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Artificial Intelligence / Machine Learning
A Case of Irrational Scientific Exuberance

» Underspecified goals Big Data cures everything

» Underspecified limitations Big Data can do anything (if big
enough)

» Underspecified caveats Big Data and Big Brother

Wanted: An Al with common decency

> Fair no biases
» Accountable models can be explained
» Transparent decisions can be explained
» Robust w.r.t. malicious examples

3/82



ML & Al, 2

In practice
» Data are ridden with biases

» Learned models are biased (prejudices are transmissible to Al
agents)

» Issues with robustness

» Models are used out of their scope

More

» C. O'Neill, Weapons of Math Destruction, 2016
» Zeynep Tufekci, We're building a dystopia just to make people
click on ads, Ted Talks, Oct 2017.
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ML yields discriminative or generative modelling
Given a training set iid samples ~ P(X,Y)
&= {(xiayi)7xi € Rda i€ [[17 n]]}
Find
> Supervised learning: h: X — Y or P(Y|X)

> Generative model P(X, Y)

Predictive modelling might be based on correlations
If umbrellas in the street, Then it rains
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The implicit big data promise:

If you can predict what will happen,
then how to make it happen what you want ?

Knowledge — Prediction — Control

ML models will be expected to support interventions:
Intervention do(X = a) forces variable X to value a

» health and nutrition
» education
» economics/management

» climate
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The implicit big data promise, 2

Intervention Pearl 2009
Direct cause X — Y iff

Py|do(x=a,2=c) # Py|do(X=b,z=c)

Example C: Cancer, S : Smoking, G : Genetic factors
P(C|do{S =0,G =0}) # P(C|do{S =1,G =0})

O—~0—©

Intervention
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Correlations do not support interventions

Nobel Laureates per 10 Million Population

2 Sweden
1=0.791
P<0.0001 G
=
Ausia

[ Svitzertand

515 United Kingdom

W Wireland

s

= Germany

H 10
Chocolate Consumption (kg/yr/capita)

I

F. H. Messerli

Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

Causal models are needed to support interventions

Consumption of chocolate enables to predict # of Nobel prizes
but eating more chocolates does not increase # of Nobel prizes
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Predictive model 4 Causal model

Consider

X, Ey, Ez ~ Uniform(0, 1),
Y < 05X + Ey,
<+ Y+ Ez,

with Ey, Ez ~ N(0,1) (noise)

Predicting Y

~

Y =0.25X +0.57

If interpreted as a causal model, suggests that Y depends on Z.

Issue
Causes can often be predicted from their effects
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When correlations do not imply causality

Country wealth

Chocolate Number of
consumption Nobel prizes

Tentative explanation: confounders

» Both effects of a same cause, C /L N.
» But C and N are conditionally independent given W

C AL N|W
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Causality and paradoxes

Facts

» If mother smokes, child weight tends to be small
» Tiny child, more health problems
> However, tiny child AND mother smokes > tiny child

Interpretation mother smoking beneficial to child’s health ?

Explaining away

Many possible causes for small child weight

Many of these severely affect child’s health (genetic diseases)
Compared to these, mother smoking is rather a good news...
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An Al with common decency

Desired properties

> Fair no biases
» Accountable models can be explained
» Transparent decisions can be explained
> Robust w.r.t. malicious examples

Relevance of Causal Modeling

P Decreased sensitivity wrt data distribution
» Support interventions clamping variable value

» Hopes of explanations / bias detection
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Causal Discovery

HOWwW

» Gold Standard: perform randomized controlled experiments
> But these experiments are often costly, unethical or unfeasible

» Our setting: observational causal discovery
From data, infer causal model.

WHAT FOR

» Understandable, interpretable, more robust models
» Prioritize confirmatory experiments: enabling some control

» Generate new data: privacy and domain-compliant, e.g. for
medical training
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Motivating applications
Human resources
1. Autonomy / Satisfaction / Productivity
2. Quality of life at work / Economic profitability of firms

Joint project with 'La Fabrique de I'industrie’
Kalainathan et al. 18

Health and Life habits
1. Diet / Diabetes type 2.

