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Introduction 

• We are interested in finding interest points. 

• What is an interest point? 

• Why is invariance required? 

    -Scale 

    -Rotation 

    -Affine  

 

 



Why a new approach is required for 
Detecting Interest points? 

• Classical Approach 

• Flaws- 

• Detection and matching are resolution 
dependent.  



Intuitive Idea to solve the problem of 
Scale Variation 

• Extract the information at different scales! 

• Issues- 

• Space for representation 

• Mismatches due to a large feature space. 

Way about this problem- 

Extraction on feature points at a characteristic 
scale. 



Example 



Scale Invariant Detectors (1/2) 

• Assumption- Scale Change is Isotropic. 

• Robust to minor affine transformations 

• Introduced in 1981 by Crowley-  

– Pyramid Construction 

– Difference of Gaussians 

3D Extremum as a feature point, if it more that a 
specific threshold. 

 



Scale Invariant Detectors (2/2) 

• Other works- 

• Lindberg 1998 uses LoG to form the pyramids. 
Later, automatic scale selection is also 
proposed. 

• Lowe 1999 Scale Space pyramid based with 
Difference of Gaussian. (Why?) 



DoG vs LoG 

 



Drawbacks 

• Detection of maxima even at places where, 
the signal change is present in one direction. 

• Also, they are not stable to noise. 

Way about- 

• We penalize the feature points, having 
variation only in one direction. 

• Also, use of second order derivative insures a 
maxima for a localized neighborhood. 

 

 



Scale Adapted Harris Detector 

• Second moment matrix- scale adapted 

 

 

• Here, 

– Sigma D is the differentiation scale 

– Sigma I is the integration scale 

– Lx and Ly are the first order derivatives in X and Y 

– Differentiation Scale= 0.7 * Integration Scale 



Finding Corners 

• Our interest points are the one where both Eigen 
values are significant. 

 

 

• If λ1 and λ2  are the two Eigen values of a matrix then the 
above expression becomes- 

•                                    λ1 λ2 –α(λ1 +λ2)2 

– α is generally 0.07 

– We select points, for which response is greater than 
threshold. 

 



Characteristic Scale 
• As explained, we are interested to extract the feature 

points only for a range of scales. 

• We evaluate the number of features, found at each 
scale. 

• Harris measure does not validate as a good 
benchmark, and LoG performance is much better. 

 



Example 

 



Harris Laplace Detector 

• Construct the scale space at different scales. (Scale 
Factor is 1.4) 

• Detect Harris points, with a threshold for the minimum 
value. 

• Once, points are found for each of them we scan the 
neighboring scales for a extrema of LoG. (Scale 
Selection) 
 

• After, this we take maxima of Harris measure at that 
scale, and update our point. 

• Why do we scan again for different scales? 



Simplified Harris Laplace Detector 
(Mikolajczyk and Schmid,2001) 

• At each scale, find Harris points having a maxima. 

• On each point, we use LoG measure to see if it is 
a local maxima greater than a threshold. 

• The ratio between scales is 1.2 

 

This method is a tradeoff for speed versus accuracy, 
whereas the previous approach takes time but gives 
a more accurate location and scale. 



Problem? 

• Change in Perspective causes more problems 
than scale and rotation. 

• Scale Change is not isotropic. 

 



Affine Variation 

• Perspective transformation can be modeled as 
an affine variation up to a certain extent, for a 
planar region.  

• The detection scale should vary independently 
in orthogonal directions in order to deal with 
affine scaling.  



Basic Theory 

• The second order moment is given by- 

 

• The affine relation- 

• This should change the other kernels of Integration and 
differentiation by same 

 



What is really happening- 
• We want to normalize the neighborhood of a 

point.  

 

 

 

 

 
[Baumberg 2000] 

 



Another example 

 



Eigen Vectors 

• What does this mean in terms of Eigen 
Vectors? 

• The Eigen Vector, having the smallest value in 
A, gets the highest Eigen value in A inverse. 

• In a way we stretch the image patch in the 
direction with less variance. 

• Final measure, is ratio of Eigen values which in 
perfect case should approach 1. 

 

 



How do we go about it? 
Harris Affine Interest Point Detector 

• Spatial Location- Determined by the Harris Detector 

• Integration Scale- Maxima of LoG, taken same from above 

• Shape Adapted matrix- Computed from the second moments, to 

normalize the neighborhood.  

• Differentiation Scale- is initially taken from the integration scale, 

but is then varied to get a maxima for Isotropy. 

 

• What is Isotropy here? 

 



Shape Adapted Matrix 

• Initially Lindberg had proposed used of affine 
Gaussian kernels. [Lindberg 1997] 

 

 

 

• But, it is better to compute the affine on image patch 
so, that we can recursively apply the same Gaussian. 

 

• One thing is ensured,  



Integration Scale 

• The starting value is chosen from the Harris 
Laplace detector. 

• Strong affine transformations, it is essential to 
select the integration scale after each 
estimation of the U transformation. 

• This allows to converge towards a solution 
where the scale and the second moment 
matrix do not change any more. 



Differentiation Scale 

• Diff. Scale < Inte. Scale 

• Should be in an optimum Range,  
– If too less, then smoothing dominates 

– Should be less enough such that, integrating kernel 
smoothens out the noise without suppressing information. 

