
OverviewOverview

Introduction to local features• Introduction to local features

H i i t t i t + SSD ZNCC SIFT• Harris interest points + SSD, ZNCC, SIFT

S l & ffi i i t i t t i t d t t• Scale & affine invariant interest point detectors

E l i d i f diff d• Evaluation and comparison of different detectors

• Region descriptors and their performance 



Scale invariance - motivationScale invariance motivation

• Description regions have to be adapted to scale changes

I t t i t h t b t bl f l h• Interest points have to be repeatable for scale changes



Harris detector + scale changesHarris detector + scale changes
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Scale adaptationScale adaptation

Scale change bet een t o images
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Scale adaptationScale adaptation
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Scale adaptationScale adaptation
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Harris detector – adaptation to scaleHarris detector adaptation to scale
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Multi-scale matching algorithmMulti scale matching algorithm
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Multi-scale matching algorithmMulti scale matching algorithm

1s
8 matches8 matches



Multi-scale matching algorithmMulti scale matching algorithm

1s
3 matches

Robust estimation of a global 
affine transformation

3 matches



Multi-scale matching algorithmMulti scale matching algorithm

1s
3 matches3 matches

3s

4 t h4 matches



Multi-scale matching algorithmMulti scale matching algorithm

1s
3 matches3 matches

3s

4 t h4 matches

5scorrect scale

highest number of matches

16 matches



Matching resultsMatching results

Scale change of 5 7Scale change of  5.7



Matching resultsMatching results

100% t t h (13 t h )100% correct matches (13 matches) 



Scale selectionScale selection
• We want to find the characteristic scale of the blob by 

convolving it with Laplacians at several scales and 
looking for the maximum response
H L l i d l• However, Laplacian response decays as scale 
increases:

increasing σoriginal signal
(radius=8)

Why does this happen?



Scale normalizationScale normalization

The response of a derivative of Gaussian filter to a perfect• The response of a derivative of Gaussian filter to a perfect 
step edge decreases as σ increases
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Scale normalizationScale normalization

The response of a derivative of Gaussian filter to a perfect• The response of a derivative of Gaussian filter to a perfect 
step edge decreases as σ increases

• To keep response the same (scale invariant) must• To keep response the same (scale-invariant), must 
multiply Gaussian derivative by σ

• Laplacian is the second Gaussian derivative so it must beLaplacian is the second Gaussian derivative, so it must be 
multiplied by σ2



Effect of scale normalizationEffect of scale normalization
Unnormalized Laplacian responseOriginal signal

Scale-normalized Laplacian response

maximum



Blob detection in 2DBlob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for• Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D
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Blob detection in 2DBlob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for• Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D
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Scale selectionScale selection

The 2D Laplacian is given by• The 2D Laplacian is given by 
222 2/)(222 )2(  yxeyx  (up to scale)
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Characteristic scaleCharacteristic scale

We define the characteristic scale as the scale that• We define the characteristic scale as the scale that 
produces peak of Laplacian response

characteristic scale
T. Lindeberg (1998). Feature detection with automatic scale selection. 

International Journal of Computer Vision 30 (2): pp 77--116. 



Scale selectionScale selection

For a point compute a value (gradient Laplacian etc ) at• For a point compute a value (gradient, Laplacian etc.) at 
several scales
Normali ation of the al es ith the scale factor• Normalization of the values with the scale factor
e.g. Laplacian |)(| 2

yyxx LLs 

• Select scale    at the maximum  → characteristic scales
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• Exp. results show that the Laplacian gives best results 



Scale selectionScale selection

Scale invariance of the characteristic scale• Scale invariance of the characteristic scale 
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Scale selectionScale selection

Scale invariance of the characteristic scale• Scale invariance of the characteristic scale 
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Scale-invariant detectorsScale invariant detectors

Harris Laplace (Mikolajczyk & Schmid’01)• Harris-Laplace (Mikolajczyk & Schmid’01) 

• Laplacian detector (Lindeberg’98)

• Difference of Gaussian (Lowe’99)

Harris-Laplace Laplacian



Harris-LaplaceHarris Laplace

multi-scale Harris points

selection of points at 
maximum of Laplacian 

invariant points + associated regions [Mikolajczyk & Schmid’01]



Matching resultsMatching results

213 / 190 detected interest points213 / 190 detected interest points 



Matching resultsMatching results

58 points are initially matched58 points are initially matched



Matching resultsMatching results

32 points are matched after verification – all correct32 points are matched after verification all correct



LOG detectorLOG detector

Convolve image with scaleConvolve image with scale-
normalized Laplacian at 
several scalesseveral scales
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Detection of maxima and minima 
of Laplacian in scale space



Hessian detectorHessian detector
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Efficient implementationEfficient implementation
• Difference of Gaussian (DOG) approximates theDifference of Gaussian (DOG) approximates the 

Laplacian )()(  GkGDOG 

• Error due to the approximation



DOG detectorDOG detector

• Fast computation scale space processed one octave at a• Fast computation, scale space processed one octave at  a 
time

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”IJCV 60 (2).



