
# The PASCAL Visual Object Classes (VOC) Dataset and Challenge

Mark Everingham Luc Van Gool Chris Williams John Winn Andrew Zisserman



# The PASCAL VOC Challenge

- Challenge in visual object recognition funded by PASCAL network of excellence
- Publicly available dataset of annotated images



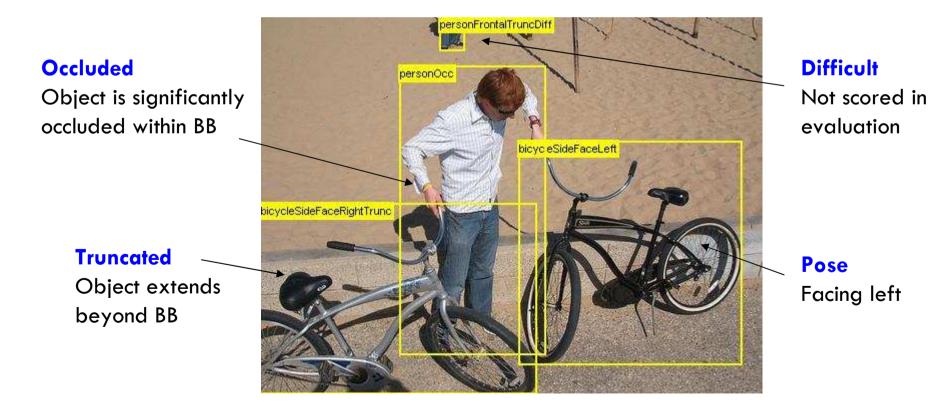
- Main competitions in classification (is there an X in this image) and detection (where are the X's)
- "Taster competitions" in segmentation and 2-D human "pose estimation" (2007-present)



|      | Images | Objects | Classes | Entries |                                                                                                            |  |  |  |  |  |  |  |
|------|--------|---------|---------|---------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 2005 | 2,232  | 2,871   | 4       | 12      | Collection of existing and some new data.                                                                  |  |  |  |  |  |  |  |
| 2006 | 5,304  | 9,507   | 10      | 25      | Completely new dataset<br>from flickr (+MSRC)                                                              |  |  |  |  |  |  |  |
| 2007 | 9,963  | 24,640  | 20      | 28      | Increased classes to 20.<br>Introduced tasters.                                                            |  |  |  |  |  |  |  |
| 2008 | 8,776  | 20,739  | 20      |         | Added "occlusion" flag.<br>Reuse of taster data.<br>Release detailed results to<br>support "meta-analysis" |  |  |  |  |  |  |  |

- New dataset annotated annually
  - Annotation of test set is withheld until after challenge

### **Dataset Content**


- 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, train, TV
- Real images not filtered for "quality" (no CC tag)



Complex scenes, scale, pose, lighting, occlusion, ...

## Annotation

- Complete annotation of all objects
- Annotated in one session with written guidelines
  - High quality (?)



## Segmentation

- Subset of images manually segmented w.r.t. 20 classes (tri-map)
  - 422 images 1,215 objects (2007)

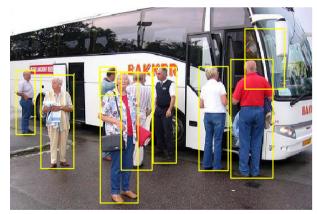


### 2-D "Pose" Annotation

- Subset of images annotated with location of body parts
  - head, hands, feet
    - 322 images, 439 objects (2007)



# Main Challenge Tasks


#### Classification

- Is there a dog in this image?
- Evaluation by precision/recall



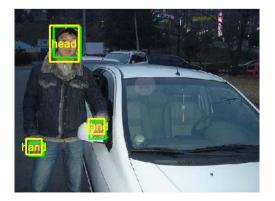
#### Detection

- Localize all the people (if any) in this image
- Evaluation by precision/recall based on bounding box overlap



# "Taster" Challenges

#### Segmentation"


- Label each pixel as class x or background
- Evaluation by pixel-wise accuracy (balanced for class priors)





#### "Pose"

- Predict bounding boxes of body parts (2008 given bounding box of person)
- Evaluation by precision/recall



## Attempts at Analysis

- Statistical Significance
  - Does the output of methods differ significantly?
  - Does the performance of methods differ significantly?
- What is being learnt?
  - Are confusions between classes "intuitive"?
  - Classification: learning Object or Scene?
  - Detection: is there a bias towards large objects?
- Longitudinal Results
  - Are methods getting better?

