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Modeling sequential data with Recurrent Neural Networks

 Compact schematic drawing of standard multi-layer perceptron (MLP)
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Modeling sequential data

 So far we considered “one-to-one” prediction tasks
► Classification: one image to one class label, which digit is displayed 0...9
► Regression: one image to one scalar, how old is this person?

 Many prediction problems have a sequential nature to them 
► Either in input, in output, or both
► Both may vary in length from one example to another



Modeling sequential data

 One-to-many prediction

 Image captioning
► Input: an image
► Output: natural language description,

variable length sequence of words



Modeling sequential data

 Text classification
► Input: a sentence
► Output: user rating



Modeling sequential data

 Machine translation of text from one language to another
► Sequences of different length on input and output



Modeling sequential data

 Part of speech tagging
► For each word in sentence predict PoS label (verb, noun, adjective, etc.)

 Temporal segmentation of video
► Predict action label for every video frame

 Temporal segmentation of audio
► Predict phoneme labels over time



Modeling sequential data

 Possible to use a k-order autoregressive model over output sequences 
► Limits memory to only k time steps in the past

 Not applicable when input sequence is not aligned with output sequence
► Many-to-one tasks, unaligned many-to-many



Recurrent neural networks

 Recurrent computation of hidden units from one time step to the next
► Hidden state accumulates information on entire sequence, since the field 

of view spans entire sequence processed so far 
► Time-invariant function makes it applicable to arbitrarily long sequences

 Similar ideas used in 
► Hidden Markov models for arbitrarily long sequences
► Parameter sharing across space in convolutional neural networks

 But has limited field of view: parallel instead of sequential processing



Recurrent neural networks

 Basic example for many-to-many prediction
► Hidden state linear function of current input and previous hidden state, 

followed by point-wise non-linearity
► Output is linear function of current hidden state, followed by point-wise 

non-linearity
z t=ϕ(A x t+B z t−1)

y t=ψ(C z t)
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y t

z t



Recurrent neural network diagrams

 Two graphical representations are used

“Unfolded” flow diagram Recurrent flow diagram

 Unfolded representation shows that we still have an acyclic directed graph
► Size of the graph (horizontally) is variable, given by sequence length
► Weights are shared across horizontal replications

 Gradient computation via back-propagation as before
► Referred to as “back-propagation through time” (Pearlmutter, 1989)
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Recurrent neural network diagrams

 Deterministic feed-forward network from inputs to outputs

 Predictive model over output sequence is obtained by defining a distribution 
over outputs given y
► For example: probability of a word given via softmax of word score

 Training loss: sum of losses over output variables
► Independent prediction of elements in output given input sequence

p(w t=k∣x1: t)=
exp y tk

∑v=1

V
exp y tv
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ln p(w t∣x1: t)



More topologies: “deep” recurrent networks

 Instead of a recurrence across a single hidden layer, consider a recurrence 
across a multi-layer architecture
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More topologies: multi-dimensional recurrent networks

 Instead of a recurrence across a single (time) axis, consider a recurrence 
across a multi-dimensional grid

 For example: axis aligned directed edges 
► Each node receives input from predecessors, one for each dimension
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More topologies: bidirectional recurrent neural networks

 Standard RNN only uses left-context for many-to-many prediction

 Use two separate recurrences, one in each direction
► Aggregate output from both directions for prediction at each time step

 Only possible on a given input sequence of arbitrary length
► Not on output sequence, since it needs to be predicted/generated



More topologies: output feedback loops

 So far the element in the output sequence at time t was independently drawn 
given the state at time t
► State at time t depends on the entire input sequence up to time t
► No dependence on the output sequence produced so far

 Problematic when there are strong regularities in output, eg character or 
words sequences in natural language
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More topologies: output feedback loops

 To introduce dependence on output sequence, we add a feedback loop from 
the output to the hidden state

 Without output-feedback, the state evolution is a deterministic non-linear 
dynamical system

 With output feedback, the state evolution becomes a stochastic non-linear 
dynamical system
► Caused by the stochastic output, which flows back into the state update
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p( yt∣x1: t , y1 : t−1)



How do we generate data from an RNN ?
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 RNN gives a distribution over output sequences

 Sampling: sequentially  sample one element at a time
► Compute state from current input and previous state and output
► Compute distribution on current output symbol
► Sample output symbol 

 Compute maximum likelihood sequence?
► Not feasible with feedback since output symbol impacts state

 Marginal distribution on n-th symbol 
► Not feasible: marginalize over exponential nr. of sequences

 Marginal probability of a symbol appearing anywhere in seq.
► Not feasible: average over all marginals



