2D Human Pose Estimation and Retrieval in TV Shows

Vittorio Ferrari Manuel Marin Andrew Zisserman

Object Recognition Workshop May 2008

Two action recognition schools

Actions as spatio-temporal objs

+ simple

- + reuse lessons from obj categorization
- + robust to hard imaging conditions (recently ;)
- not adapted for accurate localization
- ? multiple people ?
- ? scalable to many classes ?

Human-centric

- + natural representation
- + appearance-invariant (need few training examples)
- + focus on person, not background
- + potentially fewer false-positives
- + easy to reason about multiple people
- pose estimation is fragile

e.g. Shuldt et al. 04; Niebles and Fei-Fei 07; Laptev et al. 07/08; Dollar et. al. 05

Others Blank et al. 05; Fathi and Mori 08

e.g. Ramanan and Forsyth 03; Ikizler and Forsyth 07; Hong et al. 00

Our work

- advance human-centric school
- this talk: automatic pose estimation in unconstrained video
- preliminary pose retrieval results on several hours of *Buffy*
- a step towards human-centric action recognition

Goal: detect people and estimate 2D pose in images/video

e.g. Ramanan and Forsyth, Mori et al. Felzenszwalb and Huttenlocher, Sigal and Black *Pose* spatial configuration of body parts

Estimation localize body parts in (x, y, θ, s)

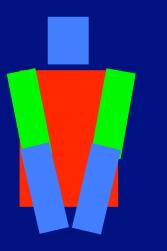
Desired scope TV shows and feature films

focus on upper-body

Body parts

fixed aspect-ratio rectangles for head, torso, upper and lower arms

The search space of pictorial structures is large



e.g. Ramanan and Forsyth, Mori et al. Felzenszwalb and Huttenlocher, Sigal and Black

Body parts

fixed aspect-ratio rectangles for head, torso, upper and lower arms

= 4 parameters each (x, y, θ, s)

Search space

- 4P dim (a scale factor per part)
- 3P+1 dims (a single scale factor)
- P = 6 for upper-body
- 720x405 image = 10^{45} configs !

Kinematic constraints

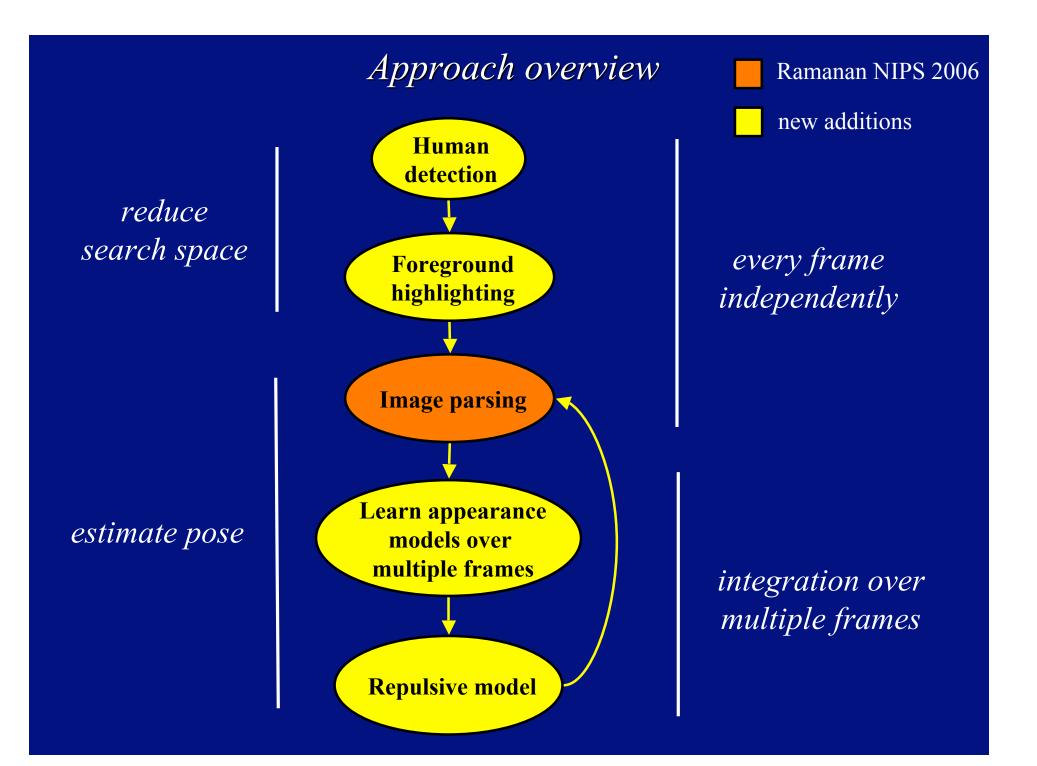
- reduce space to valid body configs (10^{28})
- efficiency by model independencies (10^{12})

