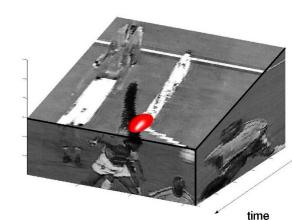
Overview

- Video classification
 - Bag of spatio-temporal features
- Action localization
 - Spatio-temporal human localization

State of the art for video classification

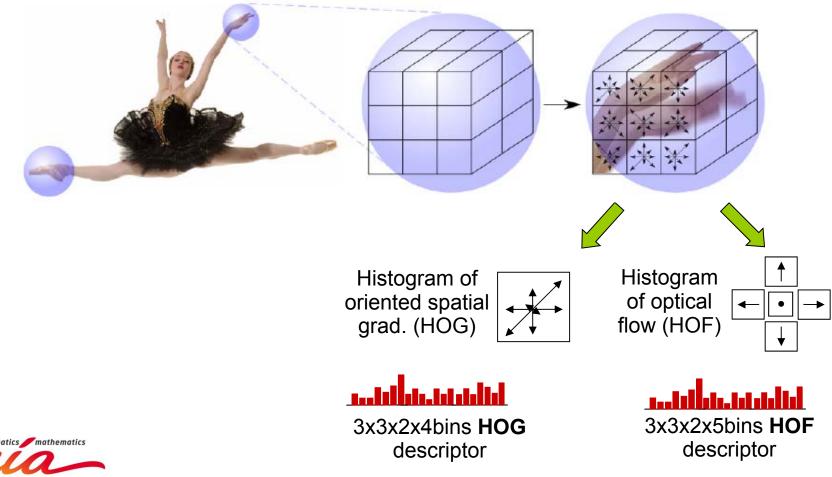
- Low-level video descriptors
 - Space-time interest points [Laptev, IJCV'05]
 - Dense trajectories [Wang and Schmid, ICCV'13]
 - Video-level CNN features
- Aggregation schemes
 - Bag-of-features [Csurka et al., ECCV workshop'04]
 - Fisher vector [Perronnin et al., ECCV'10]
- Classification
 - Support vector machine (SVM)


Space-time interest points (STIP)

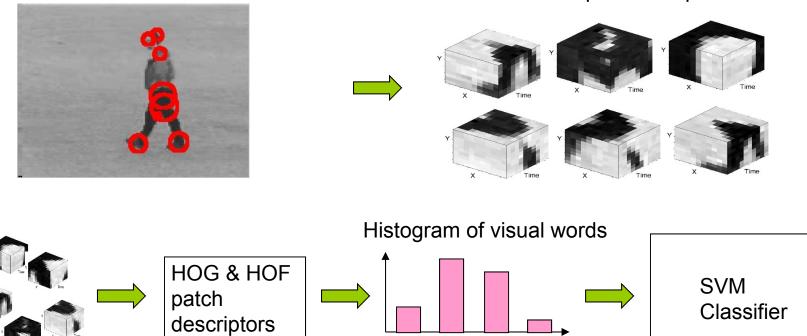
• Space-time corner detector [Laptev, IJCV 2005]

$$H = \det(\mu) + k \operatorname{tr}^{3}(\mu)$$

$$\mu = \begin{pmatrix} I_x I_x & I_x I_y & I_x I_t \\ I_x I_y & I_y I_y & I_y I_t \\ I_x I_t & I_y I_t & I_t I_t \end{pmatrix} * g(\cdot; \sigma, \tau)$$

