/mm

_History of Speech Recognition

& 1965-90: looking for features (spectrum, LPC, cepstrum, cochlear feat.)
& 1965-75: isolated-word global template matching (nearest neighbors)
& 1975-85: deformable template matching (nearest neighbors)

& 1980-90: structural methods / expert systems (no learning, failure)

& 1985-90: HMMs (lots of learning, generative models, non-convex!)

& 1990-95: global generative learning (sentence-level HMMs)

& 1990-95: word-level discriminative learning (HMMs, non-convex!)
» mixtures of Gaussians, neural nets

& 1995-00: sentence-level discriminative learning (HMMs, non-convex)

¥ what made it work:

» |lots of data+huge models, training the segmenter, generative
+discriminative training, non-convex/non-linear learning

Yann LeCun * New York University




Panel on Shape Representation

& Yann LeCun: recognition architectures and representation learning.
& Martial Hebert: Shape Representation, the historical perspective

& Jean Ponce: Feature Representations, an overview



_History of Handwriting Recognition

¥ 1965-90: looking for features

» edges, projections, chain code, Zernicke moments, Fourier, Haar,
Hadamard, Hough,......

¥ 1965-75: classifiers for isolated characters
» nearest neighbors, linear classifiers

& 1975-85: structural methods (no learning, failure)

& 1985-95: learning the features (lots of learning, non convex!)
» neural nets, convolutional nets

& 1990-00: global learning (lots of learning, context, non convex!)
» word-level discriminative learning (d-HMM, graph transformer nets)

& since then, people keep re-inventing the same thing

¥ what made it work:

» lots of data, training the segmenter, integrated discriminative
training, learning the features (deep learning), non-convex/non-lin.

Yann LeCun * New York University




_History of Image Recognition

¥ 1965-2008: looking for features
» edges, countours, Hog, Sift, Shape Context,......

& 1965-08: linear classifiers (Perceptrons!), nearest neighbor classifiers
& 1975-95: structural methods (no learning, failure)

& 1993-01: learning the features for face detection (learning, non convex!)
» neural nets, convolutional nets, boosted cascades.

& 1990-00: structured output models (lots of learning, context, non convex!)
» word-level discriminative learning (d-HMM, graph transformer nets)

W what made it work (so far):
» learning, discriminative learning, designing the right features
&¥ what's missing:

» learning the features, integrated segmenter,
unsupervised/supervised learning

Yann LeCun * New York University




_The Future of Image Recognition

& We are still looking for the right features

» we should try to learn them

» ...but so far, feature learning for object recognition has not worked
as well as for handwriting recognition

» do we have the right learning algorithms (deep learning!)

& We are still stuck with “linear” learning and/or nearest neighbors

» let's move beyond SVMs and K-NN

» non-linear/non-convex learning was essential for speech and
handwriting: mixtures of Gaussians, convolutional nets.....

& We are just getting started with integrated (global) training
» training the segmenter was crucial to making speech and
handwriting recognition systems work.
» segmentation/pose are treated as latent variables.
» This kind of approaches will be crucial for dealing with invariance
» They will be essential for compound objects with movable parts
¢ (see Ramanan/Felzenswalb/McAllester)

Yann LeCun * New York University
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Do we have the right architecture?
AR Lx — p—

& Speech and Handwriting have settled on an architecture

& Image recognitions systems are just about to settle on an architecture

» 04: interest points -> global spatial pooling -> classification

» 05: interest points -> local spatial pooling -> elastic template
matching

» 06: local feature detectors -> local spatial pooling -> classification

& But these models are ‘“shallow”
» The mammalian visual cortex is deeper
» multiple stages of:
» local feature detectors (simple cells) -> local pooling (complex cells)
» Convolutional nets, HMAX.......

& We will be converging towards the “Multistage Hubel-Wiesel Architecture”

» Hierarchy of increasingly invariant features
» We will have to learn the features
» We can design the first layer, but not the next layers!