The challenge of unconstrained imagery

varying illumination and low contrast; moving camera and background; multiple people; scale changes; extensive clutter; any clothing

The challenge of unconstrained imagery

Extremely difficult when knowing nothing about appearance/pose/location

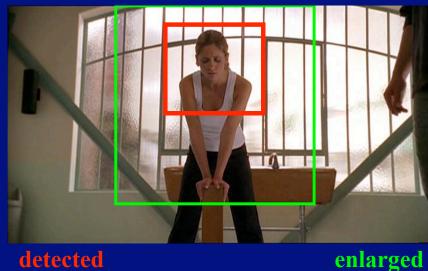


Single frame

Search space reduction by human detection

Train

Test



detected

Idea

get approximate location and scale with a detector generic over pose and appearance

Building an upper-body detector

- based on Dalal and Triggs CVPR 2005
- train = 96 frames X 12 perturbations (no Buffy)

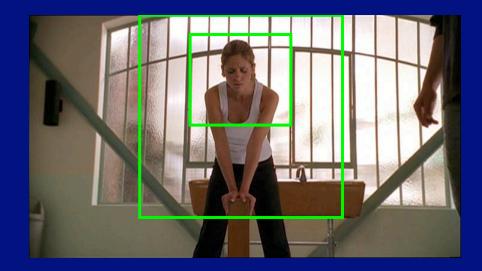
Benefits for pose estimation

- + fixes scale of body parts
- + sets bounds on x,y locations
- + detects also back views
- + fast
- little info about pose (arms)

Search space reduction by human detection

Upper-body detection and temporal association

Search space reduction by foreground highlighting



initialization

output

Idea

exploit knowledge about structure of search area to initialize Grabcut

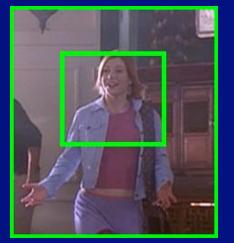
Initialization

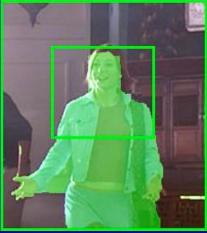
- learn fg/bg models from regions where person likely present/absent
- clamp central strip to fg
- don't clamp bg (arms can be anywhere)

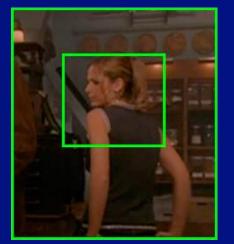
Benefits for pose estimation

- + further reduce clutter
- + conservative (no loss 95.5% times)
- + needs no knowledge of background
- + allows for moving background

Search space reduction by foreground highlighting







Idea

exploit knowledge about structure of search area to initialize Grabcut

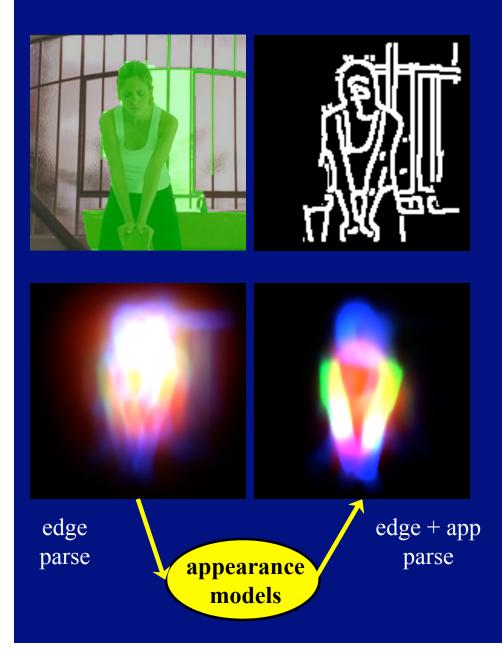
Initialization

- learn fg/bg models from regions where person likely present/absent
- clamp central strip to fg
- don't clamp bg (arms can be anywhere)