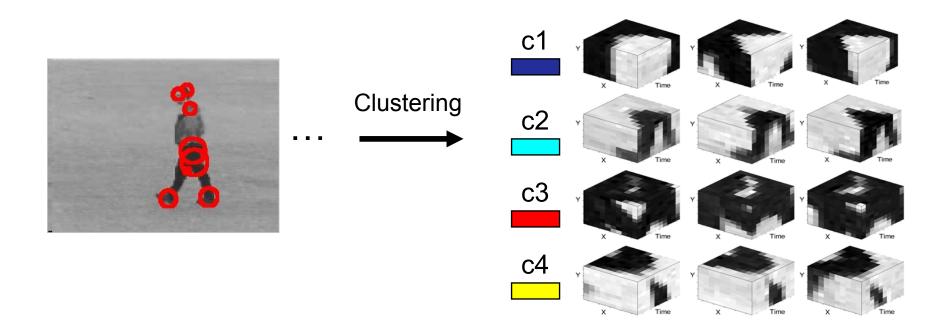


STIP descriptors


Space-time interest points

Action classification

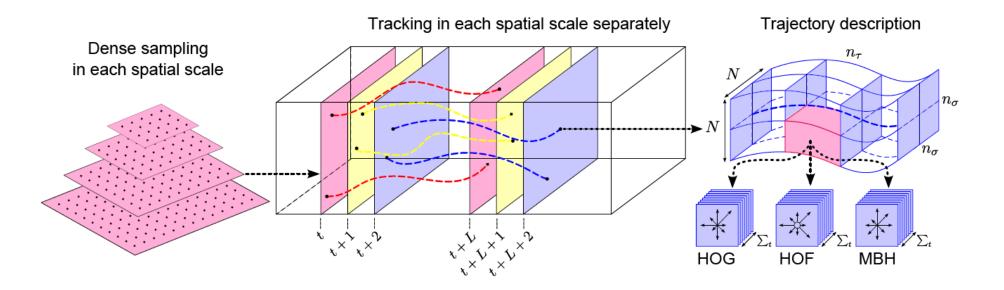
• Bag of space-time features + SVM [Schuldt'04, Niebles'06, Zhang'07]



Collection of space-time patches

Visual words: k-means clustering

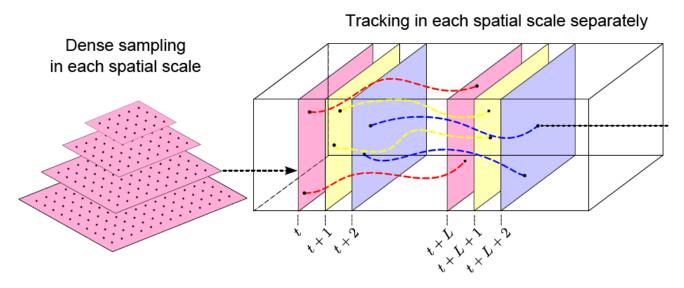
• Group similar STIP descriptors together with k-means


Action classification

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

State of the art for video description

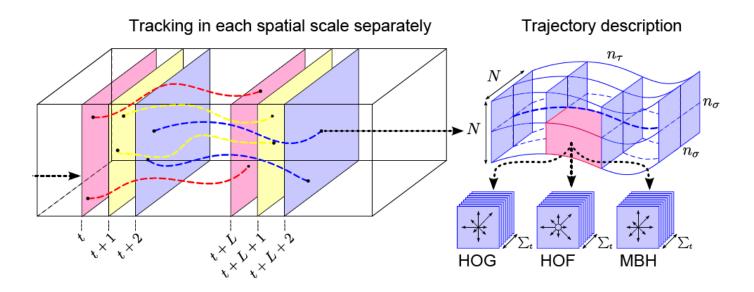
• Dense trajectories [Wang et al., IJCV'13] and Fisher vector encoding [Perronnin et al. ECCV'10]



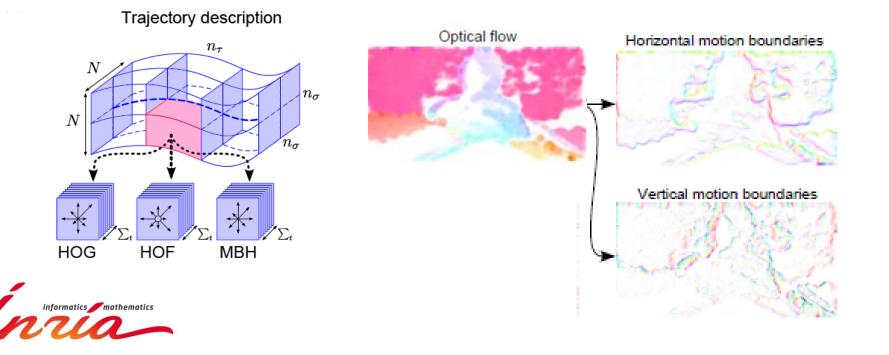
• Orderless representation

Dense trajectories [Wang et al., IJCV'13]

- Dense sampling at several scales
- Feature tracking based on optical flow for several scales
- Length 15 frames, to avoid drift

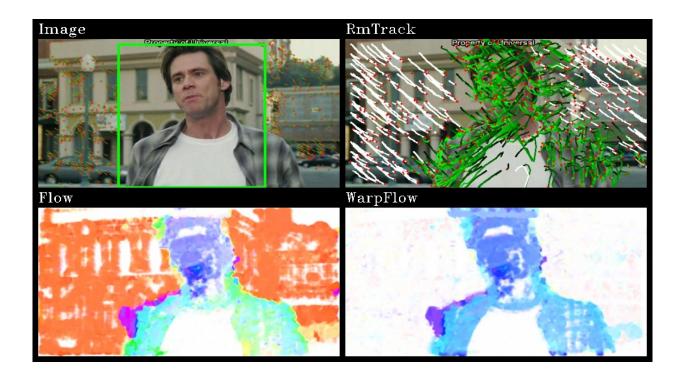

Example for dense trajectories

Descriptors for dense trajectory


- Histogram of gradients (HOG: 2x2x3x8)
- Histogram of optical flow (HOF: 2x2x3x9)

