
Introduction to Neural Networks

Jakob Verbeek

INRIA, Grenoble

Picture: Omar U. Florez

Homework, Data Challenge, Exam

 All info at: http://lear.inrialpes.fr/people/mairal/teaching/2018-2019/MSIAM/

 Exam (40%)
► Week Jan 28 – Feb 1, 2019, duration 3h
► Similar to homework

 Homework (30%)
► Can be done alone or in group of 2
► Send to dexiong.chen@inria.fr
► Deadline: Jan 7th, 2019

 Data challenge (30%)
► Can be done alone or in group of 2, not the same group as homework
► Send report and code to dexiong.chen@inria.fr
► Deadline Kaggle submission: Feb 11, 2019, Code+report Feb 13th

https://www.linkedin.com/in/omar-u-florez-35338015/

Biological motivation

 Neuron is basic computational unit of the brain
► about 10^11 neurons in human brain

 Simplified neuron model as linear threshold unit (McCulloch & Pitts, 1943)
► Firing rate of electrical spikes modeled as continuous output quantity
► Connection strength modeled by multiplicative weights
► Cell activation given by sum of inputs
► Output is non-linear function of activation

 Basic component in neural circuits for complex tasks

http://lear.inrialpes.fr/people/mairal/teaching/2018-2019/MSIAM/

1957: Rosenblatt's Perceptron

 Binary classification based on sign of generalized linear function
► Weight vector w learned using special purpose machines
► Fixed associative units in first layer, sign activation prevents learning

wT
ϕ (x)

sign (wT
ϕ(x))

ϕ i(x)=sign (v
T x)

20x20 pixel sensor

Random wiring of associative units

Rosenblatt's Perceptron

 Objective function linear in score over misclassified patterns

 Perceptron learning via stochastic gradient descent

► Eta is the learning rate

Potentiometers as weights
adjusted by motors during learning

E(w)=−∑t i≠sign(f (xi))
t i f (xi)=∑i

max (0,−t i f (x i))

wn+1
=wn

+η× t iϕ (x i)× [t i f (x i)<0]

t i∈ {−1,+1}

Perceptron convergence theorem

 If a correct solution w* exists, then the perceptron learning rule will converge to a
correct solution in a finite number of iterations for any initial weight vector

 Assume input lives in L2 ball of radius M, and without loss of generality that
► w* has unit L2 norm
► Some margin exists for the right solution

 After a weight update we have

 Moreover, since for misclassified sample, we have

 Thus after t updates we have

 Therefore , in limit of large t:

 Since a(t) is upper bounded by construction by 1, the nr. of updates t must be limited.

 For start at w=0, we have that

w '=w+ yx ⟨w∗ ,w ' ⟩=⟨w∗ ,w ⟩+ y ⟨w∗ , x⟩>⟨w∗ ,w ⟩+δ

y ⟨w∗ , x ⟩>δ

⟨w' ,w ' ⟩=⟨w ,w⟩+2 y ⟨w , x ⟩+⟨x , x⟩
<⟨w ,w ⟩+⟨x , x⟩
<⟨w ,w ⟩+M

y ⟨w , x⟩<0

⟨w∗ ,w ' ⟩>⟨w∗ ,w ⟩+ t δ
⟨w' ,w ' ⟩<⟨w ,w ⟩+ tM

a(t)> δ

√M
√ta(t)=

⟨w∗ ,w(t)⟩

√⟨w(t) ,w(t)⟩
>
⟨w∗ ,w ⟩+t δ

√⟨w ,w ⟩+tM

t≤
M

δ
2

Limitations of the Perceptron

 Perceptron convergence theorem (Rosenblatt, 1962) states that
► If training data is linearly separable, then learning algorithm finds a

solution in a finite number of iterations
► Faster convergence for larger margin

 If training data is linearly separable then the found solution will depend on the
initialization and ordering of data in the updates

 If training data is not linearly separable, then the perceptron learning algorithm
will not converge

 No direct multi-class extension

 No probabilistic output or confidence on classification

Relation to SVM and logistic regression

 Perceptron loss similar to hinge loss without the notion of margin
► Not a bound on the zero-one loss
► Loss is zero for any separator, not only for large margin separators

