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Biological motivation

 Neuron is basic computational unit of the brain
► about 10^11 neurons in human brain 

 Simplified neuron model as linear threshold unit (McCulloch & Pitts, 1943)
► Firing rate of electrical spikes modeled as continuous output quantity 
► Multiplicative interaction of input and connection strength (weight)
► Multiple inputs accumulated in cell activation 
► Output is non linear function of activation 

 Basic component in neural circuits for complex tasks



Rosenblatt's Perceptron

 One of the earliest works on artificial neural networks: 1957 
► Computational model of natural neural learning

 Binary classification based on sign of generalized linear function 
► Weight vector w learned using special purpose machines 
► Associative units in firs layer fixed by lack of learning rule at the time

wTϕ(x)

sign (wT ϕ(x))

ϕi(x)=sign (vT x )



Rosenblatt's Perceptron

20x20 pixel sensor Random wiring of associative units



Rosenblatt's Perceptron

 Objective function linear in score over misclassified patterns

 Perceptron learning via stochastic gradient descent

► Eta is the learning rate

Potentiometers as weights, adjusted by motors during learning

E(w)=−∑t i≠sign(f (xi))
t i f (xi)=∑i

max (0,−t i f (x i))

w n+1=wn+η× t i ϕ(x i)× [ t i f (x i)<0 ]

t i∈ {−1,+1}



Limitations of the Perceptron

 Perceptron convergence theorem (Rosenblatt, 1962) states that
► If training data is linearly separable, then learning algorithm will find a 

solution in a finite number of iterations
► Faster convergence for larger margin (at fixed data scale)

 If training data is linearly separable then the found solution will depend on the 
initialization and ordering of data in the updates

 If training data is not linearly separable, then the perceptron learning 
algorithm will not converge

 No direct multi-class extension

 No probabilistic output or confidence on classification



Relation to SVM and logistic regression

 Perceptron loss similar to hinge loss without the notion of margin
► Cost function is not a bound on the zero-one loss

 All are either based on linear function or generalized linear function by relying 
on pre-defined non-linear data transformation

f (x)=wTϕ(x)



Kernels to go beyond linear classification

 Representer theorem states that in all these cases optimal weight vector is 
linear combination of training data

 Kernel trick allows us to compute dot-products between (high-dimensional) 
embedding of the data 

 Classification function is linear in data representation given by kernel 
evaluations over the training data 

f (x)=wT ϕ(x)=∑i
αi ⟨ϕ(xi) ,ϕ(x) ⟩

w=∑i
αiϕ(x i)

k (xi , x)=⟨ϕ(xi) ,ϕ(x)⟩

f (x)=∑i
αi k (x , x i)=αT k(x ,.)



Limitation of kernels

 Classification based on weighted “similarity” to training samples
► Design of kernel based on domain knowledge and experimentation

► Some kernels are data adaptive, for example the Fisher kernel
► Still kernel is designed before and separately from classifier training

 Number of free variables grows linearly in the size of the training data 
► Unless a finite dimensional explicit embedding is available
► Sometimes kernel PCA is used to obtain such a explicit embedding

 Alternatively: fix the number of “basis functions” in advance
► Choose a family of non-linear basis functions
► Learn the parameters, together with those of linear function 

f (x)=∑i
αi k (x , x i)=αT k(x ,.)

f (x)=∑i
αi ϕi(x ;θi)

ϕ(x)



Feed-forward neural networks

 Define outputs of one layer as scalar non-linearity of linear function of input

 Known as “multi-layer perceptron”
► Perceptron has a step non-linearity of linear function (historical)
► Other non-linearities are used in practice (see below)

z j=h(∑i
x i wij

(1))

yk=σ(∑ j
z j w jk

(2))



Feed-forward neural networks

 If “hidden layer” activation function is taken to be linear than a single-layer 
linear model is obtained

 Two-layer networks can uniformly approximate any continuous function on a 
compact input domain to arbitrary accuracy provided the network has a 
sufficiently large number of hidden units
► Holds for many non-linearities, but not for polynomials



Classification over binary inputs

 Consider simple case with binary units
► Inputs and activations are all +1 or -1
► Total number of inputs is 2D

► Classification problem into two classes

 Use a hidden unit for each positive sample x
m

► Activation is +1 if and only if input is x
m

 Let output implement an “or” over hidden units

 Problem: may need exponential number of 
hidden units

y=sign (∑m=1

M
zm+M−1)

wmi=xmi

zm=sign(∑i=1

D
wmi xi−D+1)