Descriptors for dense trajectory

- Motion-boundary histogram (MBHx + MBHy: 2x2x3x8)
 - spatial derivatives are calculated separately for optical flow in x and y, quantized into a histogram
 - captures relative dynamics of different regions
 - suppresses constant motions



Dense trajectories

- Advantages:
- Captures the intrinsic dynamic structures in videos
- MBH is robust to certain camera motion
- Disadvantages:
 - Generates irrelevant trajectories in background due to camera motion
 - Motion descriptors are modified by camera motion, e.g., HOF, MBH

Improved dense trajectories

- Improve dense trajectories by explicit camera motion estimation
- Detect humans to remove outlier matches for homography estimation
- Stabilize optical flow to eliminate camera motion

[Wang and Schmid. Action recognition with improved trajectories. ICCV'13]

Camera motion estimation

- Find the correspondences between two consecutive frames:
- Extract and match SURF features (robust to motion blur)
- Use optical flow, remove uninformative points
- Combine SURF (green) and optical flow (red) results in a more balanced distribution
- Use RANSAC to estimate a homography from all feature matches

Inlier matches of the homography

Remove inconsistent matches due to humans

- Human motion is not constrained by camera motion, thus generates outlier matches
- Apply a human detector in each frame, and track the human bounding box forward and backward to join detections
- Remove feature matches inside the human bounding box during homography estimation

Inlier matches and warped flow, without or with HD

Remove background trajectories

- Remove trajectories by thresholding the maximal magnitude of stabilized motion vectors
- Our method works well under various camera motions, such as pan, zoom, tilt

Successful examples

Failure cases

Removed trajectories (white) and foreground ones (green)

• Failure due to severe motion blur; the homography is not correctly estimated due to unreliable feature matches

Experimental setting

• Motion stabilized trajectories and features (HOG, HOF, MBH)

• Normalization for each descriptor, then PCA to reduce its dimension by a factor of two

- Use Fisher vector to encode each descriptor separately, set the number of Gaussians to K=256
- Use Power+L2 normalization for FV, and linear SVM with one-against-rest for multi-class classification

Datasets

- Hollywood2: 12 classes from 69 movies, report mAP
- HMDB51: 51 classes, report accuracy on three splits
- UCF101: 101 classes, report accuracy on three splits

Datasets

Hollywood dataset [Marszalek et al.'09]

Hollywood2: 12 classes from 69 movies, report mAP

Datasets

HMDB 51 dataset [Kuehne et al.'11]

push-up

cartwheel

sword-exercice

HMDB51: 51 classes, report accuracy on three splits

Datasets

UCF 101 dataset [Soomro et al.'12]

haircut

archery

ice-dancing

UCF101: 101 classes, report accuracy on three splits

Evaluation of the intermediate steps

	HOG	HOF	MBH	HOF+MBH	Combined
DTF	38.4%	39.5%	49.1%	49.8%	52.2%
ITF	40.2%	48.9%	52.1%	54.7%	57.2%

Results on HMDB51 using Fisher vector

- Baseline: DTF = "dense trajectory feature"
- ITF = "improved trajectory feature"
- HOF improves significantly and MBH somewhat
- Almost no impact on HOG
- HOF and MBH are complementary, as they represent zero and first order motion information

Impact of feature encoding on improved trajectories

Datasets	Fisher vector			
	DTF	ITF wo human	ITF w	
		human	human	
Hollywood2	63.6%	66.1%	66.8%	
HMDB51	55.9%	59.3%	60.1%	
UCF101	83.5%	85.7%	86.0%	

Compare DTF and ITF with and without human detection using HOG+HOF+MBH and Fisher encoding

- IDT significantly improvement over DT
- Human detection always helps. For Hollywood2 and HMDB51, the difference is more significant, as there are more humans present.
- Source code: http://lear.inrialpes.fr/~wang/improved_trajectories

TrecVid MED 2011

• 15 categories

Attempt a board trick

Feed an animal

Landing a fish

Wedding ceremony

Working on a wood project

Birthday party

TrecVid MED 2011

- 15 categories
- ~100 positive video clips per event category, 9600 negative video clips
- Testing on 32000 videos clips, i.e., 1000 hours
- Videos come from publicly available, user-generated content on various Internet sites
- Descriptors: MBH, SIFT, audio, text & speech recognition

