Scale & Affine Invariant Interest
Point Detectors



Introduction

We are interested in finding interest points.
What is an interest point?

Why is invariance required?

-Scale

-Rotation

-Affine



Why a new approach is required for
Detecting Interest points?

* Classical Approach
* Flaws-

* Detection and matching are resolution
dependent.

Figure 1. An example of matching a low-
resolution image with a high-resolution one.



Intuitive Idea to solve the problem of
Scale Variation

* Extract the information at different scales!
* |ssues-

e Space for representation

 Mismatches due to a large feature space.
Way about this problem-

Extraction on feature points at a characteristic
scale.



Example




Scale Invariant Detectors (1/2)

* Assumption- Scale Change is Isotropic.
e Robust to minor affine transformations

* |Introduced in 1981 by Crowley-
— Pyramid Construction
— Difference of Gaussians

3D Extremum as a feature point, if it more that a
specific threshold.



Scale Invariant Detectors (2/2)

e Other works-

* Lindberg 1998 uses LoG to form the pyramids.
Later, automatic scale selection is also
oroposed.

* Lowe 1999 Scale Space pyramid based with
Difference of Gaussian. (Why?)




DoG vs LoG
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Drawbacks

* Detection of maxima even at places where,
the signal change is present in one direction.

* Also, they are not stable to noise.
Way about-

* We penalize the feature points, having
variation only in one direction.

* Also, use of second order derivative insures a
maxima for a localized neighborhood.



Scale Adapted Harris Detector

* Second moment matrix- scale adapted

_ [y 2 . L;:{x. op) L:Ly(x,op)
wix, oy, op) = = op glop) * _ 1. _
1 [ LiL(x,op) L_,I[.‘-L, orp)

* Here,
— Sigma D is the differentiation scale
— Sigma | is the integration scale
— Lx and Ly are the first order derivatives in X and Y
— Differentiation Scale= 0.7 * Integration Scale



Finding Corners

* Our interest points are the one where both Eigen
values are significant.

cornerness = det(pu(x, oy, op)) — atrace” (uix, o, op))

e |f A1and A2 are the two Eigen values of a matrix then the
above expression becomes-

. A1 A2 —a(A1 +A2)°
— a is generally 0.07

— We select points, for which response is greater than
threshold.



Characteristic Scale

* As explained, we are interested to extract the feature
points only for a range of scales.

 We evaluate the number of features, found at each
scale.

* Harris measure does not validate as a good
benchmark, and LoG performance is much better.
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Harris Laplace Detector

Construct the scale space at different scales. (Scale
Factor is 1.4)

Detect Harris points, with a threshold for the minimum
value.

Once, points are found for each of them we scan the
neighboring scales for a extrema of LoG. (Scale

Selection)

(k+1) oo
o T mf witht € [0.7, ..., 1.4]

After, this we take maxima of Harris measure at that
scale, and update our point.

Why do we scan again for different scales?



Simplified Harris Laplace Detector
(Mikolajczyk and Schmid,2001)

e At each scale, find Harris points having a maxima.

* On each point, we use LoG measure to see if it is
a local maxima greater than a threshold.

e The ratio between scales is 1.2

This method is a tradeoff for speed versus accuracy,
whereas the previous approach takes time but gives
a more accurate location and scale.



Problem?

* Change in Perspective causes more problems
than scale and rotation.

e Scale Change is not isotropic.

|3



Affine Variation

* Perspective transformation can be modeled as
an affine variation up to a certain extent, for a
planar region.

* The detection scale should vary independently
in orthogonal directions in order to deal with

affine scaling.



Basic Theory

* The second order moment is given by-
w(x, £y, Tp) = det (Zp) g(E1) « (VL)(x, Tp)(VL)(x, Tp)!)
* The affine relation- %, = Axp.

* This should change the other kernels of Integration and
differentiation by same

wxe, i, Epr) = AT u(xp, Tip. o)A = AT u(Ax, A AT ASp L AT)A

(X, 250, 2pr) =My pu(Xg, Xpr. Xp.r) = Mg
M; = ATMpA



What is really happening-

 We want to normalize the neighborhood of a
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Another example
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Eigen Vectors

What does this mean in terms of Eigen
Vectors?

The Eigen Vector, having the smallest value in
A, gets the highest Eigen value in A inverse.

In a way we stretch the image patch in the
direction with less variance.

Final measure, is ratio of Eigen values which in
perfect case should approach 1.