Benefits for pose estimation

- + further reduce clutter
- + conservative (no loss 95.5% times)
- + needs no knowledge of background
- + allows for moving background

Pose estimation by image parsing



Goal

estimate posterior of part configuration

$$P(L \mid I) \propto \exp\left(\sum_{i} \Phi(l_i) + \sum_{i,i \in E} \Psi(l_i, l_j)\right)$$

 Φ = image evidence (given edge/app models) Ψ = spatial prior (kinematic constraints)

Algorithm

- 1. inference with Φ = edges
- 2. learn appearance models of body parts and background
- 3. inference with $\Phi = edges + appearance$

Advantages of space reduction + much more robust + much faster (10x-100x) Rat

Ramanan 06

Pose estimation by image parsing

no foreground highlighting

edge parse appearance edge + app parse parse Goal

estimate posterior of part configuration

$$P(L \mid I) \propto \exp\left(\sum_{i} \Phi(l_i) + \sum_{i,i \in E} \Psi(l_i, l_j)\right)$$

 Φ = image evidence (given edge/app models) Ψ = spatial prior (kinematic constraints)

Algorithm

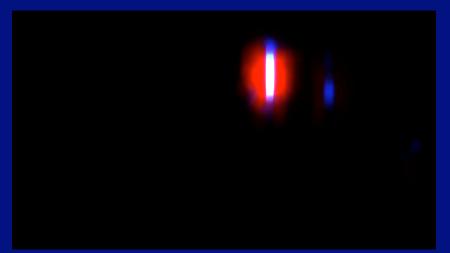
- 1. inference with Φ = edges
- 2. learn appearance models of body parts and background
- 3. inference with $\Phi = edges + appearance$

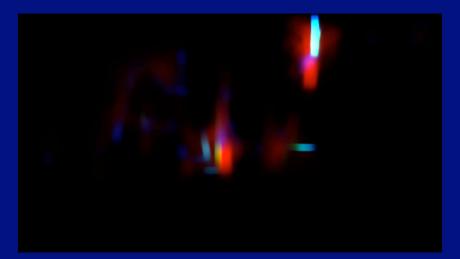
Advantages of space reduction + much more robust + much faster (10x-100x) Rat

Ramanan 06

Failure of direct pose estimation

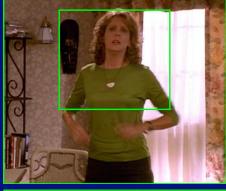
Ramanan NIPS 2006 unaided

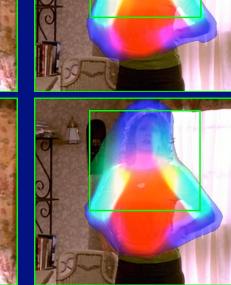




Multiple frames

lowest-entropy frames





higher-entropy frame

Idea

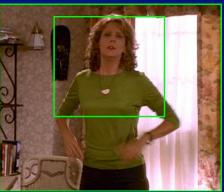
refine parsing of difficult frames, based on appearance models from confident ones (exploit continuity of appearance)

Algorithm

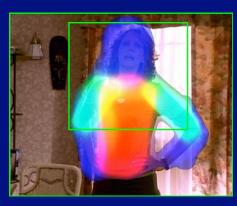
- 1. select frames with low entropy of P(L|I)
- 2. integrate their appearance models
- 3. re-parse every frame using integrated appearance models

- + improve parse in difficult frames
- + better than Ramanan CVPR 2005: integrated models are richer, more robust and generalize to more frames

lowest-entropy frames



higher-entropy frame



Idea

refine parsing of difficult frames, based on appearance models from confident ones (exploit continuity of appearance)

Algorithm

- 1. select frames with low entropy of P(L|I)
- 2. integrate their appearance models
- 3. re-parse every frame using integrated appearance models