Joint project Nutriperso with INRA
La .
Fabrique

de l'industrie
laboratoire d'idées

i |'|'| i

SCIENCE & IMPACT
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State of the art
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Causal Modelling

The Causal Discovery Setting
Assume random variables

Xi,... Xy : random variables
and a sample of their joint distribution
D={x;,i=1...n}
to be given.
Formal background: Overview

1. Key concepts
2. Framework

3. Approaches
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Key concepts: 1. Dependence among pairs of variables
Independent variables X and Y (X 1L Y)
X 1LY iff P(X,Y) = P(X).P(Y)

Dependency tests

» Correlation limited to linear dependencies

Y=X2+E
Correlation(X,Y) ~ 0
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Key concepts: 1. Dependence among pairs of variables

Independent variables X and Y (X 1L Y)
X WY iff P(X,Y) = P(X).P(Y)

Dependency tests

» Correlation limited to linear dependencies

» HSIC, Hilbert-Schmitt Independence Criterion
Gretton et al. 05

HSIC(P, = || Cxy |2
S (X@f,g) | Cxv ||

where || - || denotes the Hilbert-Schmidt norm, and Cxy a
kernel based covariance operator and F,G two RKHSs.
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Key concepts: 2. Conditional Dependence/Independence

Conditional independence a.k.a. hidden confounder
Conditional dependence a.k.a. V-structure

X = Complex machine Y = Inexperienced Worker
\ /
Z = Accident

X and Y are independent; but given Z = true they are not
independent (either the machine is complex or the worker is
inexperienced...)
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Definition of causal relationship
Definition of intervention

do(X = 1) forces variable X to value 1
Pearl 09

Definition of causal relationship
X is a direct cause of Y (X — Y) iff
all other variables Z being constant,

Py|do(x=1,....z=c) 7 Py|do(X=0....2=c)
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Definition of causal relationship
Definition of intervention

do(X = 1) forces variable X to value 1
Pearl 09

Definition of causal relationship
X is a direct cause of Y (X — Y) iff
all other variables Z being constant,

Py|do(x=1,....z=c) 7 Py|do(X=0....2=c)
Example C: Cancer, 5 : Smoking, G : Genetic factors.
P(Cldo{S =0}, G}) # P(C|do{S =1}, G})

Intervention
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Markov equivalence class and V-structure
Markov Equivalent Class: A 1L C|B and AL C

@0 e OeEo

V-Structure: AJ C|B and A1 C

Spirtes et al.-00, 16
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Key concepts: 3. Causality with distributional asymmetry

Leveraging Occam’s razor principle; Janzig 19
— the causal model as the one being the simplest model that fits
the data.

B=KA) ?
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Framework: Functional Causal Models (FCMs)
Given Xl, ..Xd,

X,‘ = f,'(Xpa(,';g), E,'),VI' S [1, d]
with Xp,(;.g) the set of parents of X; in G (= causes of X;),

E; a random independent noise variable modeling the unobserved
other causes,

f; a deterministic function: the causal mechanism

B
f
‘B /@\ ‘B CE X =A(E)
f f3 fa X3 = (X1, E3)
@ e @ X4 = fu(Es)
3.‘ff X5 = f5(X3, Xa, Es)
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Functional Causal Models, 2

Markov decomposition

P(Xi,...,X4) = NP(Xi| Xpa(i:g))
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Usual Assumptions

Causal Sufficiency: no unobserved confounders

Causal Markov: all d-separations in the causal graph G imply
conditional independences in the observational distribution P

Causal Faithfulness: all conditional independences in P imply
d-separations in G.
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Key approach 1: Constraint-based methods

Constraint-based methods, through V-Structures and constraint
propagation, output a CPDAG (Completed Partially Directed
Acyclic Graph).

(a) The exact DAG of G. (b) The CPDAG of G.

