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2. Overall Objectives
2.1. Overall Objectives

LEAR’s main focus is learning based approaches to visual object recognition and scene interpretation, par-
ticularly for image retrieval, video indexing and the analysis of humans and their movements. Understanding
the content of everyday images and videos is one of the fundamental challenges of computer vision and we
believe that significant advances will be made over the next few years by combining state of the art image
analysis tools with emerging machine learning and statistical modelling techniques.

LEAR’s main research areas are:

• Image features and descriptors and robust correspondence.Many efficient lighting and view-
point invariant image descriptors are now available, such as affine-invariant interest points and his-
togram of oriented gradient appearance descriptors. Our current research aims at extending these
techniques to give better characterizations of visual object and texture classes and 2D and 3D shape
information, and at defining more powerful measures for visual salience, similarity, correspondence
and spatial relations.

• Statistical modelling and machine learning for visual recognition.Our work on statistical mod-
elling and machine learning is aimed mainly at making them more applicable to visual recognition
and image analysis. This includes both the selection, evaluation and adaptation of existing methods,
and the development of new ones designed to take vision specific constraints into account. Particular
challenges include: (i) the need to deal with thehuge volumes of datathat image and video collec-
tions contain; (ii) the need to handlerich hierarchies of natural classesrather than just make simple
yes/no classifications; and (iii) the need to capture enough domain information to allowgeneraliza-
tion from just a few imagesrather than having to build large, carefully marked-up training databases.
Detectors, datasets as well as evaluation procedures are available athttp://lear.inrialpes.fr/software.

• Visual recognition and content analysis.Visual recognition requires the construction of exploitable
visual models of particular objects and of object and scene categories. Achieving good invariance
to viewpoint, lighting, occlusion and background is challenging even for exactly known rigid
objects, and these difficulties are compounded when reliable generalization across object categories
is needed. Our research combines advanced image descriptors with learning to provide good
invariance and generalization. Currently the selection and coupling of image descriptors and learning
techniques is largely done by hand, and one significant challenge is the automation of this process,
for example using automatic feature selection and statistically-based validation diagnostics.

• Human detection and activity analysis.Humans and their activities are one of the most frequent
and interesting subjects of images and videos, but also one of the hardest to analyze owing to the
complexity of the human form, clothing and movements. Our research in this area uses machine
learning techniques and robust visual shape descriptors to characterize humans and their movements
with little or no manual modelling. Particular focuses include robust human detection in images and
videos, and reconstructing 3D human movement from monocular images.

http://lear.inrialpes.fr/software
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3. Scientific Foundations
3.1. Image features and descriptors and robust correspondence

Reliable image features are a crucial component of any visual recognition system. Despite much progress,
research is still needed in this area. Elementary features and descriptors suffice for a few applications, but
their lack of robustness and invariance puts a heavy burden on the learning method and the training data,
ultimately limiting the performance that can be achieved. More sophisticated descriptors allow better inter-
class separation and hence simpler learning methods, potentially enabling generalization from just a few
examples and avoiding the need for large, carefully engineered training databases.

The feature and descriptor families that we advocate typically share several basic properties:

• Locality and redundancy: For resistance to variable intra-class geometry, occlusions, changes
of viewpoint and background, and individual feature extraction failures, descriptors should have
relatively small spatial support and there should be many of them in each image. Schemes based
on collections of image patches or fragments are more robust and better adapted to object-level
queries than global whole-image descriptors. A typical scheme thus selects an appropriate set of
image fragments, calculates robust appearance descriptors over each of these, and uses the resulting
collection of descriptors as a characterization of the image or object (a “bag of features” approach –
see below).

• Photometric and geometric invariance:Features and descriptors must be sufficiently invariant to
changes of illumination and image quantization and to variations of local image geometry induced
by changes of viewpoint, viewing distance, image sampling and by local intra-class variability. In
practice, for local features geometric invariance is usually approximated by invariance to Euclidean,
similarity or affine transforms of the local image.

• Repeatability and salience:Fragments are not very useful unless they can be extracted reliably
and found again in other images. Rather than using dense sets of fragments, we often focus on
local descriptors based at particularly salient points – “keypoints” or “points of interest”. This
gives a sparser and thus potentially more efficient representation, and one that can be constructed
automatically in a preprocessing step. To be useful, such points must be accurately relocalizable in
other images, with respect to both position and scale.

• Informativeness: Notwithstanding the above forms of robustness, descriptors must also be infor-
mative in the sense that they are rich sources of information about image content that can easily
be exploited in scene characterization and object recognition tasks. Images contain a lot of variety
so high dimensional descriptions are required. The useful information should also be manifest, not
hidden in fine details or obscure high-order correlations. In particular, image formation is essentially
a spatial process, so relative position information needs to be made explicit, e.g. using local feature
or context style descriptors rather than global moments or Fourier descriptors.

Partly owing to our own investigations [11], [13], [16], features and descriptors with some or all of
these properties have become popular choices for visual correspondence and recognition, particularly when
large changes of viewpoint may occur. One notable success to which we contributed is the rise of “bag of
feature” methods for visual object recognition. These characterize images by their (suitably quantized or
parametrized) global distributions of local descriptors in descriptor space. (The name is by analogy with
“bag of words” representations in document analysis. The local features are thus sometimes called “visual
words”). The representation evolved from texton based methods in texture analysis. Despite the fact that it
does not (explicitly) encode much spatial structure, it turns out to be surprisingly powerful for recognizing
more structural object categories. Many of the methods discussed below are related to it.

Our current research on local features is focused on creating detectors and descriptors that are better
adapted to particular sensors or particular kinds of imagery, on incorporating spatial neighborhood and region
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constraints to improve informativeness relative to the bag of features approach, and on extending the scheme
to cover different kinds of locality.

Another class of image features that we have recently developed for visual object and part detection
are dense grids of well-normalized histograms of oriented image gradients. Although less local and less
invariant than keypoint based features, such grids are both highly informative and very resistant to photometric
variations, making them an excellent choice for robust object detection based on learned ‘exemplars’ or
generalized templates. Our methods based on this approach currently appear to be the best detectors available
for standing or walking humans [32].

3.2. Statistical modelling and machine learning for image analysis
We are interested in learning and statistics mainly as technologies for attacking difficult vision problems, so

we take an eclectic approach, using a broad spectrum of techniques ranging from classical statistical generative
and discriminative models to modern kernel, margin and boosting based machines.

• Parameter-rich models and limited training data are the norm in vision, so overfitting needs to be es-
timated by cross-validation, information criteria or capacity bounds and controlled by regularization,
model and feature selection.

• Visual descriptors tend to be high dimensional and redundant, so we often preprocess data to reduce
it to more manageable terms using dimensionality reduction techniques including PCA and its
nonlinear variants, latent structure methods such as pLSA and LDA, and manifold methods such
as Isomap/LLA.

• To capture the shapes of complex probability distributions over high dimensional descriptor spaces,
we either fit mixture models and similar structured semi-parametric probability models, or reduce
them to histograms using vector quantization techniques such as K-means or latent semantic
structure models.

• Missing data is common owing to unknown class labels, feature detection failures, occlusions and
intra-class variability, so we need to use data completion techniques based on variational methods,
belief propagation or MCMC sampling.

• Weakly labelled data is also common – for example one may be told that a training image contains
an object of some class, but not where the object is in the image – and variants of unsupervised,
semi-supervised and co-learning are useful for handling this. In general, it is expensive and tedious
to label large numbers of training images so less supervised data mining style methods are an area
that needs to be developed.

• On the discriminative side, machine learning techniques such as Support Vector Machines, Rele-
vance Vector Machines, and Boosting, are used to produce flexible classifiers and regression methods
based on visual descriptors.

• Visual categories have a rich nested structure, so techniques that handle large numbers of classes and
nested classes are especially interesting to us.

• Images and videos contain huge amounts of data, so we need to use algorithms suited to large-scale
learning problems.

As part of our work in this area, we maintain active links with both the statistics community, particularly
via collaborations with the INRIA projects MISTIS and SELECT (formerly IS2), and the machine learning
one, most notably via the EU projects LAVA and CLASS and the Network of Excellence PASCAL.
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3.3. Visual recognition and content analysis
Current progress in visual recognition shows that combining advanced image descriptors with modern

learning and statistical modelling techniques is producing significant advances. We believe that, taken together
and tightly integrated, these techniques have the potential to make visual recognition a mainstream technology
that is regularly used in applications ranging from visual navigation through image and video databases to
human-computer interfaces and smart rooms.

The recognition strategies that we advocate make full use of the robustness of our invariant image features
and the richness of the corresponding descriptors to provide a vocabulary of base features that already goes
a long way towards characterizing the category being recognized (see §3.1). Trying to learn everything from
scratch using simpler, non-invariant features would require far too much data: good learning can not easily
make up for bad features. The final classifier is thus responsible “only” for extending the base results to larger
amounts of intra-class and viewpoint variation and for capturing higher-order correlations that are needed to
fine tune the performance.

