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Outline	

•  Previous	classes	
– Graph	cuts,	Primal-dual,	Recommender	systems	
– Causality	

•  Today	
– Quick	recap	of	the	course	
– Learning	parameters	



Before	moving	on…	



Projects	

•  Presentations	on	17/3	
–  In	English	or	French	
– 15min,	including	questions	

•  Report	due	on	16/3	

•  You	can	update	the	final	report	until	18/3	



A	quiz	!	

1.  Write	the	dual	for	this	primal:	

2.  What	is	the	difference	between	primal-dual	
schema	and	dual	decomposition	?	

3.  What	is	common	between	TRW	and	dual	
decomposition	?	



Primal-dual	schema	

•  Goal:	Find	integral-primal	solution	x,	feasible	
dual	solution	y,		
– such	that	their	primal-dual	costs	are	“close	enough”,	
e.g.,	 f*-approximation	to	the	optimal	x*	



Primal-dual	schema	

•  Works	iteratively	

•  Easier	to	use	relaxed	complementary	slackness,	
instead	of	working	directly	with	costs	



Primal-dual	schema	

•  Relaxed	complementary	slackness	



Dual	decomposition	

•  Reduces	MRF	optimization	to	a	simple	
projected	subgradient	method	

•  Combines	solutions	from	sub-problems	in	a	
principled	and	optimal	manner	

•  Applies	to	a	wide	variety	of	cases	



Dual	decomposition	

•  Decomposition	into	subproblems	(slaves)	

•  Coordination	of	slaves	by	a	master	process	



Dual	decomposition	

•  Master		
– updates	the	parameters	of	the	slave-MRFs	by	
“averaging”	the	solutions	returned	by	the	slaves	

–  tries	to	achieve	consensus	among	all	slave-MRFs	

– e.g.,	if	a	certain	node	is	already	assigned	the	same	
label	by	all	minimizers,	the	master	does	not	touch	
the	MRF	potentials	of	that	node.	



Outline	

•  Recap	of	the	course	

•  Learning	parameters	



Conditional	Random	Fields	(CRFs)	
•  Ubiquitous	in	computer	vision	
•  segmentation 	stereo	matching	
optical	flow 	image	restoration	
image	completion	 	object	detection/localization	
...	

•  and	beyond	
•  medical	imaging,	computer	graphics,	digital	
communications,	physics…	

	•  Really	powerful	formulation	



Conditional	Random	Fields	(CRFs)	

•  Extensive	research	for	more	than	20	years	

•  Key	task:	inference/optimization	for	CRFs/MRFs	

•  Lots	of	progress	

•  Graph-cut	based	algorithms	
•  Message-passing	methods	
•  LP	relaxations	
•  Dual	Decomposition	
•  ….	

•  Many	state-of-the-art	methods:	



MAP	inference	for	CRFs/MRFs	

•  Hypergraph		
– Nodes		
– Hyperedges/cliques	

•  High-order	MRF	energy	minimization	problem	

high-order	potential	
(one	per	clique)	

unary	potential	
(one	per	node)	

hyperedges	

nodes	



CRF	training	
•  But	how	do	we	choose	the	CRF	potentials?	

•  Through	training	
•  Parameterize	potentials	by	w	

•  Use	training	data	to	learn	correct	w		

•  Characteristic	example	of	structured	output	
learning	[Taskar],	[Tsochantaridis,	Joachims]	

•  Equally,	if	not	more,	important	than	MAP	inference	
•  Better	optimize	correct	energy	(even	approximately)	
•  Than	optimize	wrong	energy	exactly	



•  Supervised	Learning	

•  Probabilistic	Methods	

•  Loss-based	Methods	

•  Results	

Outline	



Image	Classification	

Is	this	an	urban	or	rural	area?	

Input:	d	 Output:	x	∈	{-1,+1}	



Image	Classification	

Is	this	scan	healthy	or	unhealthy?	