Yann LeCun * New York University
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Deep Architectures for Vision: Convolutional Network
[ S——

& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers
» Higher stages compute more global, more invariant features
» Stick a classification layer on top
» [Fukushima 1971-1982]
@ neocognitron
» [LeCun 1988-2007]
¢ convolutional net
» [Poggio 2002-2006]
¢ HMAX
» [Ullman 2002-2006]
¢ fragment hierarchy
» [Lowe 2006]
¢ HMAX

Yann LeCun * New York University




Supervised Convolutional Nets learn well with lots of data

& Supervised Convolutional nets work very
well for:

» handwriting recognition(winner on
MNIST)

» face detection

» object recognition with few classes
and lots of training samples
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Learning the Features?

& Decoder:
» Linear

RECONSTRUCTION ENERGY
E(Y,W) = min_z

E(Y,Z,W)

Sparsity

& Optional encoders of
FEATURE

different types: S
» None (CODE)
» Linear

» Linear-Sigmoid-Scaling
» Linear-Sigmoid-Linear

& Optional sparsity penalty

» None, L1, Log Student-
T

ZYZargminZE(Y ,Z, W)
& Feature Vector Z

» continuous E(Y,W)=min E(Y,Z,W)

Yann LeCun * New York University
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— Learning the Right Features?
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Yann LeCun * New York University
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Learning the Features

b————.-___‘ -

& 96 filters on 9x9 patches trained with PBP
» with Linear-Sigmoid-Gain Encoder

& Recognition:

» Normalized_Image -> Learned_Filters -> Rectification ->
Local_Normalization -> Spatial_Pooling -> PCA ->
Linear_Classifier

» What is the effect of rectification and normalization?

weights §-0,9275 - 0,8838

Yann LeCun




i Caltech-101 Recognition Rate

weights —0,2275 - Q,2628

& [96_Filters->Rectification]->Pooling->PCA->Linear_Classifier

» [Filters->Sigmoid] 16%
» [Filters->Absolute_Value] 51%
» [Local_Norm->Filters->Absolute_Value] 56%
» [Local_Norm->Filters->Absolute_Value->Local_Norm] 58%

& Multi-Scale Filters->Rectification->Pooling->PCA -

>Linear Classifier
» LN->Gabor_Filters->Rectif->LN (Pinto&diCarlo 08) 59%

& Unsupervised Convolutional Net
» Filt->Sigm->Pooling->Filt->Sigm->Pooling->Classifier 54%

@ Supervised Convolutional Net
» Filt->Sigm->Pooling->Filt->Sigm->Pooling->Classifier 20%

Yann LeCun




Martial Hebert

» Context and scene interpretation

- Background knowledge







surface of the cylinder. It predicts that the length of the ribbon in the
image will in fact be:

-2.42 X CYL_LENGTH X cos{—TILT)

LYLINDER .CaM7

where 2.42 is the focal ratio of the camera and CYLINDER. CAMZ is an
iInternal quantifier generated by the prediction module.

Both of the above approaches are used to generate back con-
straints to ensure coverage of all the relevant quantifiers. They are:

> —2006 » CYL_LENGTM x {1/CYLINDER CAMY)
my < —2.338 x CYL_LENGTR x (3/CYLINDER.CAMZ)
<. — arccos{mup{—0413 X m,

X CYLINDER.CAMZ x (1/CYL_LENGTH)))
—~TILT > — arccos{inf(—0.413 X m,
X CYLINDER.CAMZ X {1/CYL_LENCTH))}



cmas 0. Binford -
Artifiecial Intelligence Frojecr

M v
H-.--"“I'EI ].;i‘r “Stanford Univeraicy
h L §

I."'# L.l-

fﬂ”%ﬂ He describe a formal recresentatien for a class of orimitive
thres=direnslenzl Shapes,

those primltlive represemtzt]ons

alfm
compifed  IATE cOmoound artliculatec representztlons of faml|lar
cb.lects, With reparc to primitive representations, w8 diBgcuss
onls the formalisg, net the Infarence

of such dascrintlons from

visua| date for coppglex scenes, The orimary deslon criltaria for n

recrasentation area the ease wlth whlgh we can recognize anh eblect as
esserntlally similar %o ancther we have smnen bufors, or The sase wWlth
which we can identify that objects with distlnct differances have
impartant similarities (a ehlld ane an adult, or = Ran and & woman),
This I3 ene basls for generzlization. - A representatior Is intended
to eXpress |owWw=|ave| knowledge ghout shape, [,e, class knowWwledgs
about famlilar shaoes, and to sarve &s a basls for approximation of
shaze, and conlecture about nissing |nformatien, fer axamole; the
nidecen half ot .obJects, The primary criterion 15 not the elmal el ®wy