That said, learning is not restricted to the classifier and feature sets can not be designed in isolation.
We advocate an end-to-end engineering approach in which each stage of the processing chain combines
learning with well-informed design and exploitation of statistical and structural domain models. Each stage is
thoroughly tested to quantify and optimize its performance, thus generating or selecting robust and informative
features, descriptors and comparison metrics, squeezing out redundancy and bringing out informativeness.

3.4. Human detection and activity analysis
One special case of the above is detecting and recognizing humans, tracking and reconstructing their

motions, and recognizing their activities. The importance of humans as subject matter and the complexities
of their forms, appearances and motions warrant a special effort in this area. Our current research focuses
on two sub-domains. The first is achieving reliable detection and body-part labelling of humans in images
and videos despite changes of viewpoint (from long shot to close up), lighting, clothing and pose. The
second is “markerless monocular motion capture” – using learning based models to provide reliable, accurate
reconstruction of 3D human pose and motion from unmarked humans in monocular images and videos. Future
research will extend this to the classification and analysis of human actions.

4. Application Domains
4.1. Application Domains

A solution to the general problem of visual recognition and scene understanding would enable a wide variety
of applications in areas including human-computer interaction, image retrieval and data mining, medical and
scientific image analysis, manufacturing, transportation, personal and industrial robotics, and surveillance
and security. With the ever expanding array of image sources, visual recognition technology is likely to
become an integral part of many information systems. A complete solution to the recognition problem is
unlikely in the near future, but even partial solutions in these areas enable many applications. LEAR’s research
focuses on developing basic methods and general purpose solutions rather than on a specific application area.
Nevertheless, we have applied our methods in several different contexts.

Semantic-level image and video access.This is an area with considerable potential for future expansion
owing to the huge amount of visual data that is archived. Besides the many commercial image and video
archives, it has been estimated that as much as 96% of the new data generated by humanity is in the form
of personal videos and images1 and there are also applications centering on on-line treatment of images
from camera equipped mobile devices (e.g. navigation aids, recognizing and answering queries about a
product seen in a store). Technologies such as MPEG-7 provide a framework for this, but they will not
become generally useful until the required mark-up can be supplied automatically. The base technology that

1http://www.sims.berkeley.edu/research/projects/how-much-info/summary.html

http://www.sims.berkeley.edu/research/projects/how-much-info/summary.html
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needs to be developed is efficient, reliable recognition and hyperlinking of semantic-level domain categories
(people, particular individuals, scene type, generic classes such as vehicles or types of animals, actions such
as football goals, etc). Our recent past projects related to this area include the EU FP5 projects VIBES (visual
correspondence and indexing that quickly finds all occurrences of any given specific object or scene element
in a feature-film length video, human motion reconstruction) and LAVA (learning based methods and visual
recognition applications suitable for use with mobile devices such as telephones with cameras). In the EU FP6
project AceMedia we are currently developing methods that reliably find humans in still images and videos
and categorize their actions and we will shortly begin work on semi-automatic structuring of personal photo
collections. A new FP6 project CLASS will investigate methods for visual learning with little or no manual
labelling and semantic-level image and video querying.

Human computer interfaces. Our human detection and human motion understanding methods were
initially developed for image and video understanding applications, but they are potentially also useful for
HCI applications and intelligent environments. This is an area that needs to be developed in the future. A
related area in which we have already attempted some technology transfer ismarkerless human motion
capture for film and video production.

Visual (example based) navigation.The essential requirement here is robust correspondence between
observed images and reference (map) ones, despite large differences in viewpoint. The reference database is
typically also large, requiring efficient indexing of visual appearance. Both of these are core technology areas
for our team. There are applications to pedestrian and driver aids and to autonomous vehicles including civilian
(e.g. hospital robot) and aerospace and military ones.

Automated surveillance.This requires the reliable detection and recognition of domain classes, often in
less common imaging modalities such as infrared and under significant processing constraints. Our expertise in
generic recognition and in human detection and tracking is especially relevant here. We have current projects
on vehicle classification and on the evaluation of general object recognition techniques.

5. Software
5.1. Robust image correspondence and rapid recovery of specific objects and

scene elements in image databases
Participants: Matthijs Douze, Michael Sdika, Salil Jain, Gyuri Dorkó, Cordelia Schmid, Bill Triggs, Roger
Mohr.

Local descriptors [11] based on affine invariant local regions [13] provide a stable image characterization
in the presence of significant viewpoint changes. This provides robust image correspondence despite large
changes in viewing conditions, which in turn allows rapid appearance-based indexing in large image databases.
Over the past several years we have been developing efficient software for this,http://lear.inrialpes.fr/software.
The basic method extracts invariant local descriptors in each image and stores them in a high-dimensional
spatial data structure to allow efficient indexing and recovery of similar descriptors. Our current methods use
modified KD-tree based data structures, combining KD-tree based voting schemes with a verification step to
find similar images in the database.

This technology has been used in two demonstrators developed over the last two years. One is designed for
interactive use. It finds the images containing any given object or scene element in a database containing 500
images in about a third of a second. The search object is defined by giving a sample image, for example from
a webcam. Images can also be added to the database on the fly, allowing the system to be used for, e.g. vision
based navigation. Fig.1 shows an example of the interface. The method was demonstrated at the 2005 “Fête
de la Science” and at the 2005 International Conference on Computer Vision in Beijing.

The second demonstrator focuses on efficient voting methods for retrieval in larger databases. The current
prototype (http://pascal.inrialpes.fr/dbdemo) is capable of finding an example image in a database of 50,000
images in a few seconds.

http://lear.inrialpes.fr/software
http://pascal.inrialpes.fr/dbdemo
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Figure 1. Top row: some examples from an image database, including outdoor scenes, drawings and objects.
Bottom row: the matched affine-invariant regions and the estimated transformation between a query and the

retrieved image. Note that the same regions (regions of the same appearance) are detected in each image despite
the occlusions and viewpoint changes. This allows rich viewpoint-invariant descriptors to be calculated.
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5.2. Visual Localization Demonstrator
Participants: Matthijs Douze, Bill Triggs, Cordelia Schmid, Peter Sturm [MOVI team].

Another use of our viewpoint-invariant image matching technology is to find correspondences between
collections of images of the same scene. This allows the camera to be located with respect to the scene, and
it is a first step towards building a mosaic or a reconstruction of the scene. Mainly as a test of our matching
technology, we participated in the Computer Vision Contest at the 2005 International Conference on Computer
Vision. The aim was to make a program that inputs photographs of one or more scenes, some of which are
labeled with known camera locations (measured by a GPS receiver), and that outputs estimates of the locations
of all of the other cameras.

Our entry works as follows. Following robust correspondence, images that were taken from the same
viewpoint are found by estimating homographies using RANSAC voting. These image groups are mosaiced,
the mosaics are matched with one another and a RANSAC based 5 point resection method is used to
compute the relative locations of the cameras for pairs of mosaics with intersecting fields of view. By
propagating this information across sets of images, the locations and orientations of the unknown cameras
can be recovered based on the known ones. Our method was by far the fastest in the competition owing to our
rapid correspondence indexing. It received an honorable mention but further work is required as it only ranked
5th among the 15 competitors on precision, mainly owing to the lack of a final bundle adjustment phase.

5.3. Histogram of Oriented Gradient Object Detection Toolkit
Participants: Navneet Dalal, Bill Triggs, Cordelia Schmid.

As part of the European Union FP6 Integrated Project aceMedia we have developed a toolkit for detecting
specific visual object classes such as humans, cars and motorbikes in static images. Although developed
originally for human detection [32], the software implements a generic framework that can be trained to
detect any visual class with a moderately stable appearance. The method has proven quite popular owing to
its accuracy and its relative simplicity, with at least six academic or corporate research groups independently
reimplementing it and more than 60 first-time downloads (http://pascal.inrialpes.fr/soft/olt) since September
2005. Using this toolkit, we also won 6 of the 10 visual object localization challenges proposed during the
European Union Network of Excellence PASCAL’s Visual Recognition Challenge.

The software is under copyright protection, registered at the Agence pour la Protection des Programmes
(APP) 249, rue de Crie-75019 Paris, France [48].

6. New Results
6.1. Image description and correspondence

Keywords: feature detection, grey-level descriptors, performance evaluation, photometric invariants, shape
features.

Participants: Gyuri Dorkó, Matthijs Douze, Vittorio Ferrari, Caroline Pantofaru, Michael Sdika, Joost Van de
Weijer, Salil Jain, Christophe Damerval, Cordelia Schmid, Frédéric Jurie, Bill Triggs, Krystian Mikolajczyk
[Surrey], Tijmen Moerland [Leiden].