Local features - overviewLocal features overview

• Scale invariant interest points

• Affine invariant interest points

• Evaluation of interest points

• Descriptors and their evaluation 



Affine invariant regions - MotivationAffine invariant regions Motivation

Scale invariance is not sufficient for large baseline changes• Scale invariance is not sufficient for large baseline changes

detected scale invariant regiong

A

j t d i i i t h l llprojected regions, viewpoint changes can locally 
be approximated by an affine transformation A



Affine invariant regions - MotivationAffine invariant regions Motivation



Affine invariant regions - ExampleAffine invariant regions Example



Harris/Hessian/Laplacian-AffineHarris/Hessian/Laplacian Affine

• Initialize with scale invariant Harris/Hessian/Laplacian• Initialize with scale-invariant Harris/Hessian/Laplacian 
points

• Estimation of the affine neighbourhood with the second 
moment matrix [Lindeberg’94]

• Apply affine neighbourhood estimation to the scale-
invariant interest points [Mikolajczyk & Schmid’02invariant interest points [Mikolajczyk & Schmid 02, 
Schaffalitzky & Zisserman’02]

• Excellent results in a comparison [Mikolajczyk et al.’05]



Affine invariant regionsAffine invariant regions

Based on the second moment matrix (Lindeberg’94)• Based on the second moment matrix (Lindeberg’94)
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Affine invariant regionsAffine invariant regions
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Affine invariant regions - Estimation

• Iterative estimation initial points

Affine invariant regions Estimation

• Iterative estimation – initial points



Affine invariant regions - Estimation

• Iterative estimation iteration #1

Affine invariant regions Estimation

• Iterative estimation – iteration #1



Affine invariant regions - Estimation

• Iterative estimation iteration #2

Affine invariant regions Estimation

• Iterative estimation – iteration #2



Affine invariant regions - Estimation

• Iterative estimation iteration #3 #4

Affine invariant regions Estimation

• Iterative estimation – iteration #3, #4



Harris-Affine versus Harris-LaplaceHarris Affine versus Harris Laplace

H i L lHarris-LaplaceHarris-Affine



Harris/Hessian-AffineHarris/Hessian Affine

H i AffiHarris-Affine

Hessian-Affine



Harris-AffineHarris Affine



Hessian-AffineHessian Affine



MatchesMatches

22 correct matches



MatchesMatches

33 correct matches



Maximally stable extremal regions (MSER) [Matas’02]Maximally stable extremal regions (MSER) [Matas 02]

• Based on the idea of region
segmentation

• State of the art results



Maximally stable extremal regions (MSER) [Matas’02]Maximally stable extremal regions (MSER) [Matas 02]

Extremal regions: connected components in a thresholded• Extremal regions: connected components in a thresholded 
image (all pixels above/below a threshold)

• Maximally stable: minimal change of the component• Maximally stable: minimal change of the component 
(area) for a change of the threshold, i.e. region remains 
stable for a change of thresholdg



Maximally stable extremal regions (MSER)Maximally stable extremal regions (MSER)

E l f th h ld d iExamples of thresholded images

high threshold

low threshold



MSERMSER



OverviewOverview

Introduction to local features• Introduction to local features

H i i t t i t + SSD ZNCC SIFT• Harris interest points + SSD, ZNCC, SIFT

S l & ffi i i t i t t i t d t t• Scale & affine invariant interest point detectors

E l ti d i f diff t d t t• Evaluation and comparison of different detectors

• Region descriptors and their performance 



Evaluation of interest pointsEvaluation of interest points

Quantitative evaluation of interest point/region detectors• Quantitative evaluation of interest point/region detectors
– points / regions at the same relative location and area

• Repeatability rate : percentage of corresponding points

• Two points/regions are corresponding if
– location error smalllocation error small
– area intersection large

• [K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, 
F. Schaffalitzky, T. Kadir & L. Van Gool ’05]



Evaluation criterionEvaluation criterion
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Evaluation criterionEvaluation criterion
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DatasetDataset

• Different types of transformation• Different types of transformation
– Viewpoint change
– Scale change
– Image blur
– JPEG compression