 All are either based on linear score function, or generalized linear function by
relying on pre-defined non-linear data transformation or kernel

f (x)=wT
ϕ (x)

Kernels to go beyond linear classification

 Representer theorem states that in all these cases optimal weight vector is
linear combination of training data

 Kernel trick allows us to compute dot-products between (high-dimensional)
embedding of the data

 Classification function is linear in data representation given by kernel
evaluations over the training data

f (x)=wT
ϕ (x)=∑i

αi ⟨ϕ (xi) ,ϕ (x) ⟩

w=∑i
αiϕ (x i)

k (xi , x)=⟨ϕ (xi) ,ϕ (x)⟩

f (x)=∑i
αik (x , x i)=α

T k(x ,.)

Limitation of kernels

 Classification based on weighted “similarity” to training samples
► Design of kernel based on domain knowledge and experimentation

► Some kernels are data adaptive, for example the Fisher kernel
► Still kernel is designed before and separately from classifier training

 Number of free variables grows linearly in the size of the training data
► Unless a finite dimensional explicit embedding is available
► Can use kernel PCA to obtain such a explicit embedding

 Alternatively: fix the number of “basis functions” in advance
► Choose a family of non-linear basis functions
► Learn the parameters of basis functions and linear function

f (x)=∑i
αik (x , x i)=α

T k(x ,.)

f (x)=∑i
αiϕ i(x ;θi)

ϕ (x)

Multi-Layer Perceptron (MLP)

 Instead of using a generalized linear function, learn the features as well

 Each unit in MLP computes
► Linear function of features in previous layer
► Followed by scalar non-linearity

 Do not use the “step” non-linear activation function of original perceptron

z j=h(∑i
xiwij

(1)
)

z=h(W (1) x)

yk=σ(∑ j
z jw jk

(2)
)

y=σ(W (2) z)

Multi-Layer Perceptron (MLP)

 Linear activation function leads to composition of linear functions
► Remains a linear model, layers just induce a certain factorization

 Two-layer MLP can uniformly approximate any continuous function on a
compact input domain to arbitrary accuracy provided the network has a
sufficiently large number of hidden units
► Holds for many non-linearities, but not for polynomials

Classification over binary inputs

 Consider simple case with D binary input units
► Inputs and activations are all +1 or -1
► Total number of possible inputs is 2D

► Classification problem into two classes

 Create hidden unit for each of M positive samples x
m

► Activation is +1 only if input equals x
m

 Let output implement an “or” over hidden units

 MLP can separate any labeling over domain
► But may need exponential number of hidden units

to do so

y=sign(∑m=1

M
zm+M−1)

wm=xm

zm=sign(wm
T x−D) sign (y)={+1 if y≥0

−1 otherwise

Feed-forward neural networks

 MLP Architecture can be generalized
► More than two layers of computation
► Skip-connections from previous layers

 Feed-forward nets are restricted to directed acyclic graphs of connections
► Ensures that output can be computed from the input in a single feed-

forward pass from the input to the output

 Important issues in practice
► Designing network architecture

 Nr nodes, layers, non-linearities, etc
► Learning the network parameters

 Non-convex optimization
► Sufficient training data

 Data augmentation, synthesis

An example: multi-class classification

 One output score for each target class

 Multi-class logistic regression loss (cross-entropy loss)
► Define probability of classes by softmax over scores
► Maximize log-probability of correct class

 As in logistic regression, but we are now learning the data representation
concurrently with the linear classifier

p (l=c∣x)=
exp yc

∑k
exp yk

 Representation learning in
discriminative and coherent manner

 More generally, we can choose a loss
function for the problem of interest and
optimize all network parameters w.r.t.
this objective (regression, metric
learning, ...)

p (l=c∣x)=
exp yc

∑k
exp yk

L=−∑n
ln p(ln∣xn)

Activation functions

Sigmoid

tanh

ReLU

Maxout

Leaky ReLU1 /(1+e−x)

max (0, x)

max (α x , x)

max (w1
T x ,w2

T x)