6.1.1. Performance evaluation of local detectors and descriptors
We have developed scale- and affine-invariant salient point detectors that give excellent performance for

recognizing both specific objects and scenes, and texture and object classes [16]. A performance evaluation
has shown that the points and their regions can be detected repeatably in the presence of significant scale
changes (up to a factor 4) and affine deformations (viewing angle changes of up to 70 degrees). Various other
approaches for detecting affine-invariant interest points or regions have been developed at Leuven, Oxford and
Prague universities. We have collaborated with them on a comparison of these approaches. The results [13]
show that the different detectors all perform well in the presence of large viewpoint changes. The detectors

http://pascal.inrialpes.fr/soft/olt
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are complementary and ideally several of them should be used in parallel. None of them outperforms all of
the others over all types of scenes and transformations. In most of our experiments, either the Prague detector
(called MSER) or our “Hessian-Affine” detector provide the best repeatability score. Another contribution of
our study is the carefully designed test setup.

Given a set of stably detected local image regions, we can calculate local image descriptors based on
them and use these for matching and recognition. The descriptors should be distinctive and at the same time
robust, both to changes in illumination and viewing conditions and to inaccuracies of the region detector.
Many different descriptors have been proposed in the literature, and it was unclear which were the most
appropriate for particular problems and how their performance depended on the detector. To help to clarify
this, we evaluated the pairing of a number of different interest point detectors with a number of different
image descriptors [11]. The evaluation was carried out for various types of images and transformations, using
recall/precision as the main quality criterion. By varying the value of the similarity threshold for declaring
a match between two descriptors, we generated the curves of the trade-off between the number of correct
matches and the number of false matches obtained for an image pair. The ranking of the evaluated descriptors
was mostly independent of the interest point detector used, with the SIFT based descriptors [55] performing
best. Their success can be explained by their robustness to localization errors and small geometric distortions.

6.1.2. Maximally Stable Local Description for Scale Selection
Recent work on image description has concentrated on improving invariance to geometric transformations

by extracting invariant image regions and using these as supports for descriptor calculation. These two steps
are usually decoupled, but it would be better to use a descriptor that was adapted to the detector. In fact, small
changes in the scale or location of the selected region can significantly alter the final descriptor. Scale selection
turns out to be particularly sensitive, so we have developed a detector that uses the descriptor itself to select
the characteristic scales.
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�
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� �  ���
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Figure 2. Two examples of our descriptor based scale selection method. The graphs show the change of the local
description as a function of scale, respectively for the left and right points. The scales at which the functions have
local minima are shown in the image. The bright thick circles corresponds to the global minimum for the point.

Our feature detector has two stages. An interest point detector is run at multiple scales to determine
informative and repeatable locations, then for each position we apply a descriptor-based scale selection
algorithm to identify maximally stable representations. The chosen scales are the ones at which the descriptor
(here SIFT [55]) changes most slowlyas a function of scale. Fig.2 illustrates the method on two chosen Harris
points. The two functions show how the descriptors change as we increase the scale (the radius) around the
two keypoints. The minima of the functions determine the scales at which the descriptions are most stable.
Their corresponding regions are depicted by circles in the image. The algorithm selects theabsolute minimum
for each point (shown as a bright circle), but in cases where matching across extreme scale changes is needed
we output all minima to provide multiple possible scale selections.

We call this algorithmMaximally Stable Local Description. It performs well under changes of viewpoint
and lighting conditions, often giving better repeatability than other state-of-the-art methods. In our tests on
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object category classification it achieved similar or better results on four different datasets while for texture
classification it always outperformed existing detectors. Stable orientation estimation (based on the dominant
gradient at the keypoint location) can also be integrated into the method and again improves the texture results.
Detailed results can be found in [34].

6.1.3. Enriching Local Descriptors with Color Information
Local invariant descriptors are an efficient tool for scene representation due to their robustness with respect

to occlusion and geometrical transformations. They are typically computed in two steps, detection of salient
and sufficiently invariant local features, followed by the extraction of a robust visual appearance descriptor at
the feature location and scale – see fig.3. To be maximally informative, the descriptor should capture both the
visual shape and the color characteristics of the local image region. A considerable amount of research has
been dedicated to robust local shape descriptors, the SIFT descriptor being the current reference. The robust
description of color has achieved comparatively little attention.

Color is an indispensable characteristic of the visual world, but like grey-levels, absolute color values are
not meaningful in themselves as illuminant color, viewpoint, material and camera response all influence the
observed color value significantly. These effects have been studied in the field of color imaging, leading to
various algorithms for color constancy and for the computation of color invariants. At present these approaches
mainly focus on global image features, and they are typically tested only on controlled high quality image
databases.

Our research applies this work to local feature description. For shape characterization we rely on SIFT
descriptors. The color descriptor will be used in combination with this so it does not need to contain spatial
information but it does need to be robust to real-world photometric variations. This led us to represent color
by local histograms of photometric invariants. Furthermore, to counter the instabilities of nonlinear color
transformations we use weights based on an error-analysis to robustify the histograms.

We compared various different kinds of color histograms, each invariant with respect to different photo-
metric variations, on a variety of tasks including matching, retrieval and classification. The reliability of our
descriptors under geometric and photometric variations and image degradations was also established. Depend-
ing on the image set, the best results were sometimes obtained with color and sometimes with shape, but in all
cases a combination of the two outperformed a purely shape-based approach [43].

Figure 3. The local invariant descriptor method combines invariant local feature detection with robust local image
description. The aim of this research is to enrich the local feature description with color information.

A second approach [40] uses thecolor flow modelto describe lighting changes between images depicting the
same scene. Is based on two assumption: (a) the scene contains known objects and (b) the possible illumination
changes are learned offline during a preprocessing step. These assumptions are restrictive, but they allow the
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influence of illumination changes on objects to be modeled very accurately. Although the model itself is linear,
it is not restricted to linear lighting changes: the basis vectors that are chosen to describe the joint changes in
color space are arbitrary and hence can capture complex nonlinear changes. This gives a powerful model while
still allowing simple parameter estimation. During training we use aligned images of a static colored scene
taken under different illuminations to learn the parameters of the model. The color flow model is then able to
explain joint color changes between pairs of images, see figure4.

We also take images of reference objects under normalized illumination. For these images we detect
keypoints and store local descriptions of them in a database. When the method is used, an on-line normalization
process extracts keypoints from the image and matches them to the keypoint database using local photometric
signatures, thus allowing the color flow to be estimated robustly, after which all of the remaining image pixels
can be normalized. This point correspondence process extends the original color flow method by relaxing the
requirement for aligned images.

Figure 4. An illustration of the color flow model. Left: the reference color map (hue / saturation representation).
Middle: the color map for a new illumination of the scene. Right: the transformation between the two maps –

vectors represent individual color changes.

6.1.4. Indexing of visual descriptors
In order to perform image retrieval or visual object recognition based on SIFT and similar descriptors, it

is often necessary to search a large database of previously seen descriptors for ones similar to those in the
target image. This involves a search for neighbouring points or regions in a high dimensional feature space
– a problem that is currently for practical purposes essentially linear in the database size, and hence slow for
large databases. We developed an approximate method to speed up such searches, based on the fact that the
geometry of high-dimensional spheres allows strict bounding box bounds to be tightened quite a lot while
still keeping most of the volume of the sphere. The method uses a KD-tree and inner and outer search radii,
guaranteeing that all points within the inner radius, and most points within the outer radius, of the given point
are recovered. This method is used in the demonstrators described in section5.1.

6.1.5. Discriminative Regions for Semi-Supervised Object Class Localization
Labelling all of the individual pixels belonging to objects of a given class requires image features that

can be extracted reliably and that cover the image densely. Salient regions defined by local interest points give
reliable and repeatable object classification, but being sparse they can not label every pixel. In contrast, regions
defined by unsupervised texture segmentation do cover the image, but although they can sometimes be reliable
features, less textured objects can not be successfully represented. We have developed a method that combines
the information from textured regions and salient local interest points to provide more robust pixelwise object
localization. The method uses semi-supervised training data (only image-level labels) to automatically extract
the most useful features for a given object class, be they region-based or interest point-based. It creates a
region-level classifier based on the features chosen, combining the region’s texture with the interest points
found in and around the region. Some examples of the results are given in fig.5.
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Figure 5. Examples of detections of spotted cats. The probability of a pixel being part of a spotted cat ranges from
dark blue (low) through green (neutral) to dark red (high).

6.1.6. Dense local descriptors
Another line of thought on image description is to keep the advantages of local descriptors, but to extract

them at a dense set of patch locations and scales rather than sparsely at isolated keypoints. This greatly
increases the amount of image information that can be encoded and reduces both per-patch computation and
sampling bias as a separate feature detector is not needed. On the other hand, some of the local stability and
invariance of the keypoint based methods is lost and many more patches need to be processed, most of which
typically contain relatively little new information. In practice, simply replacing keypoint-based sampling with
dense sampling does improve results for many image-level classification tasks, especially when using bag-
of-features representations [36]. However we can do better by using an adpative clustering technique, see
§ 6.2.4.