able P—courinmed

graplic
eiplanation
(not o pat
af gise maadel)

dlipras
"
|

&
~%

i

-

M DEL
{stcaad b memary |

El3=R) pr RIZZ

w2 <D

R =p%l oo 292

RIO=m100 e B1OZ o RIS

il
CLP= ".F:_..-"'_'w‘#_{h"_ﬁ_,
T g

El2=nrIEl oz nl22

SUPEREOR FXTREMITY
rIS-g16 of RI30IT-R1E

Bl 3= pnl5] or k152 ¢ RESD
or k154

RriG=gI6] ar kK162 02 RIGS
or k14

gl T=ul5] co R172
Eld -
Irill'FiIl:Ii EXTREMITY

(£
Rl 5I [-'.lp1|l.l||a ]_j"u:q Ene

22Xl = k52 o £151 oo
PRIE W
] Y

Camments
[t part of the madel )

7-&

e mingl
.
__'} ar :1_'
™ r— —

terminal model

Aely M A

20 PFI‘J
| ar k1Al

RrAX |
r1l

Pl ] — ¢ CRAE CHE
graphic
#xplanation
{BOE . Pl ~ HODEL
] thwe model ) [abared 1 mdmey )

RI2-wZ22 of RA21 oo
LR TE e 1

1 [ogisonal]

:-I'1|| i
-'":I' k.‘F——1 F'.r-—__ I
@ﬂ | Ak b
‘%\ | .-__- ||1rl |% =36 ar I""l
||{ il ALFERIDE 2 [apiianal]
L HiEY EXIREMITY ['I
H | ) -""“-Ia'
| S
" | ll'rl "'l-. F...':.l' s
! 'w:-uln:: 1 S,
Ly

EXTEERMILTY

HWEAD =T -HEAT 31 5-HI 4T

. =
Eli= |a
=
khal rIGI
il pal ¥ P
£
L2
ot -

CTIRESE LR T

E rI0G £
‘@; n}
""\-.\__il. A
n2nl - il
RM= b
AR TR P

A1

HaT—®il —|— WUETICE

[ artiirnad |
I

F290~

25 ,?-“-.I

.\\\'. .
"

_ B T iy
) i 'F o
= gl — g |02 — w0 — k2

Commets
{ ol |J-M| of the model)

vecmninal

YRS

RS | aplvaial | H
i__;'l|!‘|il.'-l'l.’l|]
e AL PERIOR
L EXTEEMET ;
mle
pErsan
YOImE

EXTREMITY [optional]

(T o £

L& Einal

4

—

|""-_r:! :\:"
K2E TSROz -7
il

— i l0%

i

SZRY
I/F\'\.'TWF 02

lErmmil



contain

(a) Bottom-up process

scana
abject

region
Sub-region

patch 4L
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(pixel)

(b) Top-down process

(¢) Result



Final Region [nterpretations

Interpretations  Regions

Sky 1,2.3,4
Mountain 56,78

Sea 910,11,12
Ground 13 ‘
Rock 14,15

Tree {Crown) 16

Tree {Bark) 17,18,19,20

FiG 4 Final semantic partifioning of landscape scene

Final Region Interpretations
Interpretations  Regicns

Coor

Wall

Floor

Picture
Tabletop
Chairseat
Chairback
Waste Basket

[= U I wa & 3 I S PRI

FiG. 5 Final semantic pattitioning of SRT office scene
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DANA H.BALLARD = CHRISTOPHER M. BROWN
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Feature Representations




= Color histograms
(Swain & Ballard'91)
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Local jets (Florack93)
Spin images (J&H'99)
Sift (Lowe'99)

Shape contexts (B&M'95)



4
Kl K
VARNS
" Al
iR
FAL KR
N e
¥ IR

Local jets (Florack93)
Spin images (J&H'99)
Sift (Lowe'99)

Shape contexts (B&M'95)
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Boiman, Schechtman, Irani, CVPR'0O8
(73% classification rate on Caltech 101)
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Boiman, Schechtman, Irani, CVPR'0O8
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R