Ex: Peter-Clark Algorithm (PC) Spirtes et al. 00
Non-linear extensions (Cl tests): PC-HSIC (KCl-test), PC-RCIT
Zhang 12, Strobl 17

25/82



Key approach 2: Score-based methods

Objective function to optimize such as the Bayesian Information
Criterion (BIC):

BIC(G) = —2InL+ k=x*Inn

with L: Likelihood of the model, k: number of parameters, n:
Number of samples

The graph is optimized with the operators:

> add edge
> remove edge

> revert edge

Ex: Greedy Equivalence Search (GES) Chickering 02
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Limitations

» Computational cost dependent on the type of test/scoring
method used

» Data hungry
> Identifiability issues

Example

Xl, EXI, EX2 ~ Uniform(O, 1),X1 A EX17 Y I EX2
Y < 05X; + EX1>
X2 ~— Y+ EX2,

Co- -

Here X; 1L X5|Y. No V-structure
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Key approach 3: Global optimization
Assuming linear causal mechanisms, the causal mechanisms can be
formulated in terms of linear algebra.
X=B"X+E

And estimate the B matrix, through ICA for LINGAM
Shimizu 06, Hyvarinen 99

— Graphical models Pearl 09, Friedman 08
Ex: Max-Min Hill-Climbing (MMHC) Tsamardinos 06
Concave penalized Coordinate Descent (CCDr) Aragam 15
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Key approach 4: Exploiting asymmetries in the distribution

— If no v-structure available or causal discovery with 2 variables:
leverage assymetries in the distributions.

Additive noise model (ANM): Hoyer 09

Residual X — f(Y)
Residual ¥ — f(X)

0.0 0.5 L0
X

Original data Residuals of X=g(Y) Residuals of Y=f(X)

Ex: Post Non-Linear model (PNL), GPI

Zhang 10, Stegle 10
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Limitations of asymmetry-based approaches
» Restrictive assumptions on the type of causal mechanisms
» Does not take into account conditional independence
relations.
Zhang 09
Example
Xl,XQ, EX1 o~ Gaussian(O, ]_),Xl AL EXI, X2 AL EX1
Y «— 0.5X1 + X2 —+ EX1

(X1,Y) and (X2, Y) are perfect symmetric pairwise distribution
(after rescaling)
However X3 L X5|Y: A V-structure may be identified
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ey approach 5: A machine learning-based approach
Guyon et al, 2014-2015

Pair Cause-Effect Challenges

» Gather data: a sample is a pair of variables (A;, B;)
> Its label ¢; is the “true” causal relation (e.g., age “causes”

salary)

Input
&= {(A,', B,',K,'),f; in {—>,<—, J.L}}
Example A;, B; ‘ Label ¢;
A; causes B; —
B; causes A; —
A; and B; are independent A

Output using supervised Machine Learning

Hypothesis : (A, B) — Label 31/82



Key approach 5: A machine learning-based

approach, 2

it

"

& b i
& L 4 $
1Ly &9\

| ik
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The Cause-Effect Pair Challenge

Learn a causality classifier (causation estimation)

» Like for any supervised ML problem from images  ImageNet

More

» Guyon et al., eds, Cause Effect Pairs in Machine Learning,
2019. 33/82



State of the art: summary

Scalability

Methods leveraging:
® GES / FGES :

@® Conditional independence
@ Distributional asymmetries
® LINGAM ® Both
: ® Feature selection
o rc
1008 Vars.| o
® GENIE-3
pe-rerr®
PC-HSIC®
Pairwise e eereee e ene e seceesreees e snere et enseeer e ernes
Methods ANM  PNL GPI Jarfo
Linear Non-Linear

General model
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State of the art: summary

Scalability Methods leveraging:
® GES / FOES @® Conditional independence
@ Distributional asymmetries
® LINGAM ® Both
: ® Feature selection
e rc
M1 Y- Y o= USRS S,
® GENIE-3
pe-rerr®
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Causal Generative Neural Networks
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Causal Generative Neural Networks (CGNN): Overview

Assumptions:

» Input: Graph skeleton with L edges
» Continuous data: Xy ..., Xy real valued

Problem posed:

» Combinatorial optimization problem of dimension L

» For each candidate in {—1,1}%, find each causal mechanism

Approach:

» Causal mechanisms f; approximated as a neural net.