6.2. Statistical modelling and machine learning for image analysis
Keywords: dimensionality reduction, feature selection, graphical models, kernel methods, latent variable
methods, mixtures of experts, semi-supervised learning.

Participants: Charles Bouveyron, Juliette Blanchet, Diane Larlus, Juho Kannala, Jakob Verbeek, Cordelia
Schmid, Bill Triggs, Frédéric Jurie, Florence Forbes [MISTIS], Stéphane Girard [LCM], Guillaume Bouchard
[XEROX Research], Peter Carbonetto [University of British Columbia].

6.2.1. High dimensional data analysis and clustering
The visual descriptors used in object recognition are usually high-dimensional but often lie in different

low-dimensional subspaces of the original space. Global dimensionality reduction techniques are not useful
in this case. We propose a method for discriminant analysis and clustering that finds the specific subspace and
intrinsic dimension of each class. Our approach adapts a mixture of Gaussian framework to high-dimensional
data: It determines class-specific subspaces and therefore limits the number of parameters that need to be
estimated. The intrinsic dimension of each class is determined automatically using Cattell’s scree test on
eigenvalue sizes. The resulting approach for discriminant analysis [6], [29], [45] has shown good results for
classification of visual descriptors, i.e. it outperforms linear SVMs (support vector machines).

The extension to clustering uses EM for parameter estimation and provides a robust clustering method in
high-dimensional spaces that we call High Dimensional Data Clustering (HDDC). The number of parameters
can be further limited by making additional model assumptions, for example assuming that classes are
spherical in their subspaces or sharing some parameters between classes. We apply the method to probabilistic
object recognition. Local scale-invariant features are clustered using HDDC, and the maximum likelihood
based discriminative score for each cluster is determined using positive and negative examples of the category.
By combining this information with the prior probabilities of the clusters we compute object probabilities
for each visual descriptor. These are then used for object localization and image classification. Localization
assumes that points with higher probabilities are more likely to belong to the object, and image classification
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is based on a per image score of the probabilities. Experiments on two recent object databases demonstrate the
effectiveness of the clustering method for category-level localization and classification [31].

6.2.2. Markov models for the spatial organization of image descriptors
Our previous work on texture recognition [53] introduced a method that simultaneously performs classifica-

tion and segmentation. A generative model describes the distribution of the affine-invariant descriptors, along
with co-occurrence statistics for nearby patches. At recognition time, initial probabilities computed from the
generative model are refined using a relaxation step that incorporates co-occurrence statistics learned at mod-
eling time.

Global co-occurrence statistics do not explicitly model the local dependencies between neighboring de-
scriptors, and recognition results can be further improved by modeling these dependencies. Here we selected
Markov Random Fields (MRF) as an appropriate statistically-based framework for this task. They provide
parametric models whose parameters have a natural interpretation and they can be adjusted to incorporate a
priori knowledge with respect to interaction strengths. Using them requires nontrivial parameter estimation.
We use recent estimation procedures based on the mean field principle. The particularities of the application
are the high-dimensionality of the feature vectors (typically more than 100 dimensional) and the irregular-
ity of the sites at which they are observed. Very few practical optimization techniques are available for such
tasks. They are usually very sensitive to initialization and to the parameters of the approach. By combining
an MRF estimation procedure with a dimensionality reduction technique we show that recognition rates can
be improved and that promising results can be obtained using a general statistical formalism. So far the work
has focused on texture recognition [24], [25], [26], but future work will include other contexts such as object
recognition.

6.2.3. A constrained learning approach to data association
As part of our collaboration with the University of British Columbia (UBC), P. Carbonetto from N. de

Freitas’ group applied UBC’s approach for constrained semi-supervised learning by data association to the
selection of discriminative local features [8]. Images are labeled as positive and negative, but individual
descriptors are not labeled and may belong to the background even in positive images. Descriptors are
labeled by constrained data association, where the constraints are on the number of positive descriptors in the
image. The approach is based on a Bayesian classification model combined with an efficient Markov Chain
Monte Carlo (MCMC) algorithm that simultaneously learns the unobserved labels and selects a sparse object
class representation from the extracted high-dimensional descriptors. A generalized Gibbs sampler explores
the space of labels that satisfy the constraints. Bayesian learning approximates the posterior distribution by
integration over multiple hypotheses, a crucial ingredient for robust performance in noisy environments that
also reduces the sensitivity to initialization. For practical MCMC exploration of the posterior modes, however,
the posterior must be sufficiently peaked. This suggests the use of a Bayesian kernel model, as classical mixture
models have numbers of modes that grow combinatorially with the number of components.

6.2.4. Adaptive Clustering for Visual Descriptors
Recently, “bag of features” methods based on comparing distributions of local patch descriptors have shown

considerable promise for texture and category classification. They rely on vector quantization or some similar
coding method to convert continuous high-dimensional visual patch descriptors to discrete codes that can
then be histogrammed to characterize the image. The quantization codebook is a critical component of the
approach.

Under dense coding, many patches are nearly empty and the distribution of patch descriptors in descriptor
space is highly nonuniform with a single but very large central peak centred on the uniform patch. This
disturbs a central element of the bag-of-features approach – the construction of the codebook that is used to
vector quantize descriptors. K-means based codebooks are usually used in the sparse case, but in the dense
one their code centres cluster densely around the central peak, thus starving the rest of the space of codes and
giving a relatively poor coding. Better adapted codebooks can further improve the results of the dense method.
We have developed an efficient fixed-radius-based clustering method that corrects the starvation effect, giving
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significantly better codebooks and greatly improving the results of dense patch based classification. It provides
codebooks with better distributed centres, thus ensuring that regions with comparatively low probabilities are
still coded well.

Figure 6. Adaptive clustering method. Outline of the learning steps. See text for details.

At each step our method discovers new clusters by subsampling the data and running K-medians (see fig.6).
It iterates until the required total number of clusters has been found. The influence of highly populated regions
is decreased by using biased subsampling to force new centres to be well separated from previously found
ones – points that lie closer than a giveninfluence radiusto a previous centre are excluded from the sample.
The centre selection algorithm is Mettu & Plaxton’sonline median, which is based on thefacility location
problem. It chooses the centers one by one but it is run several times so that a few new centers are added at
each iteration. Fig.7 illustrates the process. Suppose that we discovered 2 new centers in the previous step –
the two black points in fig.7(a). Points within the influence radius of these are excluded from further sampling,
fig. 7(b), and the next phase of K-medians is run, fig7(c). The key parameters of the method are the influence
radius and the total number of clusters. Distances are measured by Euclidean distance in SIFT space.

(a) (b) (c)

Figure 7. Biased sampling in the adaptive clusterer.

Coding the feature patches using the final codebook gives a very effectivebag-of-featuresrepresentation
for image classification [36], for example winning several categories of the PASCAL Network of Excellence
Visual Recognition Challenge.

6.3. Visual recognition and content analysis
Keywords: object class recognition and detection, visual models.

Participants: Ankur Agarwal, Navneet Dalal, Gyuri Dorkó, Diane Larlus, Marcin Marszalek, Eric Nowak,
Jianguo Zhang, Cordelia Schmid, Bill Triggs, Frederic Jurie, Roger Mohr, Svetlana Lazebnik [UIUC], Jean
Ponce [UIUC], Guillaume Bouchard [XEROX Research].
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6.3.1. Recognition of texture and object classes – local features and kernels
We performed a large-scale evaluation of a classification framework in which images are represented as

distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations [47], [20],
[9]. Classification is performed using Support Vector Machines with kernels based on two effective metrics
for comparing distributions – the Earth Mover’s Distance and the chi-square distance. We first evaluate the
performance of our approach with different keypoint detectors and descriptors, as well as different kernels
and classifiers. This has shown that combining multiple detectors and descriptors typically gives better results
than the best individual detector/descriptor channel, and including too much invariance in the local features
damages the results. So for the best performance one should incorporate several complementary features and
select the invariance properties that provide just the level of invariance needed for the application, but no more.

We evaluated our methods against several state-of-the-art algorithms on four texture and five object
databases. In most cases our method met or exceeded the best previously reported results, see table1 for a
comparison with the best reported results on object categories. Note that the approach won all four visual object
classification tasks of test2 proposed during the European Union Network of Excellence PASCAL’s Visual
Recognition Challenge. The power of bag-of-keypoint representations for texture classification is perhaps not
surprising given that the images have uniform statistical properties and little or no global spatial organization
and clutter. But it is not obviousa priori that such representations also obtain good results for object category
classification as they ignore spatial relations and do not separate foreground from background features.
In the longer term, successful category-level object recognition and localization is likely to require more
sophisticated models that capture the 3D shape of real-world object categories as well as their appearance. In
the development of such models and in the collection of new datasets, simpler bag-of-keypoints methods can
serve as effective baselines and calibration tools.

Table 1. Comparison with the best reported results on several object datasets.