Performance of all channels (mAP)

Channel	mAP
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65\\ 33.97\\ 18.15\\ 10.85\\ 8.21 \end{array}$
Visual=Motion+Static Visual+Audio Visual+OCR Visual+ASR Visual+Audio+OCR+ASR	$\begin{array}{c} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$

Performance of all channels	Birthday party	
Channel	mAP	д Д
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65 \\ 33.97 \\ 18.15 \\ 10.85 \\ 8.21 \end{array}$	$30.7 \\ 25.9 \\ 33.3 \\ 10.1 \\ 3.6$
Visual=Motion+Static Visual+Audio Visual+OCR Visual+ASR Visual+Audio+OCR+ASR	$\begin{array}{c} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$	$34.8 \\ 47.7 \\ 35.8 \\ 35.0 \\ 48.4$

Performance of all channels Channel	(mAP) mAP	Birthday party	Repair appliance
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65\\ 33.97\\ 18.15\\ 10.85\\ 8.21 \end{array}$	30.7 25.9 33.3 10.1 3.6	$\begin{array}{c} 42.6 \\ 43.6 \\ 43.3 \\ 32.1 \\ 39.2 \end{array}$
Visual=Motion+Static Visual+Audio Visual+OCR Visual+ASR Visual+Audio+OCR+ASR	$\begin{array}{c} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$	$34.8 \\ 47.7 \\ 35.8 \\ 35.0 \\ 48.4$	$47.5 \\ 54.5 \\ 50.8 \\ 54.5 \\ 57.2$

Performance of all channels Channel	(mAP) mAP	Birthday party	Repair appliance	Make sandwich
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65\\ 33.97\\ 18.15\\ 10.85\\ 8.21 \end{array}$	30.7 25.9 33.3 10.1 3.6	$\begin{array}{c} 42.6 \\ 43.6 \\ 43.3 \\ 32.1 \\ 39.2 \end{array}$	$22.5 \\ 21.5 \\ 11.2 \\ 19.4 \\ 6.7$
$ Visual=Motion+Static \\ Visual+Audio \\ Visual+OCR \\ Visual+ASR \\ Visual+Audio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ Visual+AUdio+OCR+ASR \\ $	$\begin{array}{c} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$	34.8 47.7 35.8 35.0 48.4	$47.5 \\ 54.5 \\ 50.8 \\ 54.5 \\ 57.2$	27.8 27.3 35.7 28.8 35.4

Experimental results

• Example results

Highest ranked results for the event «horse riding competition»

Experimental results

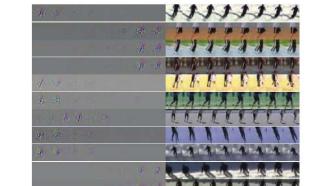
• Example results

rank 1

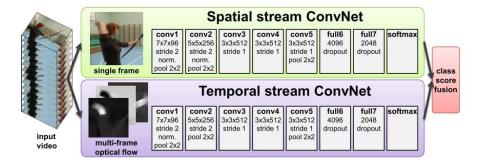
rank 2

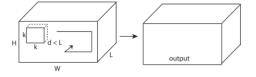
rank 3

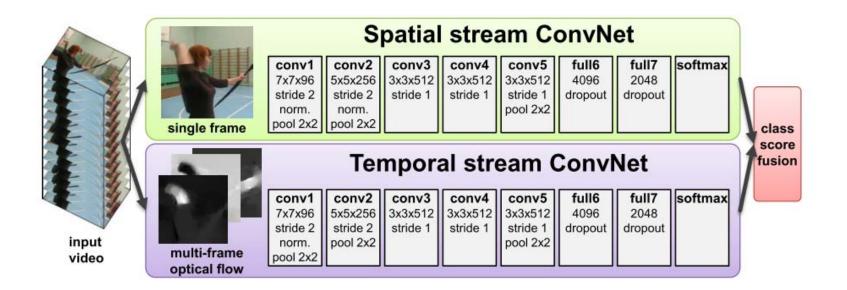
Highest ranked results for the event «tuning a musical instrument»



Two-Stream Convolutional Networks for Action Recognition in Videos [Simonyan and Zisserman NIPS14]

