Optical flow

Cordelia Schmid

Motion field

• The motion field is the projection of the 3D scene motion into the image

Optical flow

- Definition: optical flow is the *apparent* motion of brightness patterns in the image
- Ideally, optical flow would be the same as the motion field
- Have to be careful: apparent motion can be caused by lighting changes without any actual motion
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

- Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between them
- Key assumptions
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors

The brightness constancy constraint

Brightness Constancy Equation:

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing the right side using Taylor expansion:

$$I(x, y, t-1) \approx I(x, y, t) + I_x u(x, y) + I_y v(x, y)$$

Hence,
$$I_x u + I_y v + I_t \approx 0$$

The brightness constancy constraint

$$I_x u + I_y v + I_t = 0$$

- How many equations and unknowns per pixel?
 One equation, two unknowns
- What does this constraint mean? $\nabla I \cdot (u, v) + I_t = 0$
- The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown

If (u, v) satisfies the equation, so does (u+u', v+v') if $\nabla I \cdot (u', v') = 0$

The aperture problem

The aperture problem

Solving the aperture problem

- How to get more equations for a pixel?
- **Spatial coherence constraint:** pretend the pixel's neighbors have the same (u,v)
 - E.g., if we use a 5x5 window, that gives us 25 equations per pixel

$$\begin{bmatrix} I_x(\mathbf{x}_1) & I_y(\mathbf{x}_1) \\ I_x(\mathbf{x}_2) & I_y(\mathbf{x}_2) \\ \vdots & \vdots \\ I_x(\mathbf{x}_n) & I_y(\mathbf{x}_n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{x}_1) \\ I_t(\mathbf{x}_2) \\ \vdots \\ I_t(\mathbf{x}_n) \end{bmatrix}$$

B. Lucas and T. Kanade. <u>An iterative image registration technique with an application to</u> <u>stereo vision.</u> In *International Joint Conference on Artificial Intelligence*,1981.

Lucas-Kanade flow

• Linear least squares problem

$$\begin{bmatrix} I_x(\mathbf{x}_1) & I_y(\mathbf{x}_1) \\ I_x(\mathbf{x}_2) & I_y(\mathbf{x}_2) \\ \vdots & \vdots \\ I_x(\mathbf{x}_n) & I_y(\mathbf{x}_n) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{x}_1) \\ I_t(\mathbf{x}_2) \\ \vdots \\ I_t(\mathbf{x}_n) \end{bmatrix}$$

$$\mathbf{A}_{n\times 2} \mathbf{d}_{2\times 1} = \mathbf{b}_{n\times 1}$$

Solution given by $(\mathbf{A}^T \mathbf{A})\mathbf{d} = \mathbf{A}^T \mathbf{b}$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

The summations are over all pixels in the window

Lucas-Kanade flow

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

- Recall the Harris corner detector: $M = A^T A$ is the second moment matrix
- When is the system solvable?
 - By looking at the eigenvalues of the second moment matrix
 - The eigenvectors and eigenvalues of M relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change, and the other eigenvector is orthogonal to it

Uniform region

- gradients have small magnitude
- small λ_1 , small λ_2
- system is ill-conditioned

- gradients have one dominant direction
- large λ_1 , small λ_2
- system is ill-conditioned

High-texture or corner region

- gradients have different directions, large magnitudes
- large λ_1 , large λ_2
- system is well-conditioned

Optical Flow Results

Multi-resolution registration

Coarse to fine optical flow estimation

Optical Flow Results

Horn & Schunck algorithm

Additional smoothness constraint :

- nearby point have similar optical flow
- Addition constraint $||\nabla u||^2$, $||\nabla v||^2$

$$e_{s} = \int \int ((u_{x}^{2} + u_{y}^{2}) + (v_{x}^{2} + v_{y}^{2})) dx dy,$$

B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence, 1981

Horn & Schunck algorithm

Additional smoothness constraint :

$$e_{s} = \iint ((u_{x}^{2} + u_{y}^{2}) + (v_{x}^{2} + v_{y}^{2}))dxdy,$$

besides OF constraint equation term

$$e_c = \iint (I_x u + I_y v + I_t)^2 dx dy,$$

minimize es+λec

 λ regularization parameter

B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence, 1981

Horn & Schunck algorithm

Coupled PDEs solved using iterative methods and finite differences

Horn & Schunck

- Works well for small displacements
 - For example Middlebury sequence

Large displacement estimation in optical flow

• Large displacement is still an open problem in optical flow estimation

MPI Sintel dataset

Large displacement optical flow

- Classical optical flow [Horn and Schunck 1981]
 - energy: $E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} \mathbf{dx}$ color/gradient constancy smoothness constraint
 - minimization using a coarse-to-fine scheme
- Large displacement approaches:
 - ▶ LDOF [Brox and Malik 2011]

a matching term, penalizing the difference between flow and HOG matches

$$E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} + \beta E_{match} \mathbf{dx}$$

 MDP-Flow2 [Xu et al. 2012] expensive fusion of matches (SIFT + PatchMatch) and estimated flow at each level

 DeepFlow [Weinzaepfel et al. 2013] deep matching + flow refinement with variational approach

Deep Matching: main idea

First image

Second image

- Each subpatch is allowed to move:
 - ▶ independently
 - ▶ in a limited range depending on its size
- The approach is fast to compute using convolution and max-pooling
- The idea is applied recursively

Deep Matching (2)

Deep Matching (2)

Pipeline similar in spirit to **deep** convolutional nets [Lecun *et al.* 1998]

...