Input:	d	 Output:	x	∈	{-1,+1}	



Image	Classification	

X	

d	

Labeling	X	=	x	 Label	set	L	=	{-1,+1}	



Image	Classification	

Which	city	is	this?	

Input:	d	 Output:	x	∈	{1,2,…,h}	



Image	Classification	

What	type	of	tumor	does	this	scan	contain?	

Input:	d	 Output:	x	∈	{1,2,…,h}	



Object	Detection	

Where	is	the	object	in	the	image?	

Input:	d	 Output:	x	∈	{Pixels}	



Object	Detection	

Where	is	the	rupture	in	the	scan?	

Input:	d	 Output:	x	∈	{Pixels}	



Object	Detection	

X	

d	

Labeling	X	=	x	 Label	set	L	=	{1,	2,	…,	h}	



Segmentation	

What	is	the	semantic	class	of	each	pixel?	

Input:	d	 Output:	x	∈	{1,2,…,h}|Pixels|	

car	

road	
grass	

tree	sky	

sky	



Segmentation	

What	is	the	muscle	group	of	each	pixel?	

Input:	d	 Output:	x	∈	{1,2,…,h}|Pixels|	



Segmentation	

X1	

d1	

X2	

d2	

X3	

d3	

X4	

d4	

X5	

d5	

X6	

d6	

X7	

d7	

X8	

d8	

X9	

d9	

Labeling	X	=	x	 Label	set	L	=	{1,	2,	…,	h}	



CRF	training	
•  Stereo	matching:	
•  Z:	left,	right	image	
•  X:	disparity	map	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
estimate	proper	

w	



CRF	training	
•  Denoising:	
•  Z:	noisy	input	image	
•  X:	denoised	output	image	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
estimate	proper	

w	



CRF	training	(some	further	notation)	

vector	valued	feature	
functions	



Learning	formulations	



Risk	minimization	

K	training	samples		



Regularized	Risk	minimization	



Regularized	Risk	minimization	

Replace	Δ(.)	with	easier	to	handle	upper	bound	LG	
(e.g.,	convex	w.r.t.	w)	



Choice	1:	Hinge	loss	

§  Upper	bounds	Δ(.)	

§  Leads	to	max-margin	learning	



Max-margin	learning	

subject	to	the	constraints:	

energy	of	
ground	truth	

any	other	
energy		

desired	
margin	

slack	



Max-margin	learning	

subject	to	the	constraints:	

or	equivalently	



Max-margin	learning	

subject	to	the	constraints:	

or	equivalently	

CONSTRAINED	

UNCONSTRAINED	



Choice	2:	logistic	loss		

§  Can	be	shown	to	lead	to	maximum	likelihood	learning	
	

partition	function		



Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	



Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	

soft-max	



Solving	the	learning	
formulations	



Maximum-likelihood	learning	

§  Differentiable	&	convex	
	

partition	function		

§  Global	optimum	via	gradient	descent,	for	example	
	



Maximum-likelihood	learning	

gradient	

Recall	that:	



Maximum-likelihood	learning	

gradient	

§  Requires	MRF	probabilistic	inference		
	
§  NP-hard	(exponentially	many	x):	approximation	via	loopy-BP	?	
	



Max-margin	learning	(UNCONSTRAINED)	

§  Convex	but	non-differentiable	
	
§  Global	optimum	via	subgradient	method	



Subgradient	

x2	

subgradient	at	x1	

g(x2)+h2·(x-x2)	

subgradient	at	x2	=	gradient	at	x2	



Subgradient	

x 



Subgradient	

subgradient	of	LG =		



Max-margin	learning	(UNCONSTRAINED)	

total	subgr.	 =		

Repeat		
	1.	compute	global	minimizers								at	current	w 
	2.	compute	total	subgradient	at	current	w	
	3.	update	w by	taking	a	step	in	the	negative	total	subgradient		
	 	direction	

until	convergence	

Subgradient	algorithm	



Max-margin	learning	(UNCONSTRAINED)	

partial	subgradient		=		

Repeat		
	1.	pick	k	at	random	
	2.	compute	global	minimizer							at	current	w 
	3.	compute	partial	subgradient	at	current	w	
	4.	update	w by	taking	a	step	in	the	negative	partial	subgradient	
	 	direction	

until	convergence	

Stochastic	subgradient	algorithm	

MRF-MAP	estimation	per	iteration	
	(unfortunately	NP-hard)		