Sigmoid

- Squashes reals to range [0,1]
- Tanh outputs centered at zero: [-1, 1]
- Smooth step function
- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

1. Saturated neurons “kill” the gradients,
need activations to be exactly in right
regime to obtain non-constant output

2. exp() is a bit compute expensive

Tanh h(x)=2σ(x)−1

ReLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)
- Most commonly used today

Activation Functions

[Nair & Hinton, 2010]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

- Does not saturate: will not “die”
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)

Leaky ReLU

Activation Functions

[Mass et al., 2013] [He et al., 2015]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

• Does not saturate: will not “die”
• Computationally efficient
- Maxout networks can implement
ReLU networks and vice-versa
- More parameters per node

Maxout

Activation Functions

[Goodfellow et al., 2013]

max (w1
T x ,w2

T x)

Training feed-forward neural network

 Non-convex optimization problem in general
► Typically number of weights is very large (millions in vision applications)
► Seems that many different local minima exist with similar quality

 Regularization
► L2 regularization: sum of squares of weights (“weight decay”)
► “Drop-out”: deactivate random subset of neurons in each iteration

 Similar to using many networks with less weights (shared among them)
► Label smoothing: avoid overconfident, overfitted predictions

 Training using gradient descend techniques
► Stochastic gradient descend for large datasets (large N)
► Estimate gradient by averaging over a relatively small number of samples

1
N
∑i=1

N
L(f (xi), yi ;W)+λΩ(W)

L=(1−ϵ) log (p(y∣x))+ϵ log(1−p(y∣x))

Training feed-forward neural network

Picture: Omar U. Florez

Training the network: forward propagation

 Forward propagation from input nodes to output nodes
► Accumulate inputs via weighted sum into activation
► Apply non-linear activation function f to compute output

 Use Pre(j) to denote all nodes feeding into j

a j=∑i∈Pre(j)
wij x i

x j=f (a j)

https://www.linkedin.com/in/omar-u-florez-35338015/

Training the network: backward propagation

 Node activation and output

 Partial derivative of loss w.r.t. activation

 Partial derivative w.r.t. learnable weights

 Gradient of weight matrix between two
layers given by outer-product of x and g

g j=
∂ L
∂a j

∂L
∂wij

=
∂ L
∂ a j

∂a j

∂w ij

=g j xi

a j=∑i∈Pre(j)
wij x i

x j=f (a j)

x i
w ij

Training the network: backward propagation

 Back-propagation layer-by-layer of gradient from loss to internal nodes
► Application of chain-rule of derivatives

 Accumulate gradients from downstream nodes
► Post(i) denotes all nodes that i feeds into
► Weights propagate gradient back

 Multiply with derivative of local activation function

gi=
∂ x i
∂ai

∂ L
∂ xi

=f ' (ai)∑ j∈Post (i)
wij g j

gi=
∂ L
∂ai

a j=∑i∈Pre(j)
wij x i

x j=f (a j)

∂L
∂ xi
=∑ j∈Post(i)

∂L
∂a j

∂a j

∂ xi

=∑ j∈Post (i)
g jwij

Training the network: forward and backward propagation

 Special case for Rectified Linear Unit (ReLU) activations

 Sub-gradient is step function

 Sum gradients from downstream nodes

► Set to zero if in ReLU zero-regime
► Clip negative values in matrix vector product Wg

 Gradient on incoming weights is “killed” by inactive units
► Generates tendency for those units to remain inactive

f (a)=max (0,a)

f '(a)={0 if a≤0
1 otherwise

gi={
0 if ai≤0

∑ j∈Post (i)
w ij g j otherwise

∂ L
∂w ij

=
∂ L
∂a j

∂a j

∂wij

=g j x i

airplane
automobile
bird
cat
deer

dog
frog
horse
ship
truck

Input example : an image Output example: class label

Convolutional Neural Networks

How to represent the image at the network input?