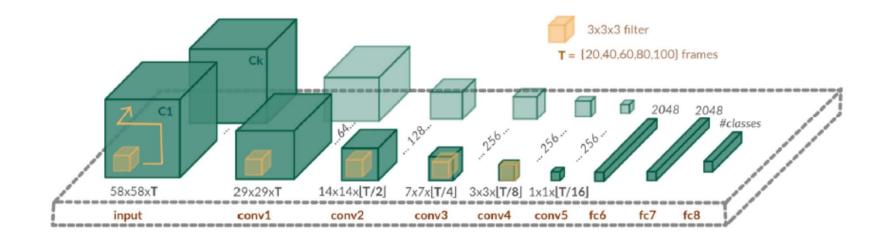

Learning Spatiotemporal Features with 3D Convolutional Networks [Tran et al. ICCV15]


Action recognition with trajectory pooled convolutional descriptors [Wang et al. CVPR15]



stracting Feature Mar

Two-Stream Convolutional Networks for Action Recognition in Videos [Simonyan and Zisserman NIPS14]



Student presentation

Learning Spatiotemporal Features with 3D Convolutional Networks [Tran et al. ICCV15]

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results in another volume, preserving temporal information of the input signal.

Action recognition with trajectory pooled convolutional descriptors [Wang et al. CVPR15]

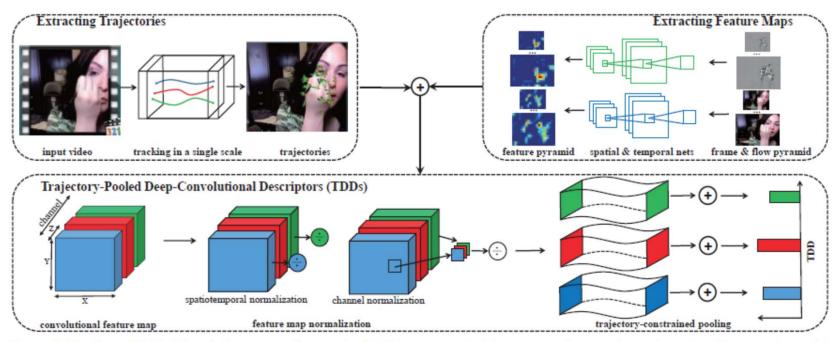
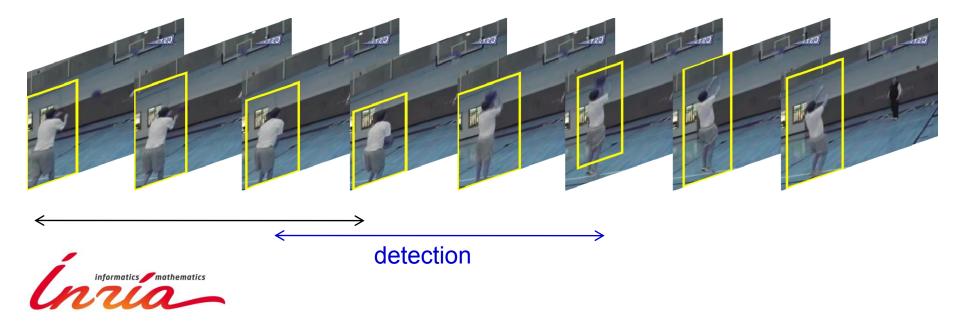


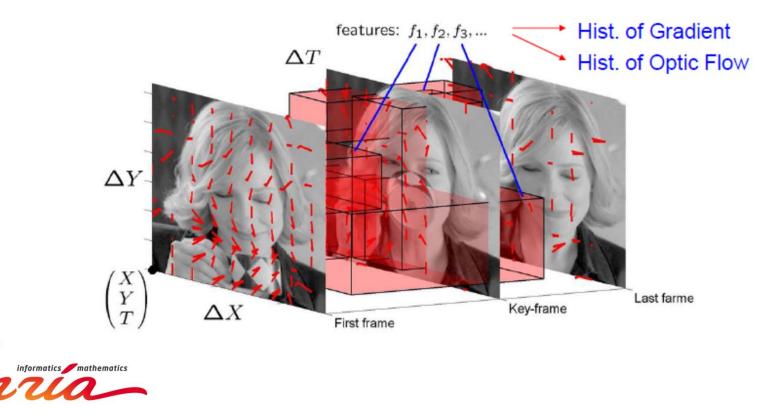
Figure 2. Pipeline of TDD. The whole process of extracting TDD is composed of three steps: (i) extracting trajectories, (ii) extracting multiscale convolutional feature maps, and (iii) calculating TDD. We effectively exploit two available state-of-the-art video representations, namely improved trajectories and two-stream ConvNets. Grounded on them, we conduct trajectory-constrained sampling and pooling over convolutional feature maps to obtain trajectory-pooled deep convolutional descriptors.