Xerox7 Caltech6 Graz Pascal1 Pascal2 Caltech101

ours 94.3 97.9 90.0 92.8 74.3 53.9

others 82.0 96.6 83.7 94.6 70.5 43

Many methods including bags-of-keypoints typically make classification decisions about the image as a
whole, thus potentially using both foreground features and background “context”. Whether you consider
context to be a valid cue or a cheat, in many datasets it is well enough correlated with the foreground to
be a potential source of information. For example, cars are frequently seen on a road or in a parking lot, while
faces tend to appear against indoor backgrounds.

To study this effect we used the PASCAL Visual Recognition Challenge dataset for which ground-truth
object localization information is available, separating the foreground and background features and evaluating
each separately. Particularly for the easier datasets, the experiments revealed that the backgrounds alone do
in fact contain a considerable amount of discriminative information for the foreground category. However
including both foreground and background featuresnever improves performance relative to foreground
features alone – it is the features on the objects themselves that play the key role in recognition in our
distribution based approach. In fact, we show that it is dangerous to train recognition systems on datasets
with monotonous or highly correlated backgrounds – such systems tend to overfit to the background, so they
generalize poorly to more complex test sets.

6.3.2. Recognition and Localization of Object Classes – Feature Selection
Our earlier work [51] on discriminative feature selection was extended to weakly supervised scenarios and

a wider range of object categories [46]. We have also integrated our approach into an object class localization
framework [54] whose goal is to determine bounding rectangles around each instance of the object category.
In this case training is done in a supervised fashion in which all objects are given with their corresponding
rectangles. Our method first learns a vocabulary from the scale-invariant features of the training set using
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expectation-maximization (EM) to estimate a Gaussian Mixture Model with a diagonal covariance matrix. We
then assign a rank to each cluster based on its discriminative power [46] and learn the spatial distribution of
the object positions and scales for each cluster. For each training image, we assign all descriptors inside the
object’s bounding rectangle to its cluster using MAP, and record the center and scale of the rectangle with
respect to the assigned cluster. This step is equivalent to [54] except that we collect the width and height
separately and we do not use the figure-ground segmentation of the object. The output of our training is a list
of clusters with the following properties: (i) a mean and variance representing the appearance distribution of
the cluster; (ii) a normalized (probabilistic) score for its discriminative power; and (iii) a spatial distribution
over the object positions and scales.

Object localization in a test image is similar to the initial hypothesis generation used during training, except
that we incorporate a discriminative element into the voting scheme: to allow better confidence estimates for
the different hypotheses, only then most discriminative clusters participate in the voting, and their probabilistic
scores are integrated into the voting. The extracted scale-invariant features of the test image are assigned to the
closest cluster by appearance (MAP). Then, the chosen clusters vote for possible object locations and scales
(4D space). Fig.8 shows some examples of detections on test images from the PASCAL dataset.

Motorbikes Bicycles Cars

Figure 8. Examples of detections on the PASCAL dataset, test set 1 (top) and test set 2 (bottom). The blue points
were eliminated by feature selection, while yellow points vote for the best solution (the yellow rectangle).

Non-yellow rectangles are alternative detections with lower confidence.

6.3.3. Hyperfeatures – multilevel local coding for visual recognition
Several recent visual coding methods for image classification and object recognition are based on histograms

of appearance descriptors evaluated on local image patches. Such descriptors can be highly discriminant and
they have good resistance to local occlusions and to geometric and photometric variations, but they are not
able to exploit spatial co-occurrence statistics at scales larger than their local input patches. We have developed
a new multilevel visual representation, ‘hyperfeatures’, that is designed to remedy this. The starting point is
the familiar notion that to detect object parts, in practice it often suffices to detect co-occurrences of more
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local object fragments – a process that can be formalized as comparison (e.g.vector quantization) of image
patches against a codebook of known fragments, followed by local aggregation of the resulting codebook
membership vectors to detect co-occurrences. This process converts local collections of image descriptor
vectors into slightly less local histogram vectors – higher-level but spatially coarser descriptors. As the output
is again a local descriptor vector, the process can be iterated, and doing so captures and codes ever larger
assemblies of object parts and increasingly abstract or ‘semantic’ image properties. We have studied the
performance of hyperfeatures extensions of several different image coding methods including clustering based
Vector Quantization and Gaussian Mixtures, finding that the latter consistently outperform the former, and that
adding a stage of Latent Dirichlet Allocation – a probabilistic “topic distillation” model that has recently been
developed in the statistical text community – improves the results further. The resulting high-level features
provide improved performance in several object image and texture image classification tasks. We are currently
in the process of developing the method for object localization. Some results demonstrating this are shown in
figure9. The work is described in [44].

6.3.4. Semi-local parts models
We use characteristic patterns formed from scale or affine-invariant patches linked by semi-local spatial

relations to describe salient object parts [38]. These invariant semi-local parts are geometrically stable
configurations of multiple invariant regions, found by the Laplacian keypoint detector or by our shape
detector [52]. The parts are more distinctive than individual features, and their locality makes the method
suitable for modeling a wide range of 3D transformations, including viewpoint changes and non-rigid
deformations. They are learned using the idea that direct search for visual correspondence is the key to
successful recognition, see fig.10(a) for the most reliable, i.e. highest-scoring, parts of each category. A
discriminative maximum entropy framework is used to learn the posterior distribution of the class label given
the occurrences of parts in the training set. Experimental tests have demonstrated the effectiveness of the
framework for visual classification, see figs.10and11.

6.3.5. Hierarchy of parts models for object category recognition
The robust encoding of natural shape and geometry is one of the main challenges of visual recognition.

Above we have seen several approaches to this based on local features models: bag of features, which use
large sets of local features without any explicit representation of geometry; semi-local parts, which combine
small sets of local features in relatively rigid arrangements; and hyperfeature hierarchies which code simple
co-occurrence of local features but do so at several levels. An alternative is to subject the local features to
a loose but still geometric spatial model that quantifies their relative geometry more globally (at a whole-
object level). We have developed a generative probabilistic model of this kind that codes the geometry and
appearance of a visual object category as a loose hierarchy of parts, with probabilistic spatial relations linking
parts to subparts, soft assignment of subparts to parts, and scale invariant keypoint based local features at the
lowest level of the hierarchy. The framework efficiently handles models containing hundreds of redundant
local feature classes, such as those returned by current keypoint detectors. The resulting degree of redundancy
allows the method to outperform constellation style models, despite their stronger spatial models. Models are
instantiated by robust bottom-up voting over a hierarchy of location-scale pyramids (one for each part), and
optimized by Expectation-Maximization. Training is rapid, and there is no need for object positions to be
marked in the training images. Experiments on several popular datasets show the method’s ability to capture
complex natural object classes. Figure12 sketches the structure of the model, and figure13 shows examples
of how it adapts to changes of viewpoints and the intra-class variations of a generic visual object class.

6.3.6. Classification into class hierarchies based on local parts
The above models embody one-of-n classification into flat sets of visual classes. It is also important to

achieve more structured kinds of labelling such as categorization of visual objects into hierarchically organized
classes. We have built a model of this kind based on bag of features descriptors, that can handle visually similar
classes despite high within-class variability [41]. As usual, the local parts approach provides robustness to
pose, occlusions, illumination and shape variations. For visually similar classes there are typically only a few
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Figure 9. Object localization on 4 object categories from the PASCAL object recognition challenge dataset, based
on classifying each local image region using its hyperfeatures. Each row shows examples of results using one of the
four independent classifiers, each being trained to classify foreground regions of its own class against the combined

set of all other regions – background regions and foregrounds from other classes. Currently, each region is
classified independently – no spatial smoothness constraint is enforced.
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Airplanes Cars (rear) Faces Motorbikes
(a) Highest-scoring part (see caption).

(b) Correctly classified examples under the exponential parts-only model.

Figure 10. Semi-local parts – results on the Caltech dataset. (a) The highest-scoring part for each class. The two
training images that were originally matched to obtain the part are shown, with the matched regions (yellow
circles) superimposed. The aligning transformation between the two groups of matches is indicated by the

bounding boxes: the axis-aligned box in the top image is mapped onto the parallelogram in the bottom one. (b) An
example of a correctly classified image for each class. The original images and the transformed bounding boxes of
the parts matched are shown. The localization is poor for airplanes but very good for faces. For motorbikes, the

front wheel is particularly salient.
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Egret Mandarin Snowy owl Puffin Toucan Wood duck
(a) Highest-scoring parts (see caption).

(b) Correctly classified examples under the exponential parts-only model.