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	

linear	in	w 

•  Quadratic	program	(great!)	
•  But	exponentially	many	constraints	(not	so	great)	



•  What	if	we	use	only	a	small	number	of	constraints?	

•  Resulting	QP	can	be	solved	
•  But	solution	may	be	infeasible	

Max-margin	learning	(CONSTRAINED)	

•  only	few	constraints	active	at	optimal	
solution	!!	
(variables	much	fewer	than	constraints)	

•  Constraint	generation	to	the	rescue	

•  Given	the	active	constraints,	rest	can	be	ignored	
•  Then	let	us	try	to	find	them!	



1.	Start	with	some	constraints	

Constraint	generation	

2.	Solve	QP		

3.	Check	if	solution	is	feasible	w.r.t.	to	all	constraints	

4.	If	yes,	we	are	done!	

5.	If	not,	pick	a	violated	constraint	and	add	it	to	the	
current	set	of	constraints.	Repeat	from	step	2.	
	(optionally,	we	can	also	remove	inactive	constraints)	



•  Key	issue:	we	must	always	be	able	to	find	a	violated	
constraint	if	one	exists	

Constraint	generation	

•  Recall	the	constraints	for	max-margin	learning	

•  To	find	violated	constraint,	we	therefore	need	to	
compute:	

(just	like	subgradient	method!)	



1.	Initialize	set	of	constraints	C to	empty		

Constraint	generation	

2.	Solve	QP	using	current	constraints	C and	
obtain	new	(w,ξ)		

4.	For	each	k,	if	the	following	constraint	is	violated	
then	add	it	to	set	C:		

5.	If	no	new	constraint	was	added	then	terminate.	
Otherwise	go	to	step	2.	

3.	Compute	global	minimizers								at	current	w	

MRF-MAP	estimation	per	sample		
(unfortunately	NP-hard)		



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	

•  Alternatively,	we	can	solve	above	QP	in	the	dual	
domain	

•  dual	variables	↔	primal	constraints	
•  Too	many	variables,	but	most	of	them	zero	at	
optimal	solution	

•  Use	a	working-set	method		
(essentially	dual	to	constraint	generation)	



CRF	Training	via		
Dual	Decomposition	

Komodakis,	CVPR	2011	



CRF	training	

•  Key	issue:	can	we	exploit	the	CRF	structure	more	aptly	
during	training?	

•  Existing	max-margin	(maximum	likelihood)	methods:		
•  use	MAP	inference	(probabilistic	inference)	w.r.t.	

an	equally	complex	CRF	as	subroutine	
•  have	to	call	subroutine	many	times	during	learning	

•  Suboptimal	
•  computational	efficiency	?	
•  accuracy	?	
•  theoretical	guarantees/properties	?	