Deep Matching (3)

Bottom-up

Top-down

Deep Matching (3)

First image

Second image

Deep Matching: example results

• Repetitive textures

First image

Second image

Deep Matching: example results

• Non-rigid deformation

First image

Second image

DeepFlow

• Classical optical flow [Horn and Schunck 1981]

• energy
$$E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} \mathbf{dx}$$

• Integration of Deep Matching

• energy
$$E(\mathbf{w}) = \iint E_{data} + \alpha E_{smooth} + \beta E_{match} \mathbf{dx}$$

- ▶ matches guide the flow
- ▶ similar to [Brox and Malik 2011]
- Minimization using:
 - coarse-to-fine strategy
 - ► fixed point iterations
 - Successive Over Relaxation (SOR)

Experimental results: datasets

- MPI-Sintel [Butler et al. 2012]
 - ► sequences from a realistic animated movie
 - ► large displacements (>20px for 17.5% of pixels)
 - ► atmospheric effects and motion blur

Experimental results: datasets

- KITTI [Geiger et al. 2013]
 - ► sequences captured from a driving platform
 - ► large displacements (>20px for 16% of pixels)
 - ► real-world: lightings, surfaces, materials

Experimental results: sample results

DeepFlow

Experimental results: sample results

Ground-truth

LDOF [Brox & Malik 2011]

MDP-Flow2 [Xu et al. 2012]

DeepFlow

Experimental results: improvements due to Deep Matching

- Comparison on MPI-Sintel training set
 - ► AEE: average endpoint error
 - ► s40+: only on large displacements

Matching	Flow evaluation		
	AEE	s40+	
No match	5.54	39.86	
KLT [OpenCV]	5.51	39.20	
SIFT-NN	5.44	38.28	
HOG-NN	5.27	37.86	
Deep Matching	4.42	29.23	

HOG matching

Deep Matching

EpicFlow: Sparse-to-dense interpolation based on Deep Matching

accurate quasi dense matches with DeepMatching

[Revaud et al., CVPR'15]

Approach: Sparse-to-dense interpolation based on Deep Matching

Does not respect motion boundaries

Interpolation

Approach: Sparse-dense interpolation with motion boundaries

- ▶ image edges often coincide with motion boundaries (recall 95%)
- state-of-the-art SED detector [structured forest for edge detection, Dollar'13]

image

SED edges

ground-truth flow

ground-truth motion boundaries

Approach: Sparse-dense interpolation with motion boundaries

EpicFlow:

- Matching [Deep Matching]
- Sparse-dense interpolation preserving motion boundaries
 → Geodesic distance based on edges [SED]
- Refinement: One-level energy minimization with variational approach

Distance $D(p_m, p)$: edge-aware geodesic distance

- geodesic distance:
 - shortest distance
 - knowing a cost map C

$$D_G(\boldsymbol{p}, \boldsymbol{q}) = \inf_{\Gamma \in \mathcal{P}_{\boldsymbol{p}, \boldsymbol{q}}} \int_{\Gamma} C(\boldsymbol{p}_s) d\boldsymbol{p}_s$$

- Cost map C:
 - image edges
 - here computed with SED

Sparse-to-dense Interpolation: edge-aware geodesic distance

Comparing Interpolation/EpicFlow/DeepFlow

Comparison to the state of the art

Comparison to the state of the art (AEE)

Method	Error on MPI-Sintel	Error on Kitti	Timings
EpicFlow	6.28	3.8	16.4s
TF+OFM	6.73	5.0	~500s
DeepFlow	7.21	5.8	19s
NLTGV-SC	8.75	3.8	16s (GPU)

TF + OFM : Kennedy'15. Optical flow with geometric occlusion estimation and fusion of multiple frames NLTGV-SC: Ranftl'14. Non-local total generalized variation for optical flow estimation.

Failure cases

CNN to estimate optical flow: FlowNet

[A. Dosovitskiy et al. ICCV'15]

Architecture FlowNetSimple

Architecture FlowNetCorrelation

Synthetic dataset for training: Flying chairs

A dataset of approx. 23k image pairs

Experimental results

Method	Sintel Clean		Sintel Final	
	train	test	train	test
EpicFlow [30]	2.27	4.12	3.57	6.29
DeepFlow [35]	3.19	5.38	4.40	7.21
EPPM [3]	-	6.49	-	8.38
LDOF [6]	4.19	7.56	6.28	9.12
FlowNetS	4.50	7.42	5.45	8.43
FlowNetS+v	3.66	6.45	4.76	7.67
FlowNetS+ft	(3.66)	6.96	(4.44)	7.76
FlowNetS+ft+v	(2.97)	6.16	(4.07)	7.22
FlowNetC	4.31	7.28	5.87	8.81
FlowNetC+v	3.57	6.27	5.25	8.01
FlowNetC+ft	(3.78)	6.85	(5.28)	8.51
FlowNetC+ft+v	(3.20)	6.08	(4.83)	7.88

S: simple, C: correlation, v: variational refinement, ft:fine-tuning

Experimental results