Overview

- Video classification
 - Bag of spatio-temporal features
- Action localization
 - Spatio-temporal human localization

Spatio-temporal action localization




Temporal action localization

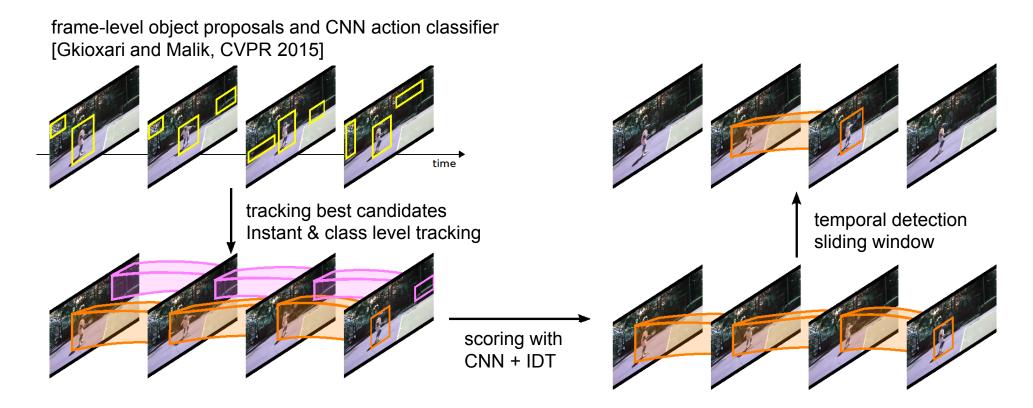
- Temporal sliding window
 - Robust video repres. for action recognition, Oneata et al., IJCV'15
 - Automatic annotation of actions in video, Duchenne et al., ICCV'09
 - Temporal localization of actions with actoms, Gaidon et al., PAMI'13
- Shot detection
 - ADSC Submission at Thumos Challenge 2015

State of the art

- Spatio-temporal action localization
 - Space-time sliding window
 - Spatio-temporal features selection with a cascade, Laptev & Perez, ICCV'07

State of the art

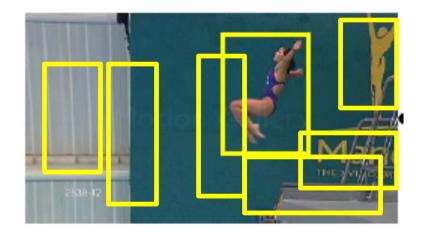
- Spatio-temporal action localization
 - Space-time sliding window
 - Spatio-temporal features selection, Laptev & Perez, ICCV'07
 - Human tubes or generic tube + tube classification
 - Human focused action localization in video, Kläser et al., SGA'10



State of the art

- Spatio-temporal action localization
 - Space-time sliding window
 - Spatio-temporal features selection, Laptev & Perez, ICCV'07
 - Human tubes or generic tube + tube classification
 - Human focused action localization in video, Kläser et al., SGA'10
 - Action localization by tubelets from motion, Jain et al, CVPR'14
 - Finding action tubes, Gkioxari and Malik, CVPR'15

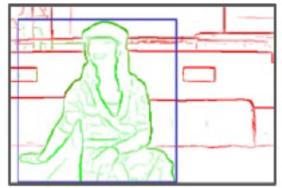
Learning to track for spatio-temporal action localization



[Learning to track for spatio-temporal action localization, P. Weinzaepfel, Z. Harchaoui, C. Schmid, ICCV 2015]

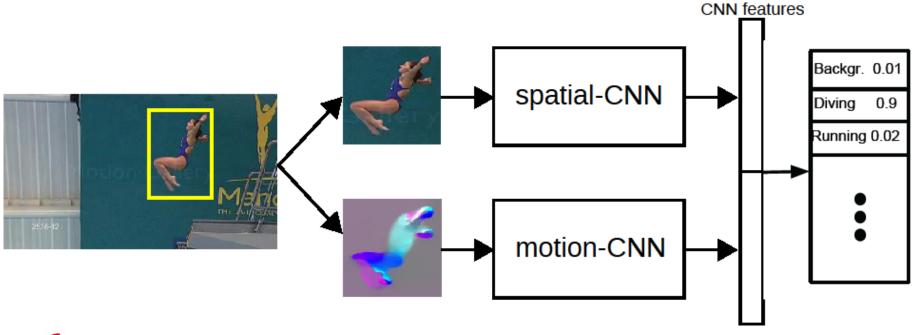
Frame-level candidates

- For each frame
 - Compute object proposals: EdgeBoxes [Zitnick et al. 2014]

