
0.5  1    0.6
0.3  0.6  1

K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ
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Paradigm 2: Kernel methods

Theorem (Aronszajn, 1950)

K : X × X → R is a positive definite kernel if and only if there exists a
Hilbert space H and a mapping ϕ : X → H, such that

for any x, x′ in X , K(x, x′) = 〈ϕ(x), ϕ(x′)〉H.

φ
X F
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Paradigm 2: Kernel methods

Mathematical details

the only thing we require about K is symmetry and positive
definiteness

∀x1, . . . , xn ∈ X , α1, . . . , αn ∈ R,
∑
ij

αiαjK(xi, xj) ≥ 0.

then, there exists a Hilbert space H of functions f : X → R, called
the reproducing kernel Hilbert space (RKHS) such that

∀f ∈ H, x ∈ X , f(x) = 〈ϕ(x), f〉H,

and the mapping ϕ : X → H (from Aronszajn’s theorem) satisfies

ϕ(x) : y 7→ K(x, y).
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Paradigm 2: Kernel methods

Why mapping data in X to the functional space H?
it becomes feasible to learn a prediction function f ∈ H:

min
f∈H

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f‖2H︸ ︷︷ ︸
regularization

.

(why? the solution lives in a finite-dimensional hyperplane).

non-linear operations in X become inner-products in H since

∀f ∈ H, x ∈ X , f(x) = 〈ϕ(x), f〉H.

the norm of the RKHS is a natural regularization function:

|f(x)− f(x′)| ≤ ‖f‖H‖ϕ(x)− ϕ(x′)‖H.
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Paradigm 2: Kernel methods

What are the main features of kernel methods?

builds well-studied functional spaces to do machine learning;

decoupling of data representation and learning algorithm;

typically, convex optimization problems in a supervised context;

versatility: applies to vectors, sequences, graphs, sets,. . . ;

natural regularization function to control the learning capacity;

But...

decoupling of data representation and learning may not be a good
thing, according to recent supervised deep learning success.

requires kernel design.

O(n2) scalability problems.

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002, Müller et al., 2001]
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Course Organization

We will alternate “kernel method classes”, given by Julien Mairal, and
“neural network classes” given by Jakob Verbeek.

Eventually, we may end up showing that the two paradigms are much
closer to each other than one may think at first sight.
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