- + improve parse in difficult frames
- + better than Ramanan CVPR 2005: integrated models are richer, more robust and generalize to more frames

parse

Idea

refine parsing of difficult frames, based on appearance models from confident ones (exploit continuity of appearance)

Algorithm

- 1. select frames with low entropy of P(L|I)
- 2. integrate their appearance models
- 3. re-parse every frame using integrated appearance models

- + improve parse in difficult frames
- + better than Ramanan CVPR 2005: integrated models are richer, more robust and generalize to more frames



re-parse

Idea

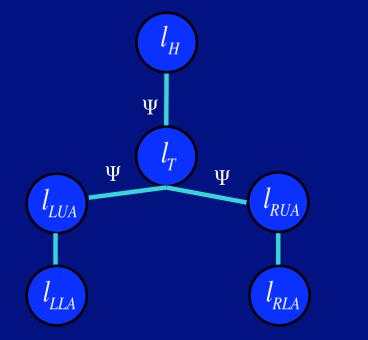
refine parsing of difficult frames, based on appearance models from confident ones (exploit continuity of appearance)

Algorithm

- 1. select frames with low entropy of P(L|I)
- 2. integrate their appearance models
- 3. re-parse every frame using integrated appearance models

- + improve parse in difficult frames
- + better than Ramanan CVPR 2005: integrated models are richer, more robust and generalize to more frames

The repulsive model



Idea

extend kinematic tree with edges preferring non-overlapping left/right arms

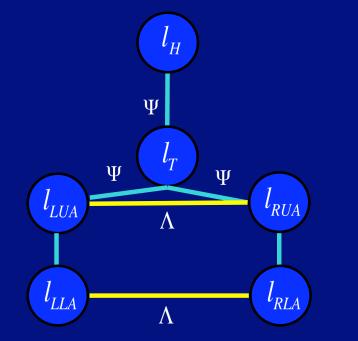
Model

- add repulsive edges
- inference with Loopy Belief Propagation
 - Ψ = kinematic constraints
- Λ = repulsive prior

Advantage

+ less double-counting

The repulsive model



Idea

extend kinematic tree with edges preferring non-overlapping left/right arms

Model

- add repulsive edges
- inference with Loopy Belief Propagation
 - Ψ = kinematic constraints
- Λ = repulsive prior

Advantage

+ less double-counting

Full-body pose estimation in easier conditions



Weizmann action dataset (Blank et at. ICCV 05)

Upper-body pose estimation in TV shows

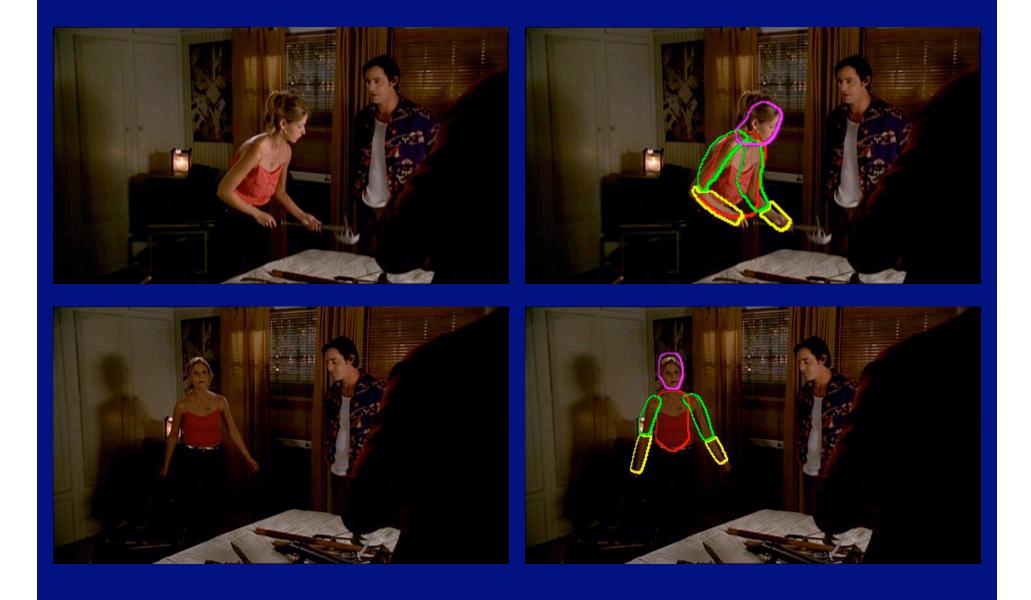
- >70000 frames over 4 episodes of *Buffy the Vampire Slayer* (>1000 shots)