Feed-forward neural networks

 Architecture can be generalized 
► More than two layers of computation
► Skip-connections from previous layers

 Feed-forward nets are restricted to directed acyclic graphs of connections
► Ensures that output can be computed from the input in a single feed-

forward pass from the input to the output

 Main issues:
► Designing network architecture

 Nr nodes, layers, non-linearities, etc
► Learning the network parameters

 Non-convex optimization



An example: multi-class classifiction

 One output score for each target class 

 Multi-class logistic regression loss
► Define probability of classes by softmax over scores
► Maximize log-probability of correct class

 Precisely as before, but we are now learning the data representation 
concurrently with the linear classifier

p( y=c∣x)=
exp yc

∑k
exp y k

 Representation learning in 
discriminative and coherent manner

 Fisher kernel also data adaptive but 
not discriminative and task dependent

 More generally, we can choose a loss 
function for the problem of interest and 
optimize all network parameters w.r.t. 
this objective (regression, metric 
learning, ...)



Activation functions



Activation functions

Sigmoid

tanh

ReLU

Maxout 

 

Leaky ReLU1 /(1+e−x)

max (0, x )

max (α x , x)

max (w1
T x , w2

T x)



Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they  

have nice interpretation as a  
saturating “firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Sigmoid

1. Saturated neurons “kill” the 
 gradients

2. Sigmoid outputs are not zero- 
 centered

3. exp() is a bit compute 
expensive

- Squashes numbers to range [0,1]
- Historically popular since they  

have nice interpretation as a  
saturating “firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

[LeCun et al., 1991]

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



ReLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than  

sigmoid/tanh in practice (e.g. 6x)

Activation Functions

[Nair & Hinton, 2010]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



- Does not saturate
- Computationally efficient
- Converges much faster than  

sigmoid/tanh in practice! (e.g. 6x)
-   will not “die”.

Leaky ReLU

Activation Functions

[Mass et al., 2013]  [He et al., 2015]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



- Does not saturate
- Computationally efficient
-   Will not “die”
-   Maxout networks can implement 
ReLU networks and vice-versa
-  More parameters per node

Maxout

Activation Functions

[Goodfellow et al., 2013]

max (w1
T x , w2

T x)



Training feed-forward neural network

 Non-convex optimization problem in general (or at least in useful cases)
► Typically number of weights is (very) large (millions in vision applications)
► Seems that many different local minima exist with similar quality

 Regularization 
► L2 regularization: sum of squares of weights
► “Drop-out”: deactivate random subset of weights in each iteration

 Similar to using many networks with less weights (shared among them)

 Training using simple gradient descend techniques
► Stochastic gradient descend for large datasets (large N)
► Estimate gradient of loss terms by averaging over a relatively small 

number of samples

1
N
∑i=1

N
L(f (x i) , y i ;W )+λΩ(W )



Training the network: forward propagation

 Forward propagation from input nodes to output nodes
► Accumulate inputs into weighted sum
► Apply scalar non-linear activation function f 

 Use Pre(j) to denote all nodes feeding into j

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)



Training the network: backward propagation

 Input aggregation and activation

 Partial derivative of loss w.r.t. input

 Partial derivative w.r.t. learnable weights

 Gradient of weights between two layers 
given by outer-product of x and g 

g j=
∂ L
∂a j

∂L
∂ wij

= ∂ L
∂ a j

∂a j

∂w ij

=g j xi

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)

x i
w ij



Training the network: backward propagation

 Backward propagation of loss gradient from output nodes to input nodes
► Application of chainrule of derivatives

 Accumulate gradients from downstream nodes
► Post(i) denotes all nodes that i feeds into
► Weights propagate gradient back

 Multiply with derivative of local activation

 

gi=
∂ x i

∂ai

∂ L
∂ xi

=f ' (ai)∑ j∈Post (i)
wij g j

gi=
∂ L
∂ai

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)

∂ L
∂ xi

=∑ j∈Post (i)

∂ L
∂a j

∂a j

∂ x i

=∑ j∈Post (i)
g j w ij



Training the network: forward and backward propagation

 Special case for Rectified Linear Unit (ReLU) activations

 Sub-gradient is step function

 Sum gradients from downstream nodes

► Set to zero if in ReLU zero-regime 
► Compute sum only for active units 

 Note how gradient on incoming weights is “killed” by inactive units
► Generates tendency for those units 

to remain inactive

f (a)=max (0,a)

f ' (a)={0 ifa≤0
1 otherwise

gi={ 0 if ai≤0

∑ j∈Post (i)
w ij g j otherwise

∂ L
∂w ij

= ∂ L
∂a j

∂a j

∂ wij

=g j x i



airplane 
automobile 
bird 
cat 
deer 

dog 
frog 
horse 
ship 
truck

Input example : an image Output example : one class

Neural Networks

How to represent the image at the network input?