Figure 11. Semi-local parts – results on Birds database. (a) First and second rows: the highest-scoring part for
each class superimposed on the two original training images. (b) A successfully classified image for each class,
showing the original test image (top), and the image with the bounding boxes of all of the detected class part

instances superimposed (bottom). Notice that localization is fairly good for mandarin and wood ducks (the head is
the most distinctive feature). The owl parts are more prone to false positives but they do still capture the salient

characteristics of the class: the head, the eye, and the pattern of the feathers on the breast and wings.
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Figure 12. Our hierarchy of parts model for visual object recognition is a tree-structured hierarchy of parts and
subparts with the complete object at the root and individual scale-invariant local feature classes at the leaves. A

probability distribution over geometric transformations between each subpart and its parent quantifies the
subpart’s relative position and uncertainty. The parent attributions for each sub-part are also uncertain and are

learned during training. During model instantiation the leaf parts are coupled to the nearest observed image
features in position and appearance via a robust observation model that effectively ignores unattributed features.

parts that are discriminative enough to separate the classes reliably, so the selection of appropriate input parts is
critical. The method achieves this using variable selection techniques from machine learning and organizes the
resulting parts in a tree structure. The parts at the top of the tree provide coarse inter-category discrimination,
while those at the bottom capture category specific details (see fig.14). The hierarchical structure of the input
classes is exploited to select the best parts for each level of the tree. A particular focus is the trade-off between
computation time (number of parts used) and recognition rate. We have tested the method on visible images
and on infrared images of military vehicles acquired by surveillance cameras. On the infrared dataset, for the
same run time, the accuracy of our hierarchical method is 12% better than a standard one-versus-one SVM.

6.4. Human detection and activity analysis
Keywords: activity analysis, human body pose and motion, human detection.

Participants: Ankur Agarwal, Navneet Dalal, Bill Triggs, Cordelia Schmid, Cristian Sminchisescu [Toronto].

6.4.1. Human detection – histogram of oriented gradient descriptors
As part of our ongoing work on human detection we have developed [32] a robust feature set for visual

object recognition in general, and for “pedestrian detection” (the detection of upright, full visible, standing or
walking people) in particular. The new “Histogram of Oriented Gradient (HOG)” feature set is inspired by the
success of SIFT descriptors [55] for local feature based recognition, but here, rather than being sampled only
sparsely at salient local feature points, blocks of well-normalized gradient orientation histograms are used in
a dense grid, at a uniform scale and without rotation normalization. This provides a particularly robust and
discriminant appearance based descriptor suitable for visual classes that have a reasonable degree of spatial
consistency across examples. The current overall detector uses a monolithic (non-parts-based) linear Support
Vector Machine as a classifier in the HOG window, scanning this densely across the test image at multiple
scales followed by a mean-shift based space-scale peak location method to recover multi-scale detections.

We performed a detailed experimental evaluation on existing data sets and on a more difficult new 2400
image dataset that was created for the purpose. The HOG features significantly outperform existing ones
including shape contexts and various types of wavelets, giving 1-2 orders of magnitude less false positives
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Figure 13. Some examples of our hierarchy of parts model in action. The first row illustrates that the model has
good resistance to viewpoint changes owing to its loose hierarchical structure, the second that it can adapt to class

variations, here different types of motorcycle.
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Figure 14. Object classification into class hierarchies. At each level of the classifier, most discriminant features are
selected. The hierarchical organization of the classes is automatically computed.

than the best previous detectors. The study also shows that small derivative scale, fine orientation sampling,
moderately coarse spatial sampling, good local normalization and significant overlap between descriptor
windows all significantly improve the performance. Fig.15 summarizes the performance of various different
descriptors, and fig.16shows which features within the detector window are most important for the detection
process.

Overall the detector has proven very popular, with at least 6 other industrial and academic research groups
reimplementing it for human detection and many downloads of both the detector binaries and the new human
detection dataset (http://pascal.inrialpes.fr/soft/olt).

With different training sets, the same approach was used in the PASCAL Network of Excellence Visual
Recognition Challenge, winning several of the object detection categories including humans and cars [9].

Recently we have extended the method to include a differential optical flow channel to provide improved
discrimination for human detection in films and videos [33]. The method allows stationary or moving subjects,
non-rigid or moving backgrounds and moving cameras. It provides a further order of magnitude reduction in
false positive rate.

6.4.2. 3D human pose and motion from monocular images – model based approach
Over the past several years we have investigated several approaches to the problem of “motion capture” (the

estimation of articulated human pose and movement) from monocular images and image sequences. Previously
we took a model based approach to this. Owing to the large number of criss-crossing kinematic solutions in this
problem, this approach necessitated the development of advanced methods for finding nearby local minima of
the complex high-dimensional model-image matching cost function. This year has seen the publication of a
journal paper on modified local-descent optimization methods for approaching this issue [17]. The methods
used are generic and may be of interest in many other optimization problems with smooth non-convex cost
functions with moderately large numbers of local minima.

http://pascal.inrialpes.fr/soft/olt
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Figure 15. Human detection. A summary of the performance of the different classes of descriptors tested, on our
new test database using linear SVM and the same training paradigm in all cases. The Histogram of Oriented

Gradient (HOG) features have false positive rates 1-2 orders of magnitude lower than the best wavelet features.
Replacing the linear SVM with a Gaussian kernel one further increases the descriptor performance by about 3% at

10−4 false positives per window, at the cost of much higher running time.

(a) (b) (c) (d) (e) (f) (g)

Figure 16. The HOG based human detectors cue mainly on silhouette contours, especially ones around the head,
shoulders and feet. (a) The average gradient image over the training examples – despite changes in pose of the
subjects, there is a good deal of consistency. (b,c) Each “pixel” shows the maximum positive (b) or negative (c)

SVM weight in the block centred on the pixel. The most active positive blocks are those centred on the image
background just outside the contour, i.e. contour gradients are normalized w.r.t. the background not w.r.t. the

interior of the figure. The most active negative blocks are inside the figure, cancelling out, e.g. responses from long
vertical edges like trees and poles that happen to be aligned with the detector legs. (d) A test image. (e) Its

computed HOG descriptor. (f,g) The descriptor reweighted by respectively the positive and the negative SVM
weights. The use of the head, shoulders and foot contour and the cancellation of internal edges is again evident.
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6.4.3. 3D human pose and motion from monocular images – learning based approach
As an alternative to the model based approach, we began to develop example (learning) based approaches to

the monocular human motion capture problem last year [49], [50], and we have continued this work this year.
The essential advantage of example-based formulations is that they capture poses and motions that aretypical
whereas the geometric model based approach is much less constrained – it permits any pose that ispossible,
no matter how unlikely. The main disadvantages of example-based methods are the need for large amounts
of training data and the effective restriction to poses that are not too dissimilar to ones that have been seen
during training. Rather than relying solely on examples, we have adopted sparse regression based approaches
to learning, as regression allows regularization, thus improving generalization, and sparseness reduces the
number of active model parameters or training examples that need to be accessed at run time.

(a) (b) (c)

(d) (e) (f)

Figure 17. Mixture of regressors approach to monocular pose recovery. Each figure shows a silhouette and the two
3D poses that are the most likely for the silhouette based on our multivalued regression model. The model typically

captures the two most intuitive alternatives, illustrating cases of forward-backward ambiguity (a,b), kinematic
flipping of the legs (c) and interchanging labels between the two legs (d,e). (f) shows an example where the model’s

most probable solution is clearly incorrect, but feasible solutions are obtained in the other modes.

3D human motion from silhouettes.Last year we developed several variants on learning based approaches to
monocular human motion capture based on sparse kernel regression over a robust representation of silhouette
geometry based on vector quantization coding of shape context descriptors.

This approach works reasonably well most of the time, but when used for single image recovery (outside of
a temporal tracking framework), it is subject to ‘glitches’ in which the incorrect pose is reconstructed. These
occur because the silhouette based representation itself is ambiguous: it is often impossible even for a human
to decide which leg or arm is foremost, whether the silhouette was seen from the back or the front, etc. This
year we have developed a method that works around this by returning a set of possible reconstructions with
associated probabilities [22]. Technically, the approach centres around a mixture of probabilistic regressors. It
uses local clustering in the input and output spaces to identify regions of multi-valuedness in the mapping from
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silhouette to 3D pose, and uses these to initialize the fitting of a mixture of experts on the input manifold. The
resulting mixture of nonlinear regressors predicts a (small) set of probable pose solutions. These can then be
used, e.g., in a particle filter framework to provide a robust tracker that is capable of recovering automatically
from mistracking events. Examples of silhouette ambiguities are shown in fig.17 and some tracking results
are shown in fig.18. A forthcoming journal paper details both this and our previous work on learning based
motion capture [5].

Figure 18. Multiple hypothesis tracking of a person over 500 frames using the mixture of regressors method.
(Sequence taken fromhttp://mocap.cs.cmu.edu). Our method provides direct probabilistic pose estimation from a
single image, thus allowing automatic initialization and re-initialization. Maintaining multiple track hypotheses

allows the tracker to recover from possibly inaccurate initializations, tracking stably through regions in which the
person is not observed.