» Loss function: Maximum Mean Discrepancy (MMD) (distance
original vs generated data);

» Hyperparameter: number n, of neurons in f;
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Modeling FCMs with generative neural networks

» Idea: approximate the continuous mechanisms fl, .., fy with
a set of one hidden layer neural networks f = (fl, R )
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Modeling FCMs with generative neural networks

P Idea: approximate the continuous mechanisms fi, ..., fy with
a set of one hidden layer neural networks ¥ = (f,..., f4)

> Estimate FCMs C as € = (G, f):

)A<i — 72;()/ZPa(i;gA)v Ei), Ei ~ N(0,1) (1)
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Generative neural networks as a FCM

Each function in a NN @

By
v “ ,, :
@ Inputs” are noise var.
R v R R
Ey Xy E3 Ey4 )A(1 — ﬂ(él)
\@i N ¥ 3 %o = 6%, E)
Xz = f3(X1, E:
v v B )57 fz(él, 3)
X, X3 Es X, Xe = fi(E)
\ v / w X5 = f(X5, X4, Es)
@ Generated variables

For each candidate (G, f), generate samples X;
Loss = difference between original distribution, generated
distribution
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Learning Metric: Maximum Mean Discrepancy (MMD)

Kernel-based loss evaluating a "distance” between empirical

distributions:
Gretton 05

> Generated data X = &,/ = 1...n/
> Truedata X =x;,i=1...n

MMD(X,X) = % D k(xi,x)+ po Z k(%i,%;)— Z k(%i,%;)
i

with k(u,v) =3, exp=a I, € {102, 102}

A linear approximation MMD leveraging random projections has

been proposed
Lopez-Paz et al. 16
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Adjusting number of hidden units nj,

original data, X — Y np =2

A— XSNNDD A4 XSNNDD

u}
o)
I
i
it
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Adjusting number of hidden units nj,

original data, X — Y np =2 np =35

A— XSNNDD A4 XSNNDD

5 10 20 30 40 50 60 80 100
Number of neurons in the hidden layer

X =Y Y - X
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Adjusting number of hidden units nj,

original data, X — Y

A— XSNNDD A4 XSNNDD

2 5 10 20 30 40 50 60 8 100
Number of neurons in the hidden layer

X—=Y Y =X
= Causal direction not identifiable if nj too high
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General algorithm

Input = Continuous Data + Graph skeleton

1. Init: Pairwise orientation + DAG recovery (remove cycles
heuristic)
2. lteratively until the stopping criterion is met:

> Reverse an edge at random that does not create a cycle

» Retrain CGNN using backpropagation

» If the resulting MMD loss is better, replace the current best
solution

41/82



General algorithm

Input = Continuous Data + Graph skeleton

1. Init: Pairwise orientation + DAG recovery (remove cycles
heuristic)
2. lteratively until the stopping criterion is met:

> Reverse an edge at random that does not create a cycle

» Retrain CGNN using backpropagation

» If the resulting MMD loss is better, replace the current best
solution

Input Step 1 Step 2
(%)

®

A\
® QR B s
/ 7 e VoY o
® ®\§
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Experimental setting
» Benchmarks:
» Simulated data: Xi = fi(Xpa(i.q), Ei), Vi € [1,d],
with f;: Polynomials, Gaussian processes with additive and
multiplicative noise
» Biological data : SynTReN Gene expression, Real protein
network

Sachs 05
» All methods are given the true skeleton
» Performance indicator: Area under the Precision Recall Curve
(number of identified edges)

42/82



Experimental setting
» Benchmarks:
» Simulated data: Xi = fi(Xpa(i.q), Ei), Vi € [1,d],
with f;: Polynomials, Gaussian processes with additive and
multiplicative noise
» Biological data : SynTReN Gene expression, Real protein
network
Sachs 05
» All methods are given the true skeleton
» Performance indicator: Area under the Precision Recall Curve
(number of identified edges)
» Baselines:

» PC, PC-HSIC (KCl-test) Spirtes 00, Zhang 11
> ANM Hoyer 09
» Jarfo Fonollosa 16
> GES Chickering 02
> LINGAM Shimizu 06
> CAM Buhlman 14

v

CGNN: np, € [5,20], epochs = 2000, ¢, = 0.01
it
» MMD, ,m = 300 (Linear approx of MMD)
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Experimental validation: Generated datasets

1.00
B PC-Gauss
W PC-HSIC
0.75 | ANM
. | i
% 050 | LINGAM
CAM
0.25 mmm  CGNN MMD]’
= CGNN MMD;
0.00

Skeleton without error

PC-Giauss
PC-HSIC
ANM

Jarfo

GES
LINGAM
cam
 CGNN MMD,
m CGNN NMMD,

SynTReN 20 nodes SynTReN 50 nodes

All methods are given the true skeleton.
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Experimental validation:

Real data

- PC-Gaus
W PCHSIC
ANM
Jurfo

GES
LINGAM
cam

mmm CGNN MMD]

Causal protein network

m CGNN MMD,
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Experimental validation: Real data

- FCGuss
0.8 - PCHSIC
ANM
oz 0.6 Tarfo
% GES
Z 04 LINGAM
Lo
0.2 ' — CGNN MM
m CGNN MMD,
0.0

Causal protein network

(c) CAM

Color: green: ok ; red: wrong; blue: unknown, Edge width: confidence
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CGNN
PROS:

» [UNIVERSALITY] power of NN (universal approximators)

» [UNIFICATION] unification of causal discovery principles (Cl
and DA)

CONS:

» [SKELETON KNOWLEDGE NEEDED] the method
requires the initial knowledge of the graph skeleton (though
edge orientation is robust against skeleton mistakes)

» [COMPUTATIONAL COST] the method is
computationally costly (30h for 50 variables) which in practice
required us to perform sub-optimal greedy optimizations

» [SENSITIVITY] the method is sensitive to hyper-parameter
selection (including number of neurons)
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Structural Agnostic Modeling
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Structural Agnostic Model (SAM): Overview

Assumptions:

» Continuous data

» Causal sufficiency (no hidden confounder)

Goal:

» Learn end-to-end the graph structure and the causal
mechanisms

Approach:
> A global loss

» accounting for structural and functional complexity

» accounting for model fitness through an adversarial
mechanism

4782



Finding the causes for each variable

Xj = (X}, Ej), (2)

48 /82



Finding the causes for each variable

Xj = (X}, Ej), (2)

Goal: Find the causes = a sparse network it generates

4882



Finding the causes for each variable

Xj = (X}, Ej), (2)

Goal: Find the causes = a sparse network it generates

Structural gates

X5y~ 1)
X 3
7 | Ko [l

— Enforcing sparsity through Ly penalization
Leray 99, Maddison 16, Jang 16
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Regularization of the complexity of the mechanisms

original data, X — Y np =2 np=35 np =20 np=100

g@?

A XSNNDD A+ XSNNDD
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Regularization of the complexity of the mechanisms

original data, X — Y ny =2

nj, = 100

A XSNNDD A+ XSNNDD

Structural gates Functional gates
—_— —
z15
X1 —] ay
C -
: : o
Xj-1 —{9G-03 X i
X - N
T K| G+ el — X;
. : #5j
Xy —| a4
%67
E; —[ 1
27_]

— Enforcing the sparsity of the mechanisms through Lg
penalization
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General architecture and loss of SAM

— Adversarial loss goodfellow2014generative
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General architecture and loss of SAM

— Adversarial loss

True
——

Structural gates Fi tional gat
ructural gates Functional gates

Generated

R
@::

goodfellow2014generative

g
0
e B True
Generated

Generators j:l f'

Discriminator T},
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Loss of SAM

Learning criterion to minimize:

~ .