• Its value is varied, in order to get a higher isotropy 
measure Q. 

• Scales help to converge faster in case Eigen values of 
selected points are not similar.  

• We can have Diff. Scale = Constant * Inte. Scale; not 
always efficient. 



Example 

 



Convergence Criterion 

• Either we can see if the matrix 𝑈𝑘 is almost a 
rotation matrix; or we can say both the Eigen 
Values are same. 

• Generally we allow a room of error, 

 

 

• Termination Criterion, in case of a step edge- 

– If                6 



Iterative Detection Algorithm 

Step 1. Initialization 
• Initialization is done with multi scale Harris 

detector of point. 

• Scale space, Integration scale σI , 

Differentiation scale σD,  

• initial points X(0) 

• Shape Adaption Matrix U(0) as Identity matrix 

[1] 



Algorithm continue  

Step 2. Normalize the window  

 

 

Step 3. Integration scale selection 

scale that maximizes LOG  

 

[1] and [2] 



Algorithm continue  

Step 4. Integration scale selection 

Scale that maximize the isotropic measure. 

 

 

 

This maximization process will try to converge 
the eigenvalues of second-momtent matrix to 

same value  

 

 

[1] and [2] 



Algorithm continue  
Step 5. Spatial Localization 

• Maximizes the Harris corner measure 
(Cornerness) within the 8 neighborhood of 
previous point. 

 

 

• Then New point should transformed to U 
normalized frame. Localization is done in that.   

 

 

 
[1] and [2] 



Algorithm continue  

Step 6. Updating 

• Square root of second moment matrix define the 
reference frame. So, 

 

 

• Henceforth , Transformation or shape adaption matrix 

 

 

• Fix the maximum eigenvalue to 1 (to ensure the 
expansion in least change direction) 

[1] and [2] 



Algorithm continue  

Step 7 Stopping criterion 

• Algorithm solve for anisotropic region and try 
to converge to isotropic region by U matrix. 

• When close enough to isotopic shape then 
stop the iterative algorithm, So, 

• Stop when 

  

• Where εc is 0.05 

   [1] and [2] 



Results 

Image taken from [1]  



Evaluation of Interest point detector   

1. Number of corresponding point detected in 
images under different geometric 
transformations. 

2. Localization and region overlapping accuracy 

[1]  



Data Set  

• Scale change 1.4 to 4.5 

• View point change up to 70 degree.  

• 160 Images, 10,000 interest point 

 

 

[1]  



Repeatability Criterion  

• [Repeatability %] Ratio between number of 
point to point correspondences and minimum 
number of point detect in images. 

 

• Point detected in both images. 

• [Localization error] Xa and Xb point 
correspondences and related by image 
homography H if error: |Xa-H.Xb| is less than 
1.5.  

 
[1] and [2] 



Scale overlap Error 

• Scale invariant  points the surface error εs is: 

 

 

 

• where σa and σb are the selected point scales 
and s is the actual scale factor recovered from 
the homography between the images (s > 1). 

• εs < 0.4. 

[1] and [2] 



Affine Overlap Error  

• Surface error εs of  two affine points must be 
less than a specified threshold.  

 

Where μa and μb are the elliptic 

regions defined by 𝑋𝑇µX = 1. 

εs  

[1] and image taken from [2] 



Repeatability % with scale change 

Graph taken from [1]  



Localization and surface overlap Error 
with scale change  

Graph taken from [1]  



Repeatability with view point angle  
change in degrees  

Graph taken from [1]  



Localization and surface overlap Error 
with view point change  



Computational Complexity  

• Image size 800 X 640. 

• Pentium II 500 MHz 

• Harris Laplace is O(n), n is number of pixel. 

• Harris affine is O((m+k)p)  

• where p is the number of initial points, 

•  m is the size of the search space for the 
automatic scale selection and   

• k is the number of iterations required to compute 
the affine adaptation matrix 

 

 

 



Computational Complexity  

Image taken from [1]  



Application : Matching  

• Descriptor: A set of Gaussian derivative up to 
4th order derivative, So 12 dimensional vector.  

• Derivatives are computed on image patches 
normalized with the matrix U , which is 
estimated independently for each point 

• Invariance to affine intensity changes is 
obtained by dividing the higher order 
derivatives by the first derivative. 

[1]  



Similarity Measures  

• Mahalanobis distance is used to compute the 
similairty between two interest point. 

• D(x,y)= sqrt((X-Y)T *inv(C)*(X-Y)) 

• X and Y are interest points. 

• C is covariance matrix.  

• Covariance matrix is estimated over a large set 
of images.  

Wiki  



Why Mahalanobis distance  

• Why Mahalanobis distance  

• Because takes into account the correlations of 
the data set and is scale-invariant.   

 

• Outlier are removed by using RANSAC 
(RANdom SAmple Consensus). 

 



Conclusion  

• Scale invariant detector deals with large scale 
changes. 

•  Harris affine can deal with significant view 
changes transformation but it fails with large 
scale changes. 

• Affine invariant detector gives more degree of 
freedom but it is not very discriminative. 
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