Convolutional neural networks

 A convolutional neural network is a special feedforward network

 Hidden units are organized into grid, as is the input

 Linear mapping from layer to layer takes form of convolution
► Translation invariant processing
► Local processing
► Decouples nr of parameters from input size
► Same net can process inputs of varying size

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
 activation functions

32

32

3

28

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

28

6

CONV,
 ReLU
e.g. 6

5x5x3
 filters

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
 ReLU
e.g. 6

5x5x3
 filters 28

28

6

CONV,
 ReLU
e.g. 10
 5x5x6
 filters

CONV,
 ReLU

….

10

24

24

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

The convolution operation

The convolution operation

Local connectivity

Locally connected layer
without weight sharing

Convolutional layer
used in CNN

Fully connected layer
as used in MLP

32

3

Convolution Layer

32x32x3 image

width

height

32

depth

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Filters always extend the full
 depth of the input volume

32

32

3

32x32x3 image
 5x5x3 filter

1 hidden unit:
dot product between 5x5x3=75 input
patch and weight vector + bias

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

wT x+b

32

32

3

32x32x3 image
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
 spatial locations

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
 spatial locations

consider a second, green filter

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolution with 1x1 filters makes perfect sense

64

56

56
1x1 CONV
with 32 filters

32

56

56

(each filter has size
1x1x64, and performs a
 64-dimensional dot
product)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Stride

(Zero)-Padding

Pooling

 Applied separately per feature channel

 Effect: invariance to small translations of the input

 Max and average pooling most common, other things possible
► Parameter free layer
► Similar to strided convolution with special non-trainable filter

Receptive fields

 “Receptive field” is area in original image impacting a certain unit
► Later layers can capture more complex patterns over larger areas

 Receptive field size grows linearly over convolutional layers
► If we use a convolutional filter of size w x w, then each layer the receptive

field increases by (w-1)

 Receptive field size increases exponentially over layers with striding
► Regardless whether they do pooling or convolution

Fully connected layers

 Convolutional and pooling layers typically followed by several “fully
connected” (FC) layers, i.e. a standard MLP
► FC layer connects all units in previous layer to all units in next layer
► Assembles all local information into global vectorial representation

 FC layers followed by softmax for classification

 First FC layer that connects response map to vector has many parameters
► Conv layer of size 16x16x256 with following FC layer with 4096 units leads

to a connection with 256 million parameters !
► Large 16x16 filter without padding gives 1x1 sized output map

• If the weights in a network start too small,
then the signal shrinks as it passes through each layer until it’s too
tiny to be useful.

• If the weights in a network start too large,
then the signal grows as it passes through each layer until it’s too
massive to be useful.

Weights initialization

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

• All zero initialization

• Small random numbers

• Draw weights from a Gaussian distribution
with standard deviation of sqrt(2/n),
where n is the number of outputs to the neuron

● Ensures the (gradient) signal does roughly stays on the
same scale from one layer to the next

Weights initialization

[Ioffe and Szegedy, 2015]

Initialization of NNs by explicitly forcing the activations throughout
the network to take on a unit Gaussian distribution at the beginning
of the training.

Batch normalization

Normalization is a simple differentiable operation

“you want unit gaussian activations? just make them so.”

XN

D

1. compute the empirical mean and
 variance independently for each
dimension.

2. Normalize

Batch normalization

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

FC

BN

ReLU

FC

BN

...

Usually inserted after Fully
Connected and/or Convolutional
layers, and before nonlinearity.

Batch normalization

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

ReLU

And then allow the network to squash
 the range if it wants to:

Note, the network can learn:

to recover the identity
 mapping.

Normalize:

Batch normalization

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Batch Normalization
[Ioffe and Szegedy, 2015]

- Improves gradient flow through
 the network

- Allows higher learning rates
- Reduces the strong dependence

 on initialization
- Separates direction of weight

vectors and their magnitude

- Instead of normalizing the
activations, we can also
normalize the weights to a
similar effect [Salimans and
Kingma, NIPS 2016]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

CNN architectures: LeNet (1998)

 C1: 5x5 filters, outputs 6 channels, 156 = 6 (5x5 + 1) parameters

 S2: “average” pooling, times constant + bias, 12 parameters

 C3: 5x5 filters, outputs 16 channels, 1516 < 16 x 6 x (5x5 + 1) parameters
► C3 features cannot see all S2 features

 S4: “average” pooling, times constant + bias, 32 parameters

 C5: 5x5 filters, outputs 120 channels, 49920 = 120 x16 (5x5 + 1) param.