### Classification: Does output differ significantly?

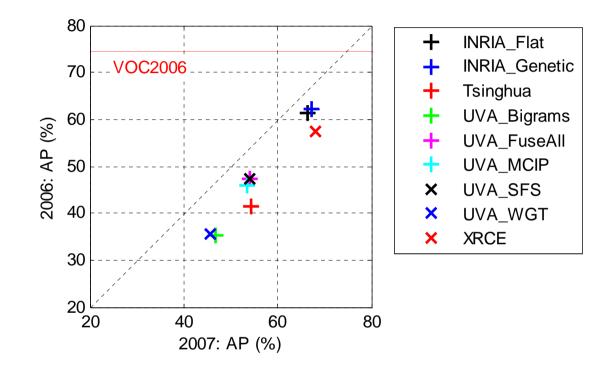
2006: McNemar's test: Measure statistical significance of different error patterns between methods

|                       | INRIA<br>Nowak | QMUL<br>HSLS | QMUL<br>LSPCH | INRIA<br>Marszalek | ROUND2<br>INRIA_Moosmann | XRCE   | INRIA<br>Moosmann | ROUND2<br>TKK | INRIA<br>Larlus | UVA<br>big5 | RWTH<br>GMM | ткк    | RWTH<br>DiscHist | MUL<br>1v1 | RWTH<br>SparseHists | MUL<br>1vall | AP06<br>Lee | INSARouen | UVA<br>weibull | Cambridge | Siena  | AP06<br>Batra |
|-----------------------|----------------|--------------|---------------|--------------------|--------------------------|--------|-------------------|---------------|-----------------|-------------|-------------|--------|------------------|------------|---------------------|--------------|-------------|-----------|----------------|-----------|--------|---------------|
| INRIA_Nowak           | -              | 0.002        | 0.004         | 0.006              | 0.011                    | 0.017  | 0.026             | 0.038         | 0.046           | 0.050       | 0.053       | 0.055  | 0.057            | 0.061      | 0.062               | 0.075        | 0.099       | 0.103     | 0.105          | 0.125     | 0.151  | 0.167         |
| QMUL_HSLS             | -0.002         | -            | 0.001         | 0.003              | 0.009                    | 0.014  | 0.023             | 0.036         | 0.044           | 0.047       | 0.051       | 0.053  | 0.055            | 0.059      | 0.060               | 0.073        | 0.097       | 0.101     | 0.102          | 0.122     | 0.149  | 0.165         |
| QMUL_LSPCH            | -0.004         | -0.001       | -             | 0.002              | 0.007                    | 0.013  | 0.022             | 0.035         | 0.042           | 0.046       | 0.050       | 0.052  | 0.054            | 0.057      | 0.059               | 0.071        | 0.096       | 0.099     | 0.101          | 0.121     | 0.147  | 0.164         |
| INRIA_Marszalek       | -0.006         | -0.003       | -0.002        | -                  | 0.005                    | 0.011  | 0.020             | 0.033         | 0.040           | 0.044       | 0.048       | 0.049  | 0.052            | 0.055      | 0.056               | 0.069        | 0.094       | 0.097     | 0.099          | 0.119     | 0.145  | 0.161         |
| ROUND2_INRIA_Moosmann | -0.011         | -0.009       | -0.007        | -0.005             | -                        | 0.006  | 0.015             | 0.027         | 0.035           | 0.039       | 0.042       | 0.044  | 0.046            | 0.050      | 0.051               | 0.064        | 0.088       | 0.092     | 0.094          | 0.114     | 0.140  | 0.156         |
| XRCE                  | -0.017         | -0.014       | -0.013        | -0.011             | -0.006                   | -      | 0.009             | 0.022         | 0.029           | 0.033       | 0.037       | 0.039  | 0.041            | 0.044      | 0.046               | 0.058        | 0.083       | 0.086     | 0.088          | 0.108     | 0.134  | 0.151         |
| INRIA_Moosmann        | -0.026         | -0.023       | -0.022        | -0.020             | -0.015                   | -0.009 | -                 | 0.013         | 0.020           | 0.024       | 0.028       | 0.030  | 0.032            | 0.035      | 0.036               | 0.049        | 0.074       | 0.077     | 0.079          | 0.099     | 0.125  | 0.141         |
| ROUND2_TKK            | -0.038         | -0.036       | -0.035        | -0.033             | -0.027                   | -0.022 | -0.013            | -             | 0.008           | 0.011       | 0.015       | 0.017  | 0.019            | 0.023      | 0.024               | 0.037        | 0.061       | 0.065     | 0.066          | 0.086     | 0.113  | 0.129         |
| INRIA_Larlus          | -0.046         | -0.044       | -0.042        | -0.040             | -0.035                   | -0.029 | -0.020            | -0.008        | -               | 0.004       | 0.007       | 0.009  | 0.011            | 0.015      | 0.016               | 0.029        | 0.053       | 0.057     | 0.059          | 0.079     | 0.105  | 0.121         |
| UVA_big5              | -0.050         | -0.047       | -0.046        | -0.044             | -0.039                   | -0.033 | -0.024            | -0.011        | -0.004          | -           | 0.004       | 0.006  | 0.008            | 0.011      | 0.013               | 0.025        | 0.050       | 0.053     | 0.055          | 0.075     | 0.101  | 0.118         |