S(G\v f, D) = _Exwp(x) log q(x,@,g) +)\AHAH1 + )‘ZHZHl? (3)

Log likelihood Regularization

estimated by the discriminator

where

> [[AllL =), =1 4@, total number of edges in G
— Structural complexity.
> [[Z]ls =301 42 k=1, .n, 2 total number of active units in f

— Functional complexity.
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Final learning objective

d

S(G,F,D) =Y 10X X35.6)Xpagiic) + MallAll
j=1

Ve
Structural score

+ Z Dkilp(%j1xpj.6)) 1| a(xi1Xp, .6y 0] + Az Z 111
j=1

Functional score

k
T Athl’/é\

\—v—’

Acyclicity constraint

Zheng 18

with / the mutual information and Dg; the Kullback-Leibler
divergence
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Properties of the score

Theorem 1: Identification to the Markov Equivalence Class

Under Causal Markov and faithfulness assumptions, the DAG G
minimizing the structural score belongs to the Markov equivalence
class of the true graph G (CPDAG of G)
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Properties of the score

Theorem 1: Identification to the Markov Equivalence Class

Under Causal Markov and faithfulness assumptions, the DAG G
minimizing the structural score belongs to the Markov equivalence
class of the true graph G (CPDAG of G)

Theorem 2: Identification of the DAG

Under additional assumptions, the DAG G minimizing also the
functional score is exactly the DAG G
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Experimental setting

» Benchmarks:
» Simulated data (20 and 100 Variables):
Xi = f;'(XPa(i;g)v EI)aVI € [1’ d]'
fi: Linear, Gaussian processes with additive (GP AM) and
multiplicative noise (GP Mix), Sigmoid functions (Sigmoid
AM/Sigmoid Mix), Neural networks with randomized weights

(NN).
» Biological data : SynTReN Gene expression , Real protein
network Sachs 05

» Performance indicator: Area under the Precision Recall Curve

54 /82



Experimental setting
» Benchmarks:

» Simulated data (20 and 100 Variables):
Xi = f;'(XPa(i;g)v EI)7VI € [1’ d]'
fi: Linear, Gaussian processes with additive (GP AM) and
multiplicative noise (GP Mix), Sigmoid functions (Sigmoid
AM/Sigmoid Mix), Neural networks with randomized weights

(NN).

» Biological data : SynTReN Gene expression , Real protein

network

Sachs 05

» Performance indicator: Area under the Precision Recall Curve

» Baselines:

» PC, PC-HSIC (KCl-test) Spirtes 00, Zhang 11
» PC-RCIT/RCOT Strobl 17
> ANM Hoyer 09
» Jarfo Fonollosa 16
> GES Chickering 02
> LINGAM Shimizu 06
> CAM Buhlman 14
» MMHC Tsamardinos 06
» CCDr Aragam 17
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Experimental setting (2)

» Hyperparameters of SAM:

> (, =001
> =001
> A\, =10"°

» Lesion study (impact of neural vs linear mechanims and mean
square error vs adversarial loss):

» SAM-mse-linear: Linear mechanisms and a MSE loss
» SAM-linear: Linear mechanisms and a GAN Setting
» SAM-mse: Non-linear mechanisms and a MSE Loss
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Experimental results: Generated datasets (20 variables)

AUPR

0.8

0.7

0.6

0.0

Linear

IIIHIMHH

GP AM

GP Mix Sigmoid AM  Sigmoid Mix

CAM is especially tailored for Gaussian processes with additive

and GES for linear mechanisms

PC-Ganss
PC-HSIC
PC-RCOT
PC-RCIT
GES

GIES
LINGAM
MMHC
CCDr
CAM
GENIE3
SAM-mse-linear

SAM

noise;




Experimental results: Generated datasets (100 variables)

B PC-Gauss
0.8 . PC-HSIC
W PC-RCOT
PORCIT
GES
GIES
0.6 LINGAM
MMHC
S
. CAM
W CENIE3
0.4 B SAM-mse-linear
- SAM
NN

Linear GP AM GP Mix Sigmoid AM  Sigmoid Mix

AUPR

o
o

O P = = wac
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Results on biological data

0.0

'

Graph size (number of variables)