How do we go about it?
Harris Affine Interest Point Detector

Spatial Location- Determined by the Harris Detector
Integration Scale- Maxima of LoG, taken same from above

Shape Adapted matrix- computed from the second moments, to
normalize the neighborhood.

Differentiation Scale- is initially taken from the integration scale,
but is then varied to get a maxima for Isotropy.

What is Isotropy here?
-'1~-n'|]n{1"-”5.JII
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Shape Adapted Matrix

Initially Lindberg had proposed used of affine
Gaussian kernels. [Lindberg 1997]

But, it is better to compute the affine on image patch
so, that we can recursively apply the same Gaussian.

U =TT v
.{'
One thing is ensured,
Amu:{{U} = 1.



Integration Scale

* The starting value is chosen from the Harris
Laplace detector.

e Strong affine transformations, it is essential to
select the integration scale after each
estimation of the U transformation.

* This allows to converge towards a solution
where the scale and the second moment
matrix do not change any more.



Differentiation Scale

Diff. Scale < Inte. Scale

Should be in an optimum Range,
— If too less, then smoothing dominates

— Should be less enough such that, integrating kernel
smoothens out the noise without suppressing information.

Its value is varied, in order to get a higher isotropy
measure Q.

Scales help to converge faster in case Eigen values of
selected points are not similar.

We can have Diff. Scale = Constant * Inte. Scale; not
always efficient.



Example




Convergence Criterion

 Either we can see if the matrix U¥ is almost a
rotation matrix; or we can say both the Eigen
Values are same.
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Iterative Detection Algorithm

Step 1. Initialization

Initialization is done with multi scale Harris
detector of point.

Scale space, Integration scale Ol

Differentiation scale OD,

initial points X(0)
Shape Adaption Matrix U(0) as Identity matrix

[1]



Algorithm continue

Step 2. Normalize the window

LT{IE':_”]{E:_” (k—1)

Step 3. Integration scale selection

— X

scale that maximizes LOG

r:r?ﬂzI = argmax o7 det(Ly,(x,07) + L, (x,07))
i I:I_H:—'l}
té[ﬂ.t?',---,I-d]

[1] and [2]



Algorithm continue

Step 4. Integration scale selection
Scale that maximize the isotropic measure.

n 1
(k) Amin{“(xiﬂ]r Jffb.' JD))

CFD = al Z1ax T
on==80; s |00, 00T Smax H[:xtt . ':Fj_- JD))

This maximization process will try to converge
the eigenvalues of second-momtent matrix to
same value

[1] and [2]



Algorithm continue
Step 5. Spatial Localization

e Maximizes the Harris corner measure
(Cornerness) within the 8 neighborhood of
previous point.

xiff:' argmax  det(p(x,, r:rff_. g};*j)} — t-ra,::ez(n(xm, r:rff_. g};“j)}
xwEW (1)
* Then New point should transformed to U
normalized frame. Localization is done in that.

k) — (k1] 4 [rik=1) [:XE»:I _ XEG—U}

[1] and [2]



Algorithm continue

Step 6. Updating

e Square root of second moment matrix define the
reference frame. So,

(K 1 (k (I
I ) = = M E{Xif o :I. G_Dj)

 Henceforth, Transformation or shape adaption matrix

[ = HP"EH _ Llr{l[]'] _ H[:ﬂ_%){” _ Lr{{]lj

k ki
* Fix the maximum eigenvalue to 1 (to ensure the
expansion in least change direction)

[1] and [2]



Algorithm continue

Step 7 Stopping criterion

* Algorithm solve for anisotropic region and try
to converge to isotropic region by U matrix.

* When close enough to isotopic shape then
stop the iterative algorithm, So,

Amin{uu’gm)
f}‘tma:{{ HEH)

e Stop when -

{Efj

e Where E€:is 0.05

[1] and [2]



Results

Image taken from [1]



Evaluation of Interest point detector

. Number of corresponding point detected in
images under different geometric
transformations.

. Localization and region overlapping accuracy

[1]



Data Set

* Scale change 1.4to0 4.5
* View point change up to 70 degree.
* 160 Images, 10,000 interest point

[1]



Repeatability Criterion

* [Repeatability %] Ratio between number of
point to point correspondences and minimum

number of point detect in images.
C(A,B)

R‘S'DDI"D —
* Point detected in both images.