| RWTH_GMM              | -0.053         | -0.051       | -0.050        | -0.048             | -0.042                   | -0.037 | -0.028            | -0.015        | -0.007          | -0.004      | -           | 0.002  | 0.004            | 0.007      | 0.009               | 0.022        | 0.046       | 0.049     | 0.051          | 0.071     | 0.098  | 0.114         |
| ткк                   | -0.055         | -0.053       | -0.052        | -0.049             | -0.044                   | -0.039 | -0.030            | -0.017        | -0.009          | -0.006      | -0.002      | -      | 0.002            | 0.006      | 0.007               | 0.020        | 0.044       | 0.048     | 0.049          | 0.069     | 0.096  | 0.112         |
| RWTH_DiscHist         | -0.057         | -0.055       | -0.054        | -0.052             | -0.046                   | -0.041 | -0.032            | -0.019        | -0.011          | -0.008      | -0.004      | -0.002 | -                | 0.003      | 0.005               | 0.018        | 0.042       | 0.046     | 0.047          | 0.067     | 0.094  | 0.110         |
| MUL_1v1               | -0.061         | -0.059       | -0.057        | -0.055             | -0.050                   | -0.044 | -0.035            | -0.023        | -0.015          | -0.011      | -0.007      | -0.006 | -0.003           | -          | 0.001               | 0.014        | 0.039       | 0.042     | 0.044          | 0.064     | 0.090  | 0.106         |
| RWTH_SparseHists      | -0.062         | -0.060       | -0.059        | -0.056             | -0.051                   | -0.046 | -0.036            | -0.024        | -0.016          | -0.013      | -0.009      | -0.007 | -0.005           | -0.001     | -                   | 0.013        | 0.037       | 0.041     | 0.043          | 0.062     | 0.089  | 0.105         |
| MUL_1vALL             | -0.075         | -0.073       | -0.071        | -0.069             | -0.064                   | -0.058 | -0.049            | -0.037        | -0.029          | -0.025      | -0.022      | -0.020 | -0.018           | -0.014     | -0.013              | -            | 0.024       | 0.028     | 0.030          | 0.050     | 0.076  | 0.092         |
| AP06_Lee              | -0.099         | -0.097       | -0.096        | -0.094             | -0.088                   | -0.083 | -0.074            | -0.061        | -0.053          | -0.050      | -0.046      | -0.044 | -0.042           | -0.039     | -0.037              | -0.024       | -           | 0.003     | 0.005          | 0.025     | 0.052  | 0.068         |
| INSARouen             | -0.103         | -0.101       | -0.099        | -0.097             | -0.092                   | -0.086 | -0.077            | -0.065        | -0.057          | -0.053      | -0.049      | -0.048 | -0.046           | -0.042     | -0.041              | -0.028       | -0.003      | -         | 0.002          | 0.022     | 0.048  | 0.064         |
| UVA_weibull           | -0.105         | -0.102       | -0.101        | -0.099             | -0.094                   | -0.088 | -0.079            | -0.066        | -0.059          | -0.055      | -0.051      | -0.049 | -0.047           | -0.044     | -0.043              | -0.030       | -0.005      | -0.002    | -              | 0.020     | 0.046  | 0.062         |
| Cambridge             | -0.125         | -0.122       | -0.121        | -0.119             | -0.114                   | -0.108 | -0.099            | -0.086        | -0.079          | -0.075      | -0.071      | -0.069 | -0.067           | -0.064     | -0.062              | -0.050       | -0.025      | -0.022    | -0.020         | -         | 0.026  |               |
| Siena                 | -0.151         | -0.149       | -0.147        | -0.145             | -0.140                   | -0.134 | -0.125            | -0.113        | -0.105          | -0.101      | -0.098      | -0.096 | -0.094           | -0.090     | -0.089              | -0.076       | -0.052      | -0.048    | -0.046         | -0.026    |        | 0.016         |
| AP06_Batra            | -0.167         | -0.165       | -0.164        | -0.161             | -0.156                   | -0.151 | -0.141            | -0.129        | -0.121          | -0.118      | -0.114      | -0.112 | -0.110           | -0.106     | -0.105              | -0.092       | -0.068      | -0.064    | -0.062         | -0.043    | -0.016 | -             |