Convolutional neural networks

 A convolutional neural network is a feedforward network where
► Hidden units are organizes into images or “response maps”
► Linear mapping from layer to layer is replaced by convolution



Convolutional neural networks

 Local connections: motivation from findings in early vision
► Simple cells detect local features
► Complex cells pool simple cells in retinotopic region

 Convolutions: motivated by translation invariance
► Same processing should be useful in different image regions



Local connectivity

Locally connected layer

Convolutional layer

Fully connected layer



The convolution operation



The convolution operation



Convolutional neural networks

 Hidden units form another “image” or “response map” 
► Result of convolution: translation invariant linear funcion of local inputs
► Followed by non-linearity

 Different convolutions can be computed “in parallel” 
► Gives a “stack” of response maps
► Similarly, convolutional filters “read” across different maps
► Input may also be multi-channel, e.g. RGB image

 Sharing of weights across hidden units
► Number of parameters decoupled from input and representation size



32

3

Convolution Layer

32x32x3 image

width

height

32

depth

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Filters always extend the full 
 depth of the input volume



32

32

3

32x32x3 image 
 5x5x3 filter

1 hidden unit:
dot product between 5x5x3=75 input 
patch and weight vector + bias

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

wT x+b



32

32

3

32x32x3 image 
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all 
 spatial locations

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



32

32

3

32x32x3 image 
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all 
 spatial locations

consider a second, green filter

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Convolution with 1x1 filters makes perfect sense

64

56

56
1x1 CONV
with 32 filters

32

56

56

(each filter has size  
1x1x64, and performs a 
 64-dimensional dot  
product)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Stride



(Zero)-Padding



Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?  
each filter has 5*5*3 + 1 = 76 params
=> 76*10 = 760

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Effect = invariance to small translations of the input

Pooling



- makes the representations smaller and computationally less expensive
- operates over each activation map independently

Pooling

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Receptive fields

 “Receptive field” is area in original image impacting a certain unit
► Later layers can capture more complex patterns over larger areas

 Receptive field size grows linearly over convolutional layers 
► If we use a convolutional filter of size w x w, then each layer the receptive 

field increases by (w-1) 

 Receptive field size increases exponentially over pooling layers
► It is the stride that makes the difference, not pooling vs convolution



Fully connected layers

 Convolutional and pooling layers typically followed by several “fully 
connected” (FC) layers, i.e. standard multi-layer network
► FC layer connects all units in previous layer to all units in next layer
► Assembles all local information into global vectorial  representation

 FC layers followed by softmax over outputs to generate distribution over 
image class labels

 First FC layer that connects response map to vector has many parameters
► Conv layer of size 16x16x256 with following FC layer with 4096 units 

leads to a connection with 256 million parameters !



Convolutional neural network architectures

 Surprisingly little difference between todays architectures and those of late 
eighties and nineties
► Convolutional layers, same
► Nonlinearities: ReLU dominant now, tanh before
► Subsampling: more strided convolution now than max/average pooling

Handwritten digit recognition network.  LeCun, Bottou, Bengio, Haffner, Proceedings IEEE, 1998



Convolutional neural network architectures

 Recent success with deeper networks
► 19 layers in Simonyan & Zisserman, ICLR 2015
► Hundreds of layers in residual networks, He et al. ECCV 2016

 More filters per layer: hundreds to thousands instead of tens

 More parameters: tens or hundreds of millions

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Other factors that matter

 More training data
► 1.2 millions of 1000 classes in ImageNet challenge
► 200 million faces in Schroff et al, CVPR 2015

 GPU-based implementations
► Massively parallel computation of convolutions
► Krizhevsky & Hinton, 2012: six days of training on two GPUs 
► Rapid progress in GPU compute performance

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Understanding convolutional neural network activations

 Architecture consists of 
► 5 convolutional layers
► 2 fully connected layers

 Visualization of patches that yield maximum response for certain units
► We will look at each of the 5 convolutional layers

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Understanding convolutional neural network activations

 Patches generating highest response for a selection of convolutional filters, 
► Showing 9 patches per filter
► Zeiler and Fergus, ECCV 2014

 Layer 1: simple edges and color detectors 

 Layer 2: corners, center-surround, ...