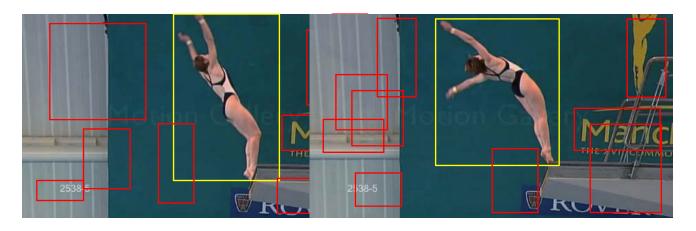


Frame-level candidates

- For each frame
 - Compute object proposals: EdgeBoxes [Zitnick et al. 2014]
 - Extraction of salient boxes based on edgeness



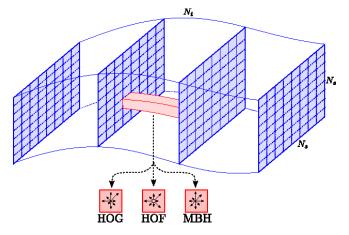
Frame-level candidates

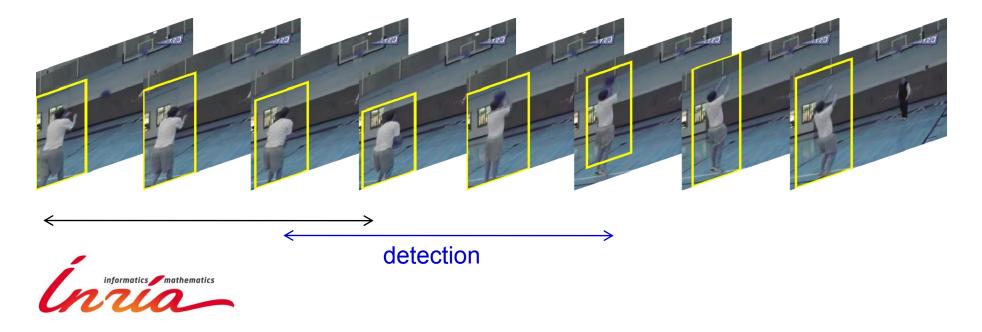

- For each frame
 - Compute object proposals (EdgeBoxes [Zitnick et al. 2014])
 - Extract CNN features (training similar to R-CNN [Girshicket al. 2014])
 - Score each object proposal

[Gkioxari and Malik'15, Simonyan and Zisserman'14]

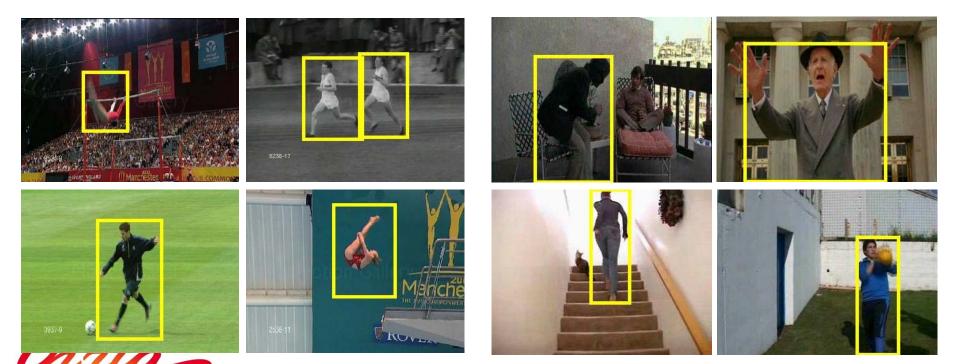
Extracting action tubes - tracking

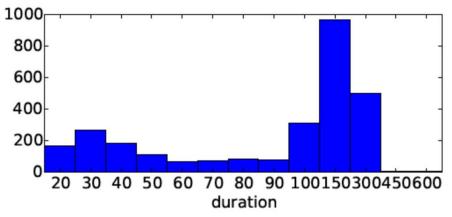
- Tracking an action detection (select highest scoring proposal)
 - Learn an instance-level detector mining negatives in the same frame
 - For each frame:
 - Perform a sliding-window and select the best box according to the class-level detector and the instance-level detector
 - Update instance-level detector