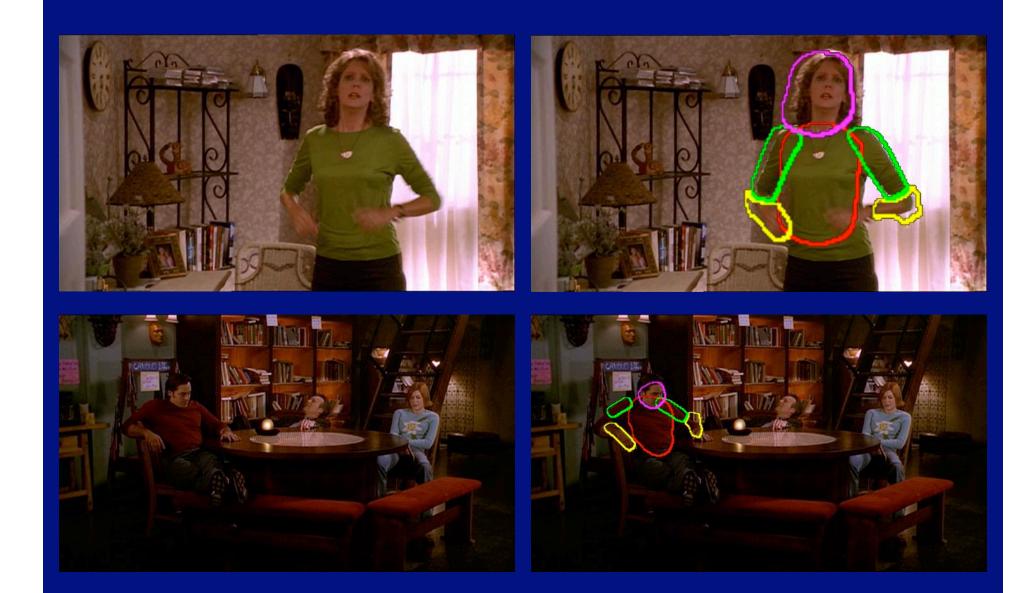
- uncontrolled and extremely challenging

low contrast, scale changes, moving camera and background, extensive clutter, any clothing, any pose

- figure overlays = after transferring appearance models

Example estimated poses

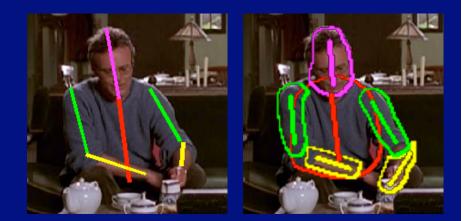




Quantitative evaluation

Ground-truth 69 shots x 4 = 276 frames x 6 = 1656 body parts (sticks)

Upper-body detector fires on 243 frames (88%, 1458 body parts)



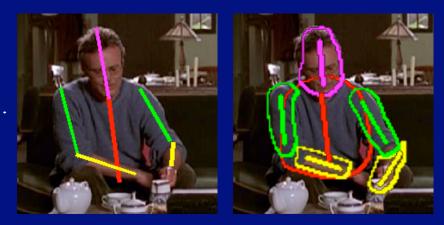
Quantitative evaluation

Pose estimation accuracy

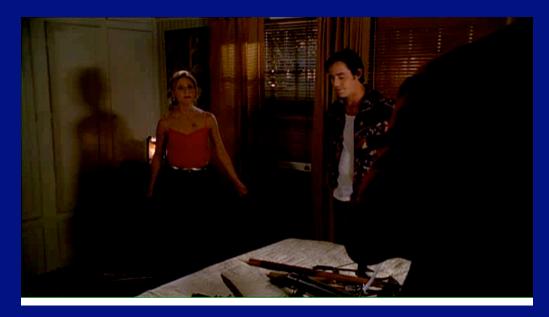
- 62.6% with repulsive model
- 59.4% with appearance transfer
- 57.9% with foreground highlighting (*best single-frame*)
- 41.2% with detection
 - 9.6% Ramanan NIPS 2006 unaided

Conclusions:

- + both reduction techniques improve results
- += small improvement by appearance transfer ...
- + ... method good also on static images
- + repulsive model brings us further



Example video



Pose retrieval: task

query

video database

Task

Given user-selected query frame+person ...