* [Localization error] Xa and Xb point
correspondences and related by image
homography H if error: [ Xa-H.Xb| is less than
1.5.

min(n ., ng)

[1] and [2]



Scale overlap Error

e Scale invariant points the surface error E;sis:

,min(o;, o;)

eg=1(1l—=%§ .
max(o?, o)

 where oa and ob are the selected point scales
and s is the actual scale factor recovered from
the homography between the images (s > 1).

® €5<0.4.

[1] and [2]



Affine Overlap Error

e Surface error € of two affine points must be
less than a specified threshold.

HA

fa H(ATﬁbA)E

ey — ] —
(i, UAT i, A) overlap region

uB

Where Ua and Ub are the elliptic
regions defined by XTux = 1.

[1] and image taken from [2]



Repeatability % with scale change

Repeatability of detectors
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localization error (pixels)

Localization and surface overlap Error
with scale change
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Repeatability with view point angle
change in degrees

Repeatahility of detectors
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Graph taken from [1]



localization error (pixels)

Localization and surface overlap Error
with view point change

Point localization error
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Computational Complexity

mage size 800 X 640.

Pentium |1 500 MHz

Harris Laplace is O(n), n is number of pixel.
Harris affine is O((m+k)p)

where p is the number of initial points,

m is the size of the search space for the
automatic scale selection and

k is the number of iterations required to compute
the affine adaptation matrix




Computational Complexity

Table Complexity of the detectors. g(I) denotes Gaussian smoothing. H(/) denotes
the Hessian matrix and (/) the second moment matrix computed for every image point.
(dyy + dyy) 1s a convolution of a point neighborhood with a 2D Laplacian kernel. #1 denotes
the number of iterations per point patch, and can vary for different initial points.

Operation Operation Operation

on image on patch on patch Run time  Number
Detector (initial points) (scale) (shape) seconds of points
DoG #12 g(I) 0.7 1527
Hessian #12 H(I) 0.9 1832
H-L simplified #12 (1) #3 (dyy + dyy) 1.4 1625
H-L #12 (1) #n (dyy + dyy) 7 1438
H-AR #12 (1) #3 (dxx + dyy) #n (x) 12 1463
H-A #12 u(l) #1n (dyx + dyy) #3n (x) 36 1123

Image taken from [1]



Application : Matching

* Descriptor: A set of Gaussian derivative up to
4th order derivative, So 12 dimensional vector.

* Derivatives are computed on image patches
normalized with the matrix U, which is
estimated independently for each point

* |nvariance to affine intensity changes is
obtained by dividing the higher order
derivatives by the first derivative.

[1]



Similarity Measures

Mahalanobis distance is used to compute the
similairty between two interest point.

D(x,y)= sqrt((X-Y)T *inv(C)*(X-Y))
X and Y are interest points.
C is covariance matrix.

Covariance matrix is estimated over a large set
of images.

Wiki



Why Mahalanobis distance

 Why Mahalanobis distance

e Because takes into account the correlations of
the data set and is scale-invariant.

e Qutlier are removed by using RANSAC
(RANdom SAmple Consensus).



Conclusion

* Scale invariant detector deals with large scale
changes.

* Harris affine can deal with significant view
changes transformation but it fails with large
scale changes.

e Affine invariant detector gives more degree of
freedom but it is not very discriminative.



References

[1] Mikolajcyk, K. and Schmid, C. 2004. “An affine invariant interest point detector”.
In Proceedings of the International Journal of Computer Vision 60(1), pp 63—86.

[2] http://en.wikipedia.org/wiki/Harris-Affine last accessed 22/11/2012

[3] Mikolajczyk, K. and Schmid, C. 2002. An affine invariant interest point detector.
In Proceedings of the 7th European Conference on Computer Vision, Copenhagen,
Denmark, vol. |, pp. 128-142.

[4] T. Lindeberg (1998). "Feature detection with automatic scale selection".
International Journal of Computer Vision 30 (2): pp 77—116.

[5] Baumberg, A. 2000. Reliable feature matching across widely separated views. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, Hilton
Head Island, South Carolina, USA, pp. 774-781.


http://en.wikipedia.org/wiki/Harris-Affine last accessed 22/11/2012
http://en.wikipedia.org/wiki/Harris-Affine last accessed 22/11/2012
http://en.wikipedia.org/wiki/Harris-Affine last accessed 22/11/2012
http://en.wikipedia.org/wiki/Harris-Affine last accessed 22/11/2012
http://en.wikipedia.org/wiki/Harris-Affine last accessed 22/11/2012
http://en.wikipedia.org/wiki/Harris-Affine last accessed 22/11/2012