Understanding convolutional neural network activations

 Layer 3: various object parts



Understanding convolutional neural network activations

 Layer 4+5: selective units for entire objects or large parts of them



Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation



CNNs for object category localization

 Apply CNN image classification model to image sub-windows 
► For each window decide if it represents a car, sheep, ...

 Resize detection windows to fit CNN input size

 Unreasonably many image regions to consider if applied in naive manner
► Use detection proposals based on low-level image contours 

R-CNN, Girshick et al., CVPR 2014



Detection proposal methods

 Many methods exist, some based on learning others not

 Selective search method [Uijlings et al., IJCV, 2013]
► Unsupervised multi-resolution hierarchical segmentation
► Detections proposals generated as bounding box of segments
► 1500 windows per image suffice to cover over 95% of true objects 

with sufficient accuracy



CNNs for object category localization

 On some datasets too little training data to learn CNN from scratch
► Only few hundred objects instances labeled with bounding box 
► Pre-train AlexNet on large ImageNet classification problem
► Replace last classification layer with classification over N categories + 

background
► Fine-tune CNN weights for classification of detection proposals



CNNs for object category localization

 Comparison with state of the art non-CNN models 
► Object detection is correct if window has intersection/union with ground-

truth window of at least 50%

 Significant increase in performance of 10 points mean-average-precision 
(mAP)



Efficient object category localization with CNN

 R-CNN recomputes convolutions many times across overlapping regions

 Instead: compute convolutional part only once across entire image 

 For each window: 
► Pool convolutional features using max-pooling into fixed-size 

representation
► Fully connected layers up to classification computed per window

SPP-net, He et al., ECCV 2014



Efficient object category localization with CNN

 Refinement: Compute convolutional filters at multiple scales
► For given window use scale at which window has roughly size 224x224

 Similar performance as explicit window rescaling, and re-computing 
convolutional filters

 Speedup of about 2 orders of magnitude



Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation



Application to semantic segmentation

 Assign each pixel to an object or background category
► Consider running CNN on small image patch to determine its category
► Train by optimizing per-pixel classification loss

 Similar to SPP-net: want to avoid wasteful computation of convolutional filters
► Compute convolutional layers once per image
► Here all local image patches are at the same scale
► Many more local regions: dense, at every pixel

Long et al., CVPR 2015



Application to semantic segmentation

 Interpret fully connected layers as 1x1 sized convolutions
► Function of features in previous layer, but only at own position
► Still same function is applied at all positions

 Five sub-sampling layers reduce the resolution of output map by factor 32



Application to semantic segmentation

 Idea 1: up-sampling via bi-linear interpolation
► Gives blurry predictions

 Idea 2: weighted sum of response maps at different resolutions
► Upsampling of the later and coarser layer 
► Concatenate fine layers and upsampled coarser ones for prediction
► Train all layers in integrated manner

Long et al., CVPR 2015



Upsampling of coarse activation maps

 Simplest form: use bilinear interpolation or nearest neighbor interpolation 
► Note that these can be seen as upsampling by zero-padding, 

followed by convolution with specific filters, no channel interactions

 Idea can be generalized by learning the convolutional filter
► No need to hand-pick the interpolation scheme
► Can include channel interactions, if those turn out be useful

 Resolution-increasing counterpart of strided convolution
► Average and max pooling can be written in terms of convolutions
► See: “Convolutional Neural Fabrics”, Saxena & Verbeek, NIPS 2016.



Application to semantic segmentation

 Results obtained at different resolutions
► Detail better preserved at finer resolutions



Semantic segmentation: further improvements

 Beyond independent 
prediction of pixel labels
► Integrate conditional 

random field (CRF) 
models with CNN
Zheng et al., ICCV’15

 Using more sophisticated 
upsampling schemes to 
maintain high-resolution 
signals

Lin et al., arXiv 2016



Summary feed-forward neural networks

 Construction of complex functions with circuits of simple building blocks 
► Linear function of previous layers
► Scalar non-linearity

 Learning via back-propagation of error gradient throughout network
► Need directed acyclic graph 

 Convolutional neural networks (CNNs) extremely useful for image data
► State-of-the-art results in a wide variety of computer vision tasks
► Spatial invariance of processing (also useful for video, audio, ...)
► Stages of aggregation of local features into more complex patterns
► Same weights shared for many units organized in response maps 

 Applications for object localization and semantic segmentation
► Local classification at level of detection windows or pixels
► Computation of low-level convolutions can be shared across regions
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