Approximate maximum likelihood sequences

 Exhaustive maximum likelihood search exponential in sequence length 

 Use Beam Search, computational cost linear in 
► Beam size K, vocabulary size V, (maximum) sequence length T
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Ensembles of networks to improve prediction

 Averaging predictions of several networks can improve results
► Trained from different initialization and using different mini-batches
► Possibly including networks with different architectures, but not per se
► For CNNs see eg [Krizhevsky & Hinton, 2012] [Simomyan & Zisserman, 2014]

 For RNN sequence prediction
► Train RNNs independently 
► “Run” RNNs in parallel for prediction, updating states with common seq. 
► Average distribution over next symbol
► Sample or beam-search based on av. distribution

A B ? A B ?



How to train an RNN without output feedback?
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 Compute full state sequence given the input (deterministic given input)

 Compute loss at each time step w.r.t. ground truth output sequence

 Backpropagation (“through time”) to compute gradients w.r.t. loss



How to train an RNN with output feedback?
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 Compute state sequence given input and ground-truth output, 
deterministic due to known and fixed output

 Loss at each time step wrt ground truth output seq, backprop through time

 Note discrepancy between train and test 
► Train: predict next symbol from ground-truth sequence so far
► Test: predict next symbol from generated sequence so far

 Might deviate from observed ground-truth sequences



Scheduled sampling for RNN training

 Compensate discrepancy between train and test procedure by training from  
generated sequence [Bengio et al. NIPS, 2015]
► Learn to recover from partially incorrect sequences

 Directly training from sampled sequences does not work well in practice 
► At the start randomly initialized model generates random sequences
► Instead, start by training from ground-truth sequence, and progressively 

increase probability to sample generated symbol in the sequence



Scheduled sampling for RNN training

 Evaluation image captioning
► Image in, sentence out 
► Higher scores are better

 Scheduled sampling improves baseline, also in ensemble case

 Uniform Scheduled Sampling: sample uniform instead of using model
► Already improves over baseline, but not as much as using model

 Always sampling gives very poor results, as expected



Limitations recurrent networks

 Recurrent net can be unrolled as deep network with shared parameters
► As deep as the number of time steps of the RNN
► Very deep for very long sequences

 Gradients of “deep” layers (far from input) computed via chainrule as product 
of Jacobians between layers (time-steps)
► Product of Jacobians tend to either “explode” to inf. or “vanish” to zero
► Similar effect observed in non-recurrent networks

 Approaches to address this issue
► Non-recurrent case: add skip connections from earlier layers towards 

output: Residual networks, dense networks 
► Introduction of “gates” that shield a hidden unit from input and/or output for 

several layers, effectively shortening the depth for that unit



Long short-term memory (LSTM) cells 

 LSTM consist of hidden state h and a “memory cell” c 

 Gates are used to modulate the state updates

[Hochreiter & Schmidhuber, Neural Computation, 1997]



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Cell update: can forget previous cell state, can ignore input



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Forget gate f: “remember” or “forget” previous cell state c



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Input gate i: controls flow of input to cell state
► Input modulator      , maps input and previous state to cell state update ~C



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Output gate o, controls flow of cell state to output
► Output vector also passed to next time step of LSTM unit



Gated Recurrent Unit (GRU) cells 

 GRU is simplified gated RNN as compared to LSTM 

[Cho et al., Empirical Methods in Natural Language Processing, 2014]

 Two gates, single state signal
► Forget gate: z
► Read gate: r



Examples of character-level LSTM language model

 Training data: all Paul Graham essays, about 1 million characters

 Random sample from the trained model:

"The surprised in investors weren't going to raise money. I'm not the company 
with the time there are all interesting quickly, don't have to get off the same 
programmers. There's a super-angel round fundraising, why do you can do. If 
you have a different physical investment are become in people who reduced 
in a startup with the way to argument the acquirer could see them just that 
you're also the founders will part of users' affords that and an alternation to 
the idea. [2] Don't work at first member to see the way kids will seem in 
advance of a bad successful startup. And if you have to act the big company 
too."