Monocular human pose from cluttered images.The above regression based methods for monocular human
motion capture give very promising results, but they are based on silhouettes. They thus require a relatively
clean background, or at least a stationary one on which background subtraction can be used. This year,
we have begun work on extending the learning based approach to unsegmented images with complex,
cluttered backgrounds [23]. In keeping with the philosophy of a bottom-up example-based approach without
explicit body modelling, we use learning to obtain a set of image features that allows pose to be regressed
directly from unsegmented images. Currently the method supposes that the human subject has already been
approximately located in the image. It takes an image window containing him, evaluates a dense grid of
local gradient orientation histograms in the window (as used in the above human detector), reduces each
descriptor with respect to a local basis learned using non-negative matrix factorization, and uses the resulting
basis coefficients for pose regression as in the previous methods. Using non-negative factorization allows the
method to selectively encode human-like features and to suppress much of the background clutter. For example
it can key on patterns, such as shoulder contours and bent elbows, that are characteristic of humans and

http://mocap.cs.cmu.edu
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that carry significant pose information. The system was trained on a database of images with poses obtained
using conventional multi-camera motion capture. It has comparable accuracy to other existing example-based
methods, but unlike them it continues to work on unsegmented images with complex natural backgrounds.
Fig. 19shows some examples.

Figure 19. Pose reconstructions from our cluttered background method, on artificially rendered and real images
with complex backgrounds. Top row: unseen test images with a random background image and an artifical human
in a random pose synthesized usingPOSER. Middle row: a test sequence of a real person from our motion capture

dataset, again with artifical backgrounds to make the problem more difficult. The training set included similar
gestures made by another person. Bottom row: unseen real images obtained using Google. The method is purely

appearance based – no segmentation of the subject is needed.

7. Contracts and Grants with Industry
7.1. Bertin Technologies

Participants: Eric Nowak, Frederic Jurie, Roger Mohr.

The collaboration with Bertin Technologies centres on developing algorithms for detecting and recognizing
objects in unmanned infra-red information systems. Typical applications are outdoors defense systems in
which hidden cameras are left to detect the presence of military vehicles. The main challenges are the relatively
poor image resolution, the changeable appearance of objects due to global and local temperature changes, and
the potentially large number of nested object categories. The project funds the CIFRE grant for Eric Nowak’s
PhD thesis, which started in March 2004. We plan to extend the collaboration in 2006. Bertin Technologies
also participates in our Techno-Vision project ROBIN (see paragraph8.1.2).

7.2. MBDA Aerospatiale
Participants: Julien Bohne, Frederic Jurie, Cordelia Schmid.
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We have collaborated with the Aerospatiale section of MBDA for several years. In November 2005 we
started a one year tranfer contract. We will study three issues for infra-red images: registration under large
view point changes, the evaluation of keypoint based detection and matching, and the tracking of small objects.
MBDA also participates in our Techno-Vision project ROBIN.

7.3. THALES Optronics
Participants: Frederic Jurie, Diane Larlus.

In 2004-2005 we collaborated with THALES Optronics. The aim was to develop algorithms for detecting
objects in aerial images, with a focus on selecting reliable visual parts by clustering large sets of features. We
plan to continue this collaboration in 2006.

7.4. EADS Fondation
Participants: Vittorio Ferrari, Frederic Jurie, Cordelia Schmid.

The postdoctoral scholarship of Vittorio Ferrari is financed by the EADS Foundation. The project started in
November 2005 and will explore image contours as an alternative representation for visual class recognition.
In contrast to systems based on local invariant textured patches, this will allow classes that are mostly defined
by their shape to be recognized, such as bottles, mugs, or horses.

7.5. Siemens Corporate Research
Participant: Navneet Dalal.

Following Navneet Dalal’s successful internship at Siemens’ Princeton lab in 2004, they financed him for
several months in 2005 to participate in the production of a book on the Mean Shift method.

8. Other Grants and Activities
8.1. National Projects
8.1.1. Ministry grant MoViStaR

Participants: Charles Bouveyron, Juliette Blanchet, Jianguo Zhang, Cordelia Schmid, Bill Triggs.

MoViStaR is a joint national project (“action concertée incitative”) under the “Masses de Données”
(Processing Large Datasets) program. The partners are LEAR (C. Schmid, B. Triggs), INRIA’s MISTIS team
(F. Forbes), the SMS team of the LMC laboratory (S. Girard) and the Heudiasyc laboratory (C. Ambroise).
The project started in September 2003 for three years. It aims at developing techniques to achieve reliable
category-level visual recognition by mining information from large image collections. Particular focuses are
developing and adapting advanced statistical data reduction techniques and integrating spatial information into
the process.

8.1.2. Techno-Vision project ROBIN
Participants: Benjamin Ninassi, Frederic Jurie, Roger Mohr, Cordelia Schmid.

We lead the national Techno-Vision project ROBIN, which started in January 2005 for two years. The aim
is to quantify and consolidate progress in visual object recognition by developing ground truthed datasets and
performance metrics to improve the evaluation of object recognition algorithms, and by running a national
competition in this area. The project is funded partly by the French Ministry of Defense, the French Ministry
of Research (Techno-Vision funds) and by several companies and research centers (Bertin Technologies,
Cybernetix, DGA, EADS, INRIA, ONERA, MBDA, SAGEM, THALES and 35 public laboratories). It
will cover multi-class object detection, generic object detection, generic object recognition, and image
categorization. During the first year (2005/2006) the project produces datasets and metadata, while the second
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year will be devoted to selecting the test images and the benchmarking procedure as well as organizing the
competition.

8.2. European Projects and Grants
8.2.1. FP5 Project LAVA

Participants: Guillaume Bouchard, Gyuri Dorkó, Michael Sdika, Matthijs Douze, Ankur Agarwal, Peter
Carbonetto, Cordelia Schmid, Bill Triggs, Roger Mohr.

Learning for Adaptable Visual Assistants (LAVA) was a 5th framework RTD project running from May 2002
to April 2005. It developed advanced machine learning based computer vision techniques for understanding
everyday scenes, in particular for applications suited for embedding in camera-equipped electronic devices
such as personal assistants and portable telephones. It was an interdisciplinary project, involving teams
working on machine learning, computer vision, and cognitive modeling and data fusion. The coordinator
was Xerox Research Centre Europe (XRCE, Grenoble, France), and the other partners were: LEAR; VISTA

(IRISA-INRIA, Rennes, France); Royal Holloway College and the University of Southampton (Egham and
Southampton, U.K.); Lund University (Lund, Sweden); Graz Technical University and the University of
Leoben (Graz and Leoben, Austria); the Institut Dalle Molle d’Intelligence Artificielle Perceptive (IDIAP,
Martigny, Switzerland); and the Australian National University (ANU, Canberra, Australia). In total it involved
51 person-years of research effort, for a total budget of 4.3 MEu, including 2.4 MEu of European Union
support. LEAR worked mainly on the development of image descriptors and robust visual correspondence, on
the interface between vision and learning, and on semi-supervised learning.

8.2.2. FP6 Integrated Project aceMedia
Participants: Navneet Dalal, Matthijs Douze, Michael Sdika, Bill Triggs, Cordelia Schmid.

AceMedia is a 6th framework Integrated Project that is running for 4 years starting from January 2004.
Its aims to integrate knowledge, semantics and content for user-centred intelligent media services. The
partners are: Motorola Ltd UK (coordinator); Philips Electronics Netherlands; Thomson France; Queen Mary
College, University of London; Fraunhofer FIT; Universidad Autonóma de Madrid; Fratelli Alinari; Telefónica
Investigación y Desarrollo; the Informatics and Telematics Institute, Dublin City University; INRIA (including
the TexMex team at IRISA in Rennes, Imedia at Rocquencourt in Paris, and LEAR in Grenoble); France
Télécom; Belgavox; the University of Karlsruhe; Motorola SAS France. Up to the present LEAR has worked
mainly on human detection and action recognition in static images and in videos, but from 2006 it will begin
a second branch of work on the semi-automatic organization of home photo collections.

8.2.3. FP6 Project CLASS
Participants: Bill Triggs, Cordelia Schmid, Frederic Jurie, Jakob Verbeek.

CLASS (Cognitive-Level Annotation using latent Statistical Structure) is a 2.7 Meuro (2.2 Meuro EU
support) 6th framework Cognitive Systems STREP that will start in January 2006 for three years, coordinated
by LEAR. It is a basic research project focused on developing a specific cognitive ability for use in intelligent
content analysis: the automatic discovery of content categories and attributes from unstructured content
streams. It will study both fully autonomous and semi-supervised methods. The work will combine robust
computer vision based image descriptors, machine learning based latent structure models, and advanced
textual summarization techniques. The potential applications of the basic research results will be illustrated
by three demonstrators: an Image Interrogator that interactively answers simple user-defined queries about
image content; a automatic annotator for people and actions in situation comedy videos; an an automatic news
story summarizer. The Class consortium is interdisciplinary, combining five leading European research teams
in visual recognition, text understanding & summarization, and machine learning: LEAR; Oxford University,
UK; K.U. Leuven, Belgium; T.U. Darmstadt and MPI Tuebingen, Germany.