Light change– Light change

• Two scene typesyp
– Structured
– Textured

• Transformations within the sequence (homographies)
– Independent estimation– Independent estimation



Viewpoint change (0-60 degrees )Viewpoint change (0-60 degrees )

structured scene

textured scene



Zoom + rotation (zoom of 1-4)Zoom + rotation (zoom of 1-4)

structured scene

textured scene



Blur compression illuminationBlur, compression, illumination

blur - structured scene blur - textured scene

light change - structured scene jpeg compression - structured scene



Comparison of affine invariant detectorsComparison of affine invariant detectors
Viewpoint change - structured scene
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Comparison of affine invariant detectors
Scale change

Comparison of affine invariant detectors
Scale change

repeatability % repeatability %

reference image 4reference image 2.8



Conclusion - detectors

• Good performance for large viewpoint and scale changes

Conclusion detectors

• Good performance for large viewpoint and scale changes

• Results depend on transformation and scene type, no one bestResults depend on transformation and scene type, no one best 
detector

• Detectors are complementary
– MSER adapted to structured scenes

H i d H i d t d t t t d– Harris and Hessian adapted to textured scenes

• Performance of the different scale invariant detectors is very similar• Performance of the different scale invariant detectors is very similar 
(Harris-Laplace, Hessian, LoG and DOG) 

• Scale-invariant detector sufficient up to 40 degrees of viewpoint 
change



OverviewOverview

Introduction to local features• Introduction to local features

H i i t t i t + SSD ZNCC SIFT• Harris interest points + SSD, ZNCC, SIFT

S l & ffi i i t i t t i t d t t• Scale & affine invariant interest point detectors

E l i d i f diff d• Evaluation and comparison of different detectors

• Region descriptors and their performance 



Region descriptorsRegion descriptors

• Normalized regions are
– invariant to geometric transformations except rotation
– not invariant to photometric transformations



DescriptorsDescriptors

• Regions invariant to geometric transformations except 
rotation
– rotation invariant descriptors
– normalization with dominant gradient direction– normalization with dominant gradient direction

• Regions not invariant to photometric transformations
– invariance to affine photometric transformationsp
– normalization with mean and standard deviation of the image patch



DescriptorsDescriptors

Extract affine regions Normalize regions
Eliminate rotational 

+ illumination
Compute appearance

descriptors

SIFT (Lowe ’04)



DescriptorsDescriptors

Gaussian derivative based descriptors• Gaussian derivative-based descriptors
– Differential invariants (Koenderink and van Doorn’87)
– Steerable filters (Freeman and Adelson’91)Steerable filters (Freeman and Adelson 91)

• SIFT (Lowe’99)( )
• Moment invariants [Van Gool et al.’96]

• Shape context [Belongie et al.’02]p [ g ]

• SIFT with PCA dimensionality reduction
• Gradient PCA [Ke and Sukthankar’04]Gradient PCA [Ke and Sukthankar 04] 

• SURF descriptor [Bay et al.’08]

• DAISY descriptor [Tola et al ’08 Windler et al’09]DAISY descriptor [Tola et al. 08, Windler et al 09]



Comparison criterionComparison criterion
• Descriptors should bep

– Distinctive
– Robust to changes on viewing conditions as well as to errors of 

th d t tthe detector

• Detection rate (recall)• Detection rate (recall)
– #correct matches / #correspondences

• False positive rate

1

False positive rate
– #false matches / #all matches

• Variation of the distance threshold 
– distance (d1, d2) < threshold

1

[K Mikolajczyk & C Schmid PAMI’05][K. Mikolajczyk & C. Schmid, PAMI 05]



Viewpoint change (60 degrees)Viewpoint change (60 degrees)
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Scale change (factor 2 8)
esift* *

Scale change (factor 2.8)
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Conclusion - descriptorsConclusion descriptors

SIFT based descriptors perform best• SIFT based descriptors perform best 

Si ifi t diff b t SIFT d l di i• Significant difference between SIFT and low dimension 
descriptors as well as cross-correlation

• Robust region descriptors better than point-wise 
descriptorsdescriptors

• Performance of the descriptor is relatively independent of• Performance of the descriptor is relatively independent of 
the detector



Available on the internetAvailable on the internet

h //l i i l f / fhttp://lear.inrialpes.fr/software

• Binaries for detectors and descriptors
– Building blocks for recognition systems

• Carefully designed test setup
– Dataset with transformations
– Evaluation code in matlab

B h k f d t t d d i t– Benchmark for new detectors and descriptors