 F6: fully connected, 84 outputs, 10080 = 84 x 120 parameters

 Final layer: 10 outputs, 840 = 84 x 10 parameters

[LeCun, Bottou, Bengio, Haffner, Proceedings IEEE, 1998]

What has changed

 Large training datasets for computer vision
► 1.2 millions of 1000 classes in ImageNet challenge [Deng et al, CVPR’09]
► 200 million faces to train face recognition nets [Schroff et al., CVPR 2015]

 GPU-based implementation: 1 to 2 orders of magnitude faster than CPU
► Parallel computation for matrix products
► Krizhevsky & Hinton, 2012: six days of training on two GPUs
► Rapid progress in GPU compute performance

 Network architectures

 Industrially backed open-source software
► Pytorch, TensorFlow, ...

AlexNet CNN Architecture (2012)

 Winner ImageNet 2012 image classification challenge, huge impact
► CNNs improving “traditional” computer vision techniques on uncontrolled

images, rather than datasets of small (eg 32x32) and controlled images

 Compared to LeNet
► Inputs at 224x224 rather than 32x32
► Distributed implementation over 2 GPUs
► 5 rather than 3 conv layers
► More feature channels in each layer
► ReLU non-linearity

[Alex Krizhevsky & Geoff Hinton, NIPS 2012]

VGG “very-deep” CNN Architecture

 Double the number of layers 16 or 19 (from 8 in AlexNet)

 Only small 3x3 filters, rather than filters up to size 11 AlexNet
► Large filters approximated by sequence of smaller ones, receptive field

increases, smaller nr of parameters due to factorization of weights

 About 140 million parameters (AlexNet ~60 million)

[Simonyan & Zisserman, ICLR ‘15]

Winner ImageNet 2014 challenge

GoogleNet Inception CNN Architecture

 Reduced number of parameters: 5 million (60m AlexNet, 140m VGG)

 Inception module: compress features before convolution

 Replaces fully-connected layer with average pooling

 Intermediate loss functions improve training of early layers

[Szegedy et al, CVPR 2015]

Winner ImagetNet 2015 challenge

Trends in CNN architectures

Figure: Kaiming He

Fisher Vectors

 More layers, smaller filters

 ReLU non-linearity

 Strided conv. rather than pooling

 Dilation, up-down sampling

 Residual and dense layer connectivity

F
ig

ur
e :

 F
er

en
c

H
us

zá
r

Understanding convolutional neural network activations

 Patches generating highest response for a selection of convolutional filters,
► Showing 9 patches per filter
► Zeiler and Fergus, ECCV 2014

 Layer 1: simple edges and color detectors

 Layer 2: corners, center-surround, ...

Understanding convolutional neural network activations

 Layer 3: various object parts

Understanding convolutional neural network activations

 Layer 4+5: selective units for entire objects or large parts of them

Finetuning pre-trained CNNs for other tasks

 Early CNN layers extract generic features that seem useful for different tasks
► Object localization, semantic segmentation, action recognition, etc.

 On some datasets too little training data to learn CNN from scratch
► For example, only few hundred objects bounding box to learn from

 Pre-train AlexNet/VGGnet/ResNet/DenseNet on large scale dataset
► In practice mostly ImageNet classification: millions of labeled images
► Also works with noisy image tags from Flickr [Joulin et al. ECCV 2016]

 Fine-tune CNN weights for task at hand, possibly with modifed architecture
► Replace classification layer, add bounding box regression, …
► Reduced learning rate and possibly freezing early network layers

Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation

Object category localization with CNNs

 Task: given an image report a tight bounding box around every instance of an
object category of interest
► For example detect all people, sheep, dogs, … in an image

 Problem formulation: scoring hypothetical object locations
► Avoid strong overlap between hypothesis with non-maximum suppression
► Threshold on score to decide on number of objects