 Learns to spell words, as well as long range grammatical dependencies

[examples taken from Andrej Karpathy]



Examples of character-level LSTM language model

 Training data: all of Shakespeak (4.4 MB)

 Random sample from the trained model:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

 Specific style structure is also captured by the model



Examples of character-level LSTM language model

 Training data: linux source code (474 MB)

 Very long range dependencies on bracket structure
/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
  int error;
  if (fd == MARN_EPT) {
    /*
     * The kernel blank will coeld it to userspace.
     */
    if (ss->segment < mem_total)
      unblock_graph_and_set_blocked();
    else
      ret = 1;
    goto bail;
  }
  segaddr = in_SB(in.addr);
  selector = seg / 16;
  setup_works = true;
  for (i = 0; i < blocks; i++) {
    seq = buf[i++];
    bpf = bd->bd.next + i * search;
    if (fd) {
      current = blocked;
    }
  }
  rw->name = "Getjbbregs";
  bprm_self_clearl(&iv->version);
  regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
  return segtable;
}



Case study: image captioning

 Given image generate descriptive english sentence



Image captioning with encoder-decoder system

 Encoder: CNN takes image and maps it into a vector 

 For example, fully connected layer of VGG16 network
► CNN pre-trained on ImageNet classification task (>1 million images)



Image captioning with encoder-decoder system

 Decoder: RNN takes CNN image vector to initialize RNN state

 Typical configuration: 
► Single layer of 512 GRUs
► Output feedback to ensure coherent sentence



Image captioning with encoder-decoder system

 Example output (Vinyals et al., CVPR 2015)



Encoder-decoder machine translation

 Translation of a sentence into another language
► Input and output of different length



Encoder-decoder machine translation

 Read source sentence with encoder RNN (Sutskever et al., NIPS 2014)
► Can use bidirectional RNN since input sequence is given

 Generate target sentence with decoder RNN 
► Uses a different set of parameters
► Uses output feedback to ensure output coherency

 Meaning of source sentence encoded in the RNN state vector passed 
between encoder and decoder
► For the captioning model, a  CNN is used as an image encoder

encoder decoder



Encoder-decoder machine translation
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 Encoder learns a word 
embedding matrix E

 Columns contain word 
vector embedding

si=Ew i

 Decoder learns word 
embedding matrix G for 
output feedback

z i+1=ϕ(W zi+Gui)

 Decoder learns word 
embedding matrix F for 
word probabilities via 
softmax normalization

pi=σ(F zi)



Encoder-decoder machine translation

 Trained from “aligned” corpus of matching source-target sentences

 Encoder and decoder can be learned on multiple language pairs in parallel
► (English to French) and (Dutch to French) use same decoder
► (English to French) and (English to Dutch) use same encoder

 Generalizes to translation between new language pairs for which no aligned 
training corpus was available

english
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french

english

dutch

english

dutch

english

dutch english

english dutch

french french



Encoder-decoder machine translation

 PCA projection of LSTM encoder state after reading a sentence
► Word order important for meaning, captured in encoder state vector

encoder decoder



Attention mechanisms in RNNs

 Encoder-decoder based models 
compress the entire input into a 
single vector
► Difficult to store all details as the 

sentences grow longer

 Sequential nature of RNN updates 
makes that start of sentence is less 
well encoded into the RNN state
► Using bi-directional RNN helps, 

but not in the middle of the 
sentence...



Attention mechanisms in RNNs

 Let decoder attend to part of the input for each state update
► Selectively: based on current state and input representation
► Should work for input sequences of variable size

 Sub-network takes state and input encoding, computes attention weights
► Soft-max over candidate positions in the input

 Feed weighted sum of inputs to the state update

aij=σ(z i , h j)

zi+1=ϕ(zi ,c i , ui)

ci=∑ j=1

T
aijh j

[Bahdanau et al., ICLR’15]



Attention mechanisms in RNNs

 Example correspondences identified by attention mechanism
► Trained from sentence-level supervision, no word correspondences



Attention mechanisms in image captioning

 Without attention image content encoded 
into vector output of CNN
► Decoder cannot “look back” at image

 Attention can be used to focus decoder 
model on parts of input [Xu et al, ICML’15]



Attention mechanisms in image captioning

 What are the image “parts” that we 
should be looking at? 
[Pedersoli et al, ICCV’17]

 Activation grid: the locations in a 
convolutional CNN layer

 Object proposals: plausible object 
locations predicted by external 
method 

 Spatial transformer: regress 
deformation of default boxes at 
locations in activation grid



Attention mechanisms in image captioning
 Examples of generated sentences together with the attention regions

► Region width proportional to attention weight [Pedersoli et al., ICCV’17]



Further reading

 “Pattern Recognition and Machine Learning”

Chris Bishop. 

Springer, 2006.

 “Supervised Sequence Labelling with Recurrent Neural Networks” 

Alex Graves, 2012 (free online)

 “Deep Learning”

Ian Goodfellow, Yoshua Bengio, Aaron Courville. 

MIT Press, in preparation.

http://www.deeplearningbook.org/
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