0.0

LINGAM

MMHC

cepr

IAM

AM-mse-linear
- SAM

AUPR

Syntren Dataset

Sachs dataset

Qe
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Ablation studies

= SAM-lin-mse
s SAM-mse
os = SAM-lin
; . SAM
0.4
o
503
20
0.2
. II I II
0.0 I
Synthetic SynTREN 20 SynTREN 100 Sachs

Dataset

Both the non-linear mechanisms and the adversarial network are required
to attain maximum performance

u}
o)
I
i
it




Computational time (graph of 100 variables)

AP  Timeins. (CPU) Timeins. (GPU)
PC-Gauss 13
PC-HSIC -
PC-RCOT 31 320
PC-RCIT 46 440
GES 1
GIES 5
MMHC 5
LINGAM 5
CAM 45 899
CCDr 3
GENIE3 511
SAM-lin-mse 3076 74
SAM-mse 18 180 118
SAM-lin 24 844 1980
SAM 24 844 2 041
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Applications
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Applications: 1. Human Resources
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Causal Modeling and Human Resources
Known:

A Quality of life at work employee’s perspective

B Economic performance firm's perspective
» ... are correlated

Question: Are there causal relationships ?
A—-B;,orB—Aor3dC/C—Aand C— B
Data

» Polls from Ministry of Labor

» Gathered by Group Alpha Secafi (trade union advisor)
» Tax files + social audits for 408 firms

Economic sectors: low tech, medium-low, medium-high and

63/82



Variables
Economic indicators

» Total number of employees

» Capitalistic intensity, Total payroll, Gini index

» Average salary (of workers, technicians, managers)
» Productivity, Operating profits, Investment rate

People

> Average age, Average seniority, Physical effort,
» Permanent contract rate, Manager rate, Fixed-term contract
rate, Temporary job rate, Shift and night work, Turn-over

» Vocational education effort, duration of stints, Average stint
rate (for workers, technicians, managers);
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Variables, cont’d

Quality of life at work

» Frequency & Gravity of work injuries, Safety expenses, Safety
training expenses

» Absenteism (diseases), Occupational-related diseases
P Resignation rate, Termination rate, Participation rate

» Subsidy to the works council

Men/Women

» Percentage of women (employees, managers)

» Wage gap between women and men (average, for workers,
technicians, managers)
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General Causal Relations
Access to training ~

> \, Gravity of work injuries
» N\, Occupational-related diseases
Termination rate *

» 7 Absenteism (diseases)

Percentage of managers

» " Access to training
> Shift or night working hours

Age
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Global relations between QLW and performance ?

Failure

» Nothing conclusive

Interpretation

» Exist confounders (controlling QLW and performance) C — A
and C = B

» One such confounder is the activity sector
» In different activity sectors, causal relations are different
(hampering their identification)

» = Condition on confounders
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Low-tech sector

» Resignation rate 7, Productivity \

» Average salary 7, Productivity very significant
» Occupational-related diseases *, Productivity “\,

» Temporary job rate 7, Gravity of work injuries

» Permanent contract rate 7, Safety training \

» Duration training stints *, Termination rate \,
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Outcomes & Limitations

Causal modeling and exploratory analysis

» Efficient filtering of plausible relations (several orders of
magnitude);

» Complementary w.r.t. visual inspection (experts can be fooled
and make sense of correlations & hazards);

» Multi-factorial relations ? yes; but even harder to interpret.

Not a ready-made analysis

» Causal relations must be

» interpreted
» confirmed by field experiments; polls; interviews.
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Applications: 2. Food and Health
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A data-driven approach to individual dietary

recommendations
Context

P> Long-term goal: Personalized dietary recommendations
> Requirement: identify risk index associated to food products
» At a coarse-grained level (lipid, protein, glucid), nothing to see

> At a fine-grained level: 300+ types of pizzas, ranging from ok
to very bad.