Instance Segmentation

CNNs for object category localization

 Classify each possible dection window as being a tight bounding box for a
pedestrian, car, sheep, …
► Sliding window: translate windows of given size & aspect ratio over image
► Crop detection window from image, feed to CNN image classifier

 Unreasonably many image regions to consider if applied in naive manner
► Tremendous cost to evaluate CNN at many positions

 Solutions

1) Use a smaller set of windows at plausible positions
2) Share computations across different windows
3) Do more than classification: bounding box regression

R-CNN, Girshick et al., CVPR 2014

1) Detection proposal methods

 Many methods exist, some data driven learning based method
[Alexe et al. 2010, Zitnick & Dollar 2014, Cheng et al. 2014]

 Selective search method [Sande et al. ICCV’11, Uijlings et al. IJCV’13]
► Unsupervised multi-resolution hierarchical segmentation
► Detections proposals generated as bounding box of segments
► 1500 windows per image suffice to cover over 95% of true objects

with sufficient accuracy

2) Share computation across detection windows

 Naively applying CNN across many cropped or warped windows is wasteful
► At window overlap convolutions are computed multiple times

 Instead: compute convolutional layers only once across entire image
► Pool features using max-pooling into fixed-size representation
► Fully connected layers up to classification computed per window

 Speedup in practice about 2 orders of magnitude

[He et al. ECCV 2014, Girshick ICCV’15]

3) More than classification: Bounding box regression

 Classification CNN only extracts a single scalar from every image window

 Additionally: predict the offset of the true object location with respect to the
candidate detection window
► Optionally for several “anchor” boxes

[Ren et al. ICCV’15]

Region of Interest pooling over regressed windows

 Region proposal network returns regressed bounding boxes
► Pool convolutional features across these boxes
► Classify the regressed box with more CNN layers (regress again)

 RoI’s are again processed independently

[Picture from Leonardo Araujo dos Santos]

Single-shot object window regression

 Region proposal network directly returns regressed bounding boxes

 Detect anchor boxes at different scales and from different network layers

 Using K different “anchor” boxes, each layer of WxH activations outputs
KxWxH regressed bounding boxes with corresponding scores

 No further per-box processing after regression: speedup

[Liu et al. ECCV’16]

Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation

Semantic segmentation with CNNs

 Task: given an image assign every pixel to a category
► For example: background, person, sheep, dog, etc

 Problem formulation: classify pixels independently from each other
► Extract patch centered on pixel of interest, feed to classification CNN
► Possibly ensure spatial consistency in post-processing step

Instance Segmentation

Application to semantic segmentation

 Assign each pixel to an object or background category
► Consider running CNN on small image patch to determine its category
► Train by optimizing per-pixel classification loss

 Want to avoid wasteful computation of convolutional filters
► Compute convolutional layers once per image
► Here all local image patches are at the same scale
► Many more local regions: dense, at every pixel

Long et al., CVPR 2015

Application to semantic segmentation

 Interpret fully connected layers as 1x1 sized convolutions
► Function of features in previous layer, but only at own position
► Still same function is applied across all positions

 Five sub-sampling layers reduce the resolution of output map by factor 32

Application to semantic segmentation

 Up-sampling via bi-linear interpolation gives blurry predictions

 Alternative shift input image by few pixels, but requires 32x32 CNN
evaluations to get output for each pixel...

 Combine response maps at different resolutions
► Upsampling of the later and coarser layers, concatenate with finer layers

Long et al., CVPR 2015

Upsampling of coarse activation maps

 Simplest form: use bilinear interpolation or nearest neighbor interpolation
► Note that these can be seen as upsampling by zero-padding,

followed by convolution with specific filters, no channel interactions

 Idea can be generalized by learning the convolutional filter
► No need to hand-pick the interpolation scheme
► Can include channel interactions, if those turn out be useful

 Resolution-increasing counterpart of strided convolution
► Similarly, average and max pooling can be written in terms of convolutions

[Saxena & Verbeek, NIPS 2016]

Application to semantic segmentation

 Results obtained using skip-connections from earlier layers

 Detail better preserved when using finer resolutions

Dilated convolutions

 Filter size and number of parameters are normally coupled

 For fixed filter size, large field of view can be obtained by
► More layers using a fixed filter: slow growth
► Down sampling the signal: looses resolution

