Fisher vector image representation

Jakob Verbeek
January 13, 2012

Course website:
Fisher vector representation

- Alternative to bag-of-words image representation introduced in *Fisher kernels on visual vocabularies for image categorization*

- FV in comparison to the BoW representation
 - Both FV and BoW are based on a visual vocabulary, with assignment of patches to visual words
 - FV based on Mixture of Gaussian clustering of patches, BoW based on k-means clustering
 - FV Extracts a larger image signature than the BoW representation for a given number of visual words
 - Leads to good classification results using linear classifiers, where BoW representations require non-linear classifiers.
Fisher vector representation: Motivation 1

• Suppose we use a bag-of-words image representation
 – Visual vocabulary trained offline

• Feature vector quantization is computationally expensive in practice

• To extract visual word histogram for a new image
 – Compute distance of each local descriptor to each k-means center
 – Run-time $O(NKD)$: linear in
 • N: nr. of feature vectors $\sim 10^4$ per image
 • K: nr. of clusters $\sim 10^3$ for recognition
 • D: nr. of dimensions $\sim 10^2$ (SIFT)

• So in total in the order of 10^9 multiplications per image to obtain a histogram of size 1000

• Can this be done more efficiently ?!
 – Yes, extract more than just a visual word histogram!
Fisher vector representation: Motivation 2

• Suppose we want to refine a given visual vocabulary

• Bag-of-word histogram stores # patches assigned to each word
 – Need more words to refine the representation
 – But this directly increases the computational cost
 – And leads to many empty bins, redundancy
Fisher vector representation: Motivation 2

• Instead, the Fisher Vector also records the mean and variance of the points per dimension in each cell
 – More information for same # visual words
 – Does not increase computational time significantly
 – Leads to high-dimensional feature vectors

• Even when the counts are the same the position and variance of the points in the cell can vary
Image representation using Fisher kernels

• General idea of Fischer vector representation
 – Fit probabilistic model to data \(p(X; \Theta) \)
 – Represent data with derivative of data log-likelihood
 “How does the data want that the model changes?”
 \[
 G(X, \Theta) = \frac{\partial \log p(x; \Theta)}{\partial \Theta}
 \]

 Jaakkola & Haussler. “Exploiting generative models in discriminative classifiers”,

• We use Mixture of Gaussians to model the local (SIFT) descriptors \(X = \{x_n\}_{n=1}^N \)
 \[
 L(X, \Theta) = \sum_n \log p(x_n)

 p(x_n) = \sum_k \pi_k \, N(x_n; m_k, C_k)
 \]
 – Define mixing weights using the soft-max function
 \[
 \pi_k = \frac{\exp \alpha_k}{\sum_k \exp \alpha_k},
 \]
 ensures positiveness and sum to one constraint
Image representation using Fisher kernels

- Mixture of Gaussians to model the local (SIFT) descriptors
 \[L(\Theta) = \sum_n \log p(x_n) \]
 \[p(x_n) = \sum_k \pi_k N(x_n; m_k, C_k) \]
 - The parameters of the model are \(\Theta = (\alpha_k, m_k, C_k)_{k=1}^K \)
 - where we use diagonal covariance matrices

- Concatenate derivatives to obtain data representation
 \[G(X, \Theta) = \left(\frac{\partial L}{\partial \alpha_1}, \ldots, \frac{\partial L}{\partial \alpha_K}, \frac{\partial L}{\partial m_1}, \ldots, \frac{\partial L}{\partial m_K}, \frac{\partial L}{\partial C_1^{-1}}, \ldots, \frac{\partial L}{\partial C_K^{-1}} \right)^T \]
Image representation using Fisher kernels

- Data representation

\[G(X, \Theta) = \left(\frac{\partial L}{\partial \alpha_1}, \ldots, \frac{\partial L}{\partial \alpha_K}, \frac{\partial L}{\partial m_1}, \ldots, \frac{\partial L}{\partial m_K}, \frac{\partial L}{\partial C_1^{-1}}, \ldots, \frac{\partial L}{\partial C_K^{-1}} \right)^T \]

- In total \(K(1+2D) \) dimensional representation, since for each visual word / Gaussian we have

 \[\frac{\partial L}{\partial \alpha_k} = \sum_n (q_{nk} - \pi_k) \]

 \[\frac{\partial L}{\partial m_k} = C_k^{-1} \sum_n q_{nk} (x_n - m_k) \]

 \[\frac{\partial L}{\partial C_k^{-1}} = \frac{1}{2} \sum_n q_{nk} (C_k - (x_n - m_k)^2) \]

 With the soft-assignments: \[q_{nk} = p(k|x_n) = \frac{\pi_k p(x_n|k)}{p(x_n)} \]
Bag-of-words vs. Fisher vector image representation

- Bag-of-words image representation
 - Off-line: fit k-means clustering to local descriptors
 - Represent image with histogram of visual word counts: K dimensions

- Fischer vector image representation
 - Off-line: fit MoG model to local descriptors
 - Represent image with derivative of log-likelihood: $K(2D+1)$ dimensions

- Computational cost similar:
 - Both compare N descriptors to K visual words (centers / Gaussians)

- Memory usage: higher for fisher vectors
 - Fisher vector is a factor $(2D+1)$ larger, e.g. a factor 257 for SIFTs!
 - Ie for 1000 visual words this is roughly $257 \times 1000 \times 4$ bytes \sim 1 Mb
 - However, because we store more information per visual word, we can generally obtain same or better performance with far less visual words
Images from categorization task PASCAL VOC

- Yearly evaluation since 2005 for image classification (also object localization, segmentation, and body-part localization)
Fisher vectors: classification performance

- Results taken from: “Fisher Kernels on Visual Vocabularies for Image Categorization”, F. Perronnin and C. Dance, in CVPR '07

- BoW and Fisher vector yield similar performance
 - Fisher vector uses 32x fewer Gaussians
 - BoW representation 2,000 long, FV length is 64(1+2 x 128) = 16,448
Additional reading material

• Fisher vector image representation
 – “Fisher Kernels on Visual Vocabularies for Image Categorization”
 F. Perronnin and C. Dance, in CVPR '07

• Pattern Recognition and Machine Learning
 Chris Bishop, 2006, Springer
 - Section 6.2
Exam

• Friday January 27th
 – From 9 am to 12 am
 – Room H105 Ensimag building @ campus

• Prepare from
 – Lecture slides
 – Presented papers
 – Bishop's book

• During the exam you can bring
 – the lecture slides
 – the presented papers