The wealth of Kantar data

» ~22,000 households x 10 years (this study: 2014)
» 19M total purchases/year (180,000 products)
» Socio-demographic attributes, varying size
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Beware: data rarely collected as should be...
Raw description can hardly be used for meaningful analysis

» 170,000 products for 22,000 households

» Data gathered with (among others) marketing goals
where bought, which conditioning

> Most products are sold by 1 vendor

» Most families are going to one vendor

Manual pre-processing

» Consider 10 categories of interest, e.g. bio/non-bio; alcohol
yes/no; fresh /frozen

> Merge products with same categories

> 170,000 —~ 4,000 products

Example: for beer, we only selected as features of interest: colour
(blonde, black, etc.); has-alcohol (yes, no); organic (yes, no) 72/82



Methodology

Dimensionality reduction

1. Borrowing Natural Language Processing tools, with
vector of purchase ~ document

food product ~ word
2. Using Latent Dirichlet Association to extract “dietary topics”
Blei et al. 03

Some topics can be directly interpreted The darker the region,
the more present the topic (NB: regions are not used to build

topics)
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Focus: impact of topics on BMI

Left: Bio/organic topic Right: Frozen food topic
Top row: Women Bottom row: Men
Bio food Frozen food
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Does A (eat bio) cause B (better BMI) ?

Three cases

» A does cause B (bio food is better)
» Confounder: exists C that causes A and B

(rich/young/educated people tend to consume bio products
and have lower BMI);

» Backdoor effects: exists C correlated with A which causes B
(people eating bio also tend to eat more greens, which causes

lower BMI);
Goal: Find out which case holds

Causal models

P Ideally based on randomized controlled trials

Imbens Rubins 15
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Proposed Methodology

Taking inspiration from Abadie Imbens 06

Target population: “Bio” people = top quantile coordinate on
bio topic.

RCT would require a control population

Building a control population finding matches
» For each bio person, take her consumption z (basket of
products)

» Create a falsified consumption z’ (replacing each bio product
with same, but non-bio, product)

» Find true consumption z* nearest to z’ (in LDA space)

» Let the true person with consumption z* be called " falsified
bio"

Compare bio and " falsified bio* populations wrt BMI 76/ 82



Bio vs Falsified Bio populations

P value of Median-test 0.05

M Real household:
10 eal households Nn households

Fake households 012
Test households
10 010
0.08
10°
0.06
-1
10
0.04
10 00z
00 01 02 03 04 05 06 o7 0.00
15 n 7 n = an

» Projection on the Bio topic (in log scale)
» (Falsified bio population not 0: the bio topic contains e.g.
sheep yogurt).

Right

» BMI Histograms of both bio and falsified bio populations

» Statictically cionificant difference 77/82



Next

Chasing confounders

» Discriminating bio from “falsified bio” populations w.r.t.
socio-professional features: accuracy =~ 60%
» Candidate confounder: mother education level (on-going

study)

Next steps

» Confirm conjectures using longitudinal data (2015-2016)

» Interact with nutritionists / sociologists

» Extend the study to consider the impact of, e.g.
» Price of the food
» Amount of trans fats
» Amount of added sugar
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Discussion
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Perspectives: Causality analysis and Big Data
Finding the needle in the haystack

» Redundant variables (e.g. in economics) — un-interesting
relations
» Variable selection

» Feature construction dimensionality reduction

Beyond causal sufficiency

» Confounders are all over the place (and many are plausible,
e.g. age and size of firm; company ownership and
shareholdings)

» When prior knowledge available, condition on counfounders

» Use causal relationships on latent variables Wang and Blei,
19
to filter causal relationships on initial variables
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A python package for observational causal
discovery

All the presented framework is available on GitHub at :
https://github.com /Diviyan-Kalainathan/CausalDiscovery Toolbox
It includes multiple algorithms as well as tools for graph structure.
Accepted at JMLR - Open Source Software

Kalainathan Goudet 19
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https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox

Thanks to Isabelle Guyon, Diviyan Kalainathan, Olivier Goudet,

David Lopez-Paz,
Philinne Caillaitr Panla Tiihara 82/82



	Motivations
	State of the art
	Causal Generative Neural Networks
	Structural Agnostic Modeling
	Applications
	Applications: 1. Human Resources
	Applications: 2. Food and Health
	Discussion