8.2.4. FP6 Network of Excellence PASCAL
Participants: Ankur Agarwal, Juliette Blanchet, Charles Bouveyron, Navneet Dalal, Gyuri Dorkó, Marcin
Marszalek, Jianguo Zhang, Bill Triggs, Cordelia Schmid, Frederic Jurie.
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PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) is an 6th framework EU
Network of Excellence that started in December 2003 for four years, funded initially by the European
Commission’s Multimodal Interfaces unit, and currently by its Cognitive Systems one. The focus is on
applying advanced machine learning and statistical pattern recognition techniques to the analysis of various
types of sensed data. It currently unites about 540 researchers, postdocs and students from 56 sites, mainly
in Europe but also including sites in Israel and Australia. Subject areas covered include machine learning,
statistical modelling and pattern recognition, and application domains including computer vision, natural
language processing including speech, text and web analysis, information extraction, haptics and brain
computer interfaces. The coordinator is John Shawe-Taylor of Southampton University. Bill Triggs of LEAR
coordinates the computer vision aspects and manages various activities including the Balance & Integration
and Funding Review Programs. LEAR and Xerox Research Europe (XRCE) together form one of PASCAL’s
14 key sites, focusing on computer vision and natural language processing.

8.2.5. FP6 Marie Curie EST Host grant VISITOR
Participants: Marcin Marszalek, Caroline Pantofaru, Cordelia Schmid, Bill Triggs, Roger Mohr.

LEAR is one of the teams participating in VISITOR, a 3 year Marie Curie Early Stage Training Host grant
to the GRAVIR-IMAG laboratory to which LEAR belongs. VISITOR is funding the PhD of the Polish student
Marcin Marszalek and the visit of the Canadian student Caroline Pantofaru from Carnegie Mellon University
in Pittsburg.

8.2.6. EU Marie Curie EST grant PHIOR
Participants: Joost Van de Weijer, Cordelia Schmid.

PHIOR is a Marie Curie postdoctoral grant for J. Van de Weijer on photometric robust features for object
recognition in color images. It will run from November 2005 for two years. The project aims at improving
image descriptors by adding robust color information. Machine learning techniques will determine the most
discriminative features, e.g. choosing between different levels of invariance and features types. Furthermore,
we will learn the colorimetric properties of images and categories.

8.3. Bilateral relationships
8.3.1. University of Illinois at Urbana-Champaign, USA

Participants: Cordelia Schmid, Bill Triggs, Svetlana Lazebnik [UIUC], Jean Ponce [UIUC].

This collaboration on 3D object recognition between the research group of J. Ponce and LEAR is funded
by a CNRS/INRIA/UIUC collaboration agreement. In 2005, C. Schmid visited the partner institution for one
week. S. Lazebnik visited LEAR for a week and J. Ponce came twice for one day.

8.3.2. Australian National University and National ICT Australia
Participants: Bill Triggs, Richard Hartley [ANU], Alex Smola [ANU].

This collaboration centres around the Australian-funded section of the EU project LAVA, whose focuses
are visual methods for recognizing particular locations and kernel based methods for visual recognition. Bill
Triggs visited ANU and NICTA (National ICT Australia) in Canberra, Australia for 3 days in August 2005 as
part of this work.

9. Dissemination
9.1. Leadership within the scientific community

• Conference and workshop organization:
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– Program co-chair for IEEE Conference on Computer Vision 2005 (C. Schmid)

– Workshops chair, some general chair duties and prize committee chair for the 10th IEEE
International Conference on Computer Vision 2005 (B. Triggs)

– Co-organizer of the MSRI Workshop on Visual Recognition, Berkeley, March 2005
(C. Schmid)

• Editorial boards:

– International Journal of Computer Vision (C. Schmid)

– IEEE Transactions on Pattern Analysis and Machine Intelligence (C. Schmid, B. Triggs)

– Foundation and Trends in Computer Graphics and Vision (C. Schmid)

– Machine Vision and Applications (R. Mohr)

• Area chairs:

– ICCV’05 (C. Schmid, B. Triggs)

– NIPS’05 (C. Schmid)

– BMVC’05 (B. Triggs)

– ECCV’06 (B. Triggs)

– CVPR’06 (B. Triggs)

• Program committees:

– CVPR’05 (F. Jurie, B. Triggs)

– ICIP’05 (J. Van de Weijer)

– ICME’05 (J. Van de Weijer)

– NIPS’05 (B. Triggs)

– ECCV’06 (V. Ferrari, A. Agarwal)

– RFIA’06 (C. Schmid)

– CVPR’06 (V. Ferrari, F. Jurie, C. Schmid)

• Other:

– C. Schmid is a member of INRIA’s Commission d’Évaluation, and of the INRIA Rhône-
Alpes Comité des Emplois Scientifiques. She has participated in several recruitment
committees.

– C. Schmid is in charge of international relations at INRIA Rhône-Alpes.

– C. Schmid was in charge of organizing the 2005 evaluation of the INRIA “CogB” research
theme.

– F. Jurie is vice-head of AFRIF (the French section of the IAPR).

– F. Jurie is scientific co-director of GDR ISIS (the national interest group on image
analysis).

– B. Triggs is a member of INRIA’s COST (Scientific and Technical Strategy Committee).
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– B. Triggs is deputy director designate of the Laboratoire Jean Kuntzmann (a proposed
230 person CNRS-INRIA-INPG-UJF laboratory on applied mathematics and computer
science, to be formed in 2007).

– B. Triggs will co-direct the GDR ISIS action on machine learning and statistical methods
for image understanding.

– B. Triggs manages the Funding Review and the Balance & Integration programmes of the
EU Network of Excellence PASCAL, and co-manages several other programmes.

– Both C. Schmid and B. Triggs are among the researchers interviewed onComputer Vision:
Fact & Fiction, a DVD produced by UC San Diego aimed at school leavers and the general
public, that discusses the real state of the art in computer vision relative to that portrayed
in movies.

• Prizes:

– Ankur Agarwal received the best student paper award at theMini-Symposium on Machine
Understanding of People and Their Responsesorganized by the Rank Prize Funds (Lake
District, UK, 02/2005) for his presentation “Regression models for human pose estimation
from silhouettes”.

– Methods submitted by LEAR won 14 of the 18 categories of the Visual Object Recognition
Challenge proposed by the European Network of Excellence PASCAL in April 2005.

– In the ICCV’05 Computer Vision Contest, our method for matching images under wide
viewpoint changes and camera localization ranked 5th among 15 and received an honorable
mention. It was also by far the fastest method in the competition.

9.2. Teaching

• Matching and Recognition, INPG Masters IVR, 12 h (F. Jurie)

• Multi-media databases, INPG, 3rd year ENSIMAG, 18 h (F. Jurie)

9.3. Invited presentations

• C. Schmid.Image description and object recognition.University of Illinois, Urbana-Champaign,
January 2005.

• A. Agarwal. Regression models for human pose estimation from silhouettes.Mini-Symposium on
Machine Understanding of People and Their Responses, Grasmere, England, February 2005.

• B. Triggs. Learning to reconstruct human motion from silhouettes.Université Jean Monnet, St
Etienne, France, February 2005.

• C. Schmid.Local invariant regions and part models.Liege University, Belgium, February 2005.

• C. Schmid.How to define good datasets?CVPR area chair meeting workshop, Los Angeles,
February 2005.

• C. Schmid.Modeling spatial relations.MSRI workshop on Visual Recognition, Berkeley, March
2005.

• B. Triggs.Regression models for human pose estimation from silhouettes.Lund University, Sweden,
April 2005.

• C. Schmid.Recognition and matching based on local invariant features.Cours at Oulu University,
Finland, May 2005.
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• C. Schmid.Category classification.ICCV area chair meeting workshop Leuven, Belgium, June
2005.

• B. Triggs. Multilevel coding for visual recognition.ICCV area chair meeting workshop Leuven,
Belgium, June 2005.

• C. Schmid.Building local part models for category-level recognition.Empirical Inference Sympo-
sium, Tuebingen, Germany, August 2005.

• B. Triggs.Multilevel coding for visual recognition.Australian National University / NICTA, Can-
berra, Australia, August 2005.

• C. Schmid.Building local part models for category-level recognition.TAIMA 2005, Hammamet,
Tunesie, September 2005.

• A. Agarwal. Hyperfeatures – multilevel local coding for visual recognition.Oxford University
Robotics Research Group Seminar, Oxford, England, October 2005.

• C. Schmid.Building local part models for category-level recognition.ENS Ulm seminar, Paris,
October 2005.

• B. Triggs.Detecting people in images and videos and reconstructing their movements, ENS Ulm,
Paris, November 2005.

• C. Schmid.From local invariant descriptors to recognition.Short course at MIT, Boston, December
2005.
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