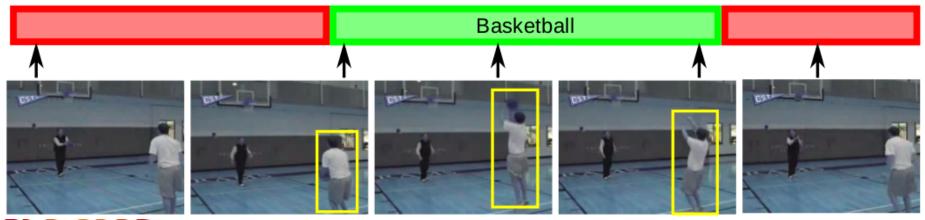

Extracting action tubes


- Start with the highest scored action detection in the video
- Track forward and the backward
- Once tracking is done, delete detections with high overlap
- Restart from the highest scored remaining action detection
- Class-level → robustness to drastic change in poses (Diving, Swinging)
- Instance-level \rightarrow models specific appearance

Rescoring and temporal sliding window


- To capture the dynamics
 - ► Dense trajectories [Wang et Schmid, ICCV'13]
- Temporal sliding window


Datasets (spatial localization)


	UCF-Sports [Rodriguez et al. 2008]	J-HMDB [Jhuang et al. 2013]		
Number of videos	150	928		
Number of classes	10	21		
Average length	63 frames	34 frames		

Datasets

- UCF-101 [Soomro et al. 2012]
 - ► Spatio-temporal localization for a subset of the dataset
 - ► 3207 videos, 24 classes
 - ► Average length: 176 frames

Experimental results

Impact of the tracker

Detectors in the tracker	mAP					
	UCF-Sports	J-HMDB (split 1)				
instance-level + class-level	95.1%	65.0%				
instance-level	77.5%	61.1%				
class-level	91.0%	60.6%				
Comparison to the state of the art						
Gkioxari & Malik, 15	75.8%	53.3%				

Quantitative evaluation on UCF-101

mAP	0.2	0.3
Ours	46.7	37.8

Spatio-temporal action localization

Two-stream R-CNN [Peng et al. ECCV'16]

- ► For *better proposals*, we learn to obtain action proposals on both RGB frames and optical flows.
- ► For *better action representation*, we stack multiple frames/flows in action detection pipeline.

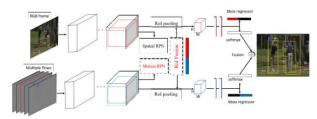


Figure: An end-to-end frame-level two-stream R-CNN action detection 📱 🕤

Evaluation of proposals

- ▶ Selective search (SS) and EdgeBoxes (EB) on RGB frames.
- ▶ RPN-a: Region Proposal Network on RGB frames.
- ▶ RPN-m: Region Proposal Network on optical flows.

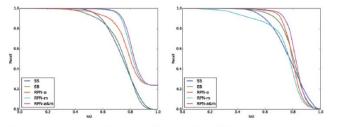


Figure: Comparision of frame-level proposals on UCF-Sports and J-HMDB.

Frame stacking evaluation

Stacking frames or optical flows. How many and how to combine?

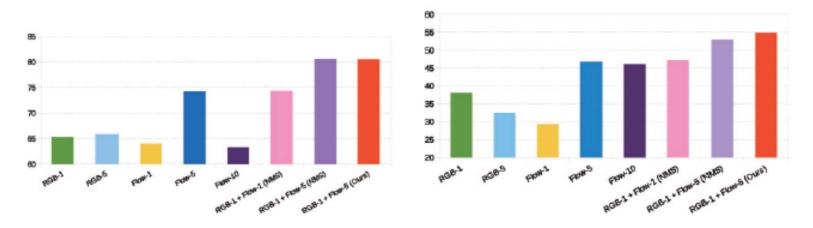


Figure: Evaluation of different frames types (RGB and flow), number of frames (x=1, 5, 10) used for detection and combination strategies. Left: UCF-Sports. Right: J-HMDB split 1.

Comparison to the state of the art

		UCF-Sports		J-HMDB		UCF101 (split 1)			
	δ	0.2	0.5	0.2	0.5	0.05	0.1	0.2	0.3
video-mAP	Gkioxari et al. 2015	-	75.8	-	53.3	-	-	-	-
	Weinzaepfel et al. 2015	-	90.5	63.1	60.7	54.3	51.7	46.8	37.8
	Yu et al. 2015	-	-	-	-	49.9*	42.8*	26.5*	14.6*
	Our TS R-CNN	94.8	94.8	71.1	70.6	54.1	49.5	41.2	31.1
	Our MR-TS R-CNN	94.8	94.7	74.3	73.1	54.5	50.4	42.3	32.7
	Gkioxari et al. 2015	68.1 71.9 82.3 84.5		36.2 45.8 56.9		-			
frame-mAP	Weinzaepfel et al. 2015					35.84			
	Our TS R-CNN					39.94			
	Our MR-TS R-CNN			58.5 39.63					

Table: Comparison to the state of the art on three datasets.