... retrieve shots with persons in the same pose from video database (in experiments: 4 episodes = 3 hours)

Pose retrieval: method

Pose descriptors

- soft-segmentations of body parts
- distributions over orient+location for parts and pairs of parts

Similarity measures

- dot-product (= soft intersection)
- Batthacharrya / Chi-square

What is missed?

too small

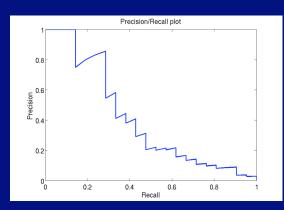
out of image

missed detections

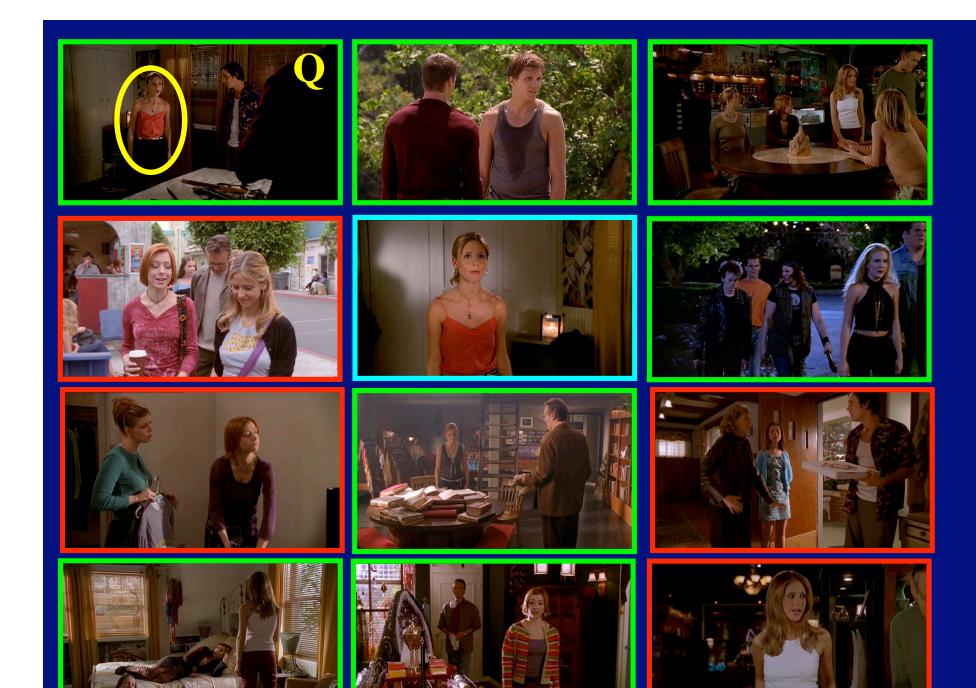
low contrast

confused by other people

incorrect pose estimates



PR AUC = 0.4



The road ahead

further improve pose estimation

- include background model (explain every pixel)
- multi-people reasoning (e.g. occlusion modeling)
- simultaneous spatio-temporal pose estimation

explore better pose descriptors

- integrate over a small temporal neighborhood
- robustness to missed/wrong parts
- learning from a few examples

evolve from pose retrieval to action recognition

Discussion

Back to schools

- human-centric: how robust can it get?
 can we do 'hugging' explicitly ?
- human-centric: how high is the price of higher complexity ?
- actions=objects: scale up to many action classes ? at which training price ?
- hybrid approaches are a promising future ?
 e.g. start from actions=objects, then verify with human-centric

Questions ?

(Video!)

www.robots.ox.ac.uk/~vgg

- ground-truth annotated stickmen
- upper-body detection and tracking software
- ground-truth time intervals labeled by pose class (soon ;)