## Classification: Are errors "intuitive"?

 Class images: Highest ranked



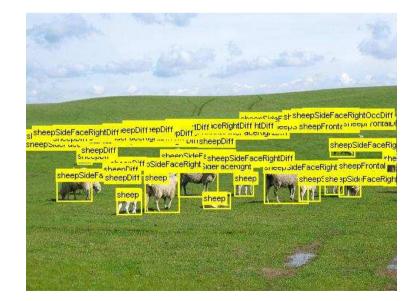

 Class images: Lowest ranked



- Non-class images: Highest ranked
- "Structured" Texture?

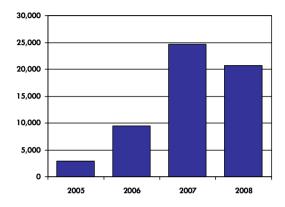


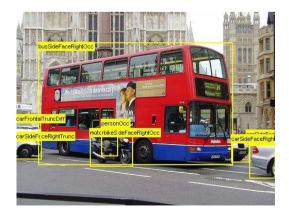
### Classification: Are methods getting better?




- High correlation between results on 2007 and 2006 test data
- Some evidence of "over-fitting" no method equalled results when trained on 2006 data

### For Discussion...

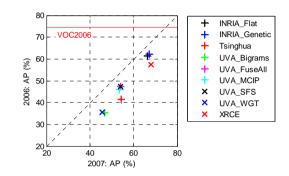

### Dataset

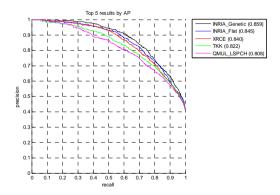

- Known Bias
  - Some bias due to keyword-based image collection
  - Images with only many small objects are discarded
  - Segmentation/pose data is biased towards simple scenes with larger objects
- Small Objects/Context
  - Objects unrecognizable in isolation are ignored in the evaluation but are included in the annotation



# Sustainability

- Cost & Difficulty
  - Annotation is expensive: ~700 person hours for 2008
  - New (test) data is required each year to support withholding test annotation
  - Difficult to maintain high quality annotation with increased number of object classes ("cognitive load")
- Availability of Data
  - Becoming difficult to find examples of certain categories on flickr




# Challenge

- "Longitudinal" Data
  - New test set every year makes measuring improvement difficult
  - Stop collecting more (test) data?

- "Pushing the curve"?
  - Are we encouraging incremental research?
  - 17 classification methods in 2007 were "bag of words"

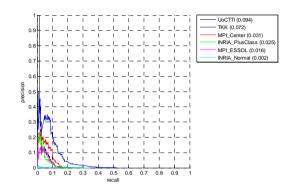




## Annotation

- Bounding Boxes?
  - More suitable for some objects than others...




#### Alternatives?

- Should we be annotating less data in more detail?
  - Polygons, "sketches", parts, pixels, ...?
- Should we be annotating more data in less detail?
  - Weak supervision e.g. keywords at image level?
- Are we annotating the right data?
  - Video?

# **Evaluation**

- Useful to the community?
  - Are we measuring the right thing?
  - How to provide useful diagnostic information to guide research?
  - Is the data too difficult?

- "Taster" Challenges
  - Are the new challenges useful?
  - What other tasks should be introduced to stimulate research?