 Dilated convolution (“filtre à trous”): Large filter with many zeros
► Large field of view without loosing resolution

Dilated convolutions

 Decoupling field-of-view and the number of parameters in a filter

[Yu & Koltun, ICLR ‘16]

Dilated convolutions

 Similar to strided convolutions, but keeping full resolution in result
► Can result in aliasing effect due to subsampling of high resolution features

 High-resolution layers are memory intensive
► 4x more activations as compared to each factor 2 downsampling
► Limits the number of feature channels that can be used

Receptive field of repeated 2-dilated convolutional layers

U-net architecture

[Ronneberger et al. 2015]

 Combines ideas of skip connections and conv-deconv architecture
► Skip connections to maintain high-resolution signal
► Progressive upsampling from coarse to fine

Semantic segmentation: further improvements

 Beyond independent
prediction of pixel labels

 Conditional random fields
(CRF): encourage nearby
and similar pixels to take
the same label value

 Efficient inference for fully
connected CRFs (all pixel
pairs are connected
[Krahenbuhl & Koltun,
NIPS’11]

 Integrate CRF model within
CNN training [Zheng et al.,
ICCV’15]

Scale, size and resolution in convolutional networks

 Classification CNN goes from full-res input to 1x1 classification signal
► Chain of convolution and pooling layers from input to output

 Dense prediction problems require high resolution and large field-of-view
► Semantic segmentation, object localization, optical flow prediction, etc

 What are the right architectures?
► Filter sizes, positioning of convolutions vs pooling, type of pooling, etc
► Are chain-structured networks the best for classification ?

Multi-scale network architectures

[Saxena & Verbeek, NIPS 2016]

 Grid of network layers across multiple scales
► Feed-forward across the horizontal “layer axis”
► Nothing new in training: standard back-prop gradient calculation

 Chain-structured networks (eg for classification) and other networks (such as
Unet for segmentation) are special cases of this more general structure

Convolutional neural fabrics
[Saxena & Verbeek, NIPS 2016]

 Each feature map receives input from three others
► Scale finer: strided convolution
► Scale coarser: stride coarse activations on finer resolution, then covolution
► Same scale: standard convolution

 Generalizes very large class of networks with “standard” layers

 With enough layers and feature channels, 3x3 convolutions suffice for
► Average pooling, max-pooling, and strided convolition
► Nearest-neighbor, bi-linear, and general deconvolution up-sampling
► Filters of any size by distribution over layers

Convolutional neural fabrics
[Saxena & Verbeek, NIPS 2016]

 Connection strengths in a fabric learned for image classification

 Weak connections may be suppressed
► CIFAR-10: reduce nr. of connections by factor 3, error up from 7.4% to 8.1%

 Search over cost effective networks can be integrated in training

[Veniat & Denoyer, arXiv’17]

Residual conv-deconv grid network for segmentation

[Fourure et al, BMVC 2017]

 Grid of network layers across multiple scales
► Feed-forward and residual across the horizontal “layer axis”

 Down-sampling block followed by up-sampling block

 Accuracy close to state of the art (similar to FRRN), trained “from scratch”
► Few thousand training images, instead of pre-trained ImageNet classification

Multi-scale Dense Convolutional Networks

[Huang et al, arXiv 2017]

 Grid of network layers across multiple scales
► Feed-forward and dense connections across the horizontal “layer axis”

 Down-sampling across all layers for classification

 Intermediate classifiers for any-time prediction

Multi-scale Dense Convolutional Networks

[Huang et al, arXiv 2017]

 Efficient any-time prediction model
► Features computed for early classifiers are re-used for later classifiers

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Computes f(x) = max(0,x)
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	The convolution operation
	Slide 33
	Slide 34
	Convolution Layer
	Slide 36
	Slide 37
	Slide 38
	consider a second, green filter
	Slide 40
	Slide 41
	(btw, 1x1 convolution layers make perfect sense)
	Stride
	Zero-Padding
	Slide 52
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Batch Normalization
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