CRF	Training	via	Dual	Decomposition	

•  Reduces	training	of	complex	CRF	to	parallel	training	of	a	
series	of	easy-to-handle	slave	CRFs	

•  Handles	arbitrary	pairwise	or	higher-order	CRFs	

•  Uses	very	efficient	projected	subgradient	learning	scheme	

•  Allows	hierarchy	of	structured	prediction	learning	
algorithms	of	increasing	accuracy	

•  Efficient	max-margin	training	method	



Dual	Decomposition	for	MRF	
Optimization		

(another	recap)	



MRF	Optimization	via	Dual	
Decomposition	

•  Very	general	framework	for	MAP	inference	[Komodakis	
et	al.	ICCV07,	PAMI11]	

•  Master	 	= 	coordinator	 	(has	global	view)	
Slaves		 	= 	subproblems	 	(have	only	local	view)	



MRF	Optimization	via	Dual	
Decomposition	

•  Very	general	framework	for	MAP	inference	[Komodakis	
et	al.	ICCV07,	PAMI11]	

•  Master	 	= 	 	 			(MAP-MRF	on	hypergraph	G)
																														=		min	



MRF	Optimization	via	Dual	
Decomposition	

•  Very	general	framework	for	MAP	inference	[Komodakis	
et	al.	ICCV07,	PAMI11]	

•  Set	of	slaves		= 	 	 	 		
(MRFs	on	sub-hypergraphs	Gi	whose	union	covers	G)	

•  Many	other	choices	possible	as	well	



MRF	Optimization	via	Dual	
Decomposition	

•  Very	general	framework	for	MAP	inference	[Komodakis	
et	al.	ICCV07,	PAMI11]	

•  Optimization	proceeds	in	an	iterative	fashion	via	
master-slave	coordination 	 	 	 		
	



convex	dual	relaxation		

Set	of	slave	MRFs		

For	each	choice	of	slaves,	master	solves	(possibly	different)	
dual	relaxation	
•  Sum	of	slave	energies	=	lower	bound	on	MRF	optimum	
•  Dual	relaxation	=	maximum	such	bound	

MRF	Optimization	via	Dual	
Decomposition	



convex	dual	relaxation		

Set	of	slave	MRFs		

Choosing	more	difficult	slaves		 	tighter	lower	bounds	
		 	tighter	dual	relaxations	

⇒
⇒

MRF	Optimization	via	Dual	
Decomposition	



CRF	training	via		
Dual	Decomposition	



Max-margin	learning	via	dual	decomposition	



Max-margin	learning	via	dual	decomposition	

loss-augmented	potentials	

                



loss-augmented	potentials	

                

Max-margin	learning	via	dual	decomposition	



Learning	objective	intractable	due	to	this	term		
Problem	

Max-margin	learning	via	dual	decomposition	



Solution:	approximate	this	term	with	dual	relaxation	
from	decomposition		

Max-margin	learning	via	dual	decomposition	



Max-margin	learning	via	dual	decomposition	

now	

before	

Essentially,	training	of	complex	CRF	decomposed	to	
parallel	training	of	easy-to-handle	slave	CRFs	!!!	



Max-margin	learning	via	dual	decomposition	

•  Global	optimum	via	projected	subgradient	method		
(slight	variation	of	subgradient	method)	

Repeat		
	1.	compute	subgradient	at	current	w	
	2.	update	w by	taking	a	step	in	the	negative	subgradient	 	 	
	direction	
	3.	project	into	feasible	set	

until	convergence	

Projected	subgradient	



•  Input:	

•  K	training	samples	

•  Vector	valued	feature	functions	

Projected	subgradient	learning	algorithm	

•  Hypergraph	
(in	general	hypergraphs	can	vary	per	sample)			



Projected	subgradient	learning	algorithm	

so	as	to	satisfy	

fully	specified	from		

(we	only	need	to	know	how	to	optimize	slave	MRFs	!!)	



•  Resulting	learning	scheme:	

ü  Slave	problems	freely	chosen	by	the	user	

ü  Easily	adaptable	to	further	exploit	special	structure	of	
any	class	of	CRFs	

ü  Very	efficient	and	very	flexible	

ü  Requires	from	the	user	only	to	provide	an	optimizer	
for	the	slave	MRFs	

Projected	subgradient	learning	algorithm	



Choice	of	decompositions	

•  																																																																							
	(hierarchy	of	learning	algorithms)	

=	true	loss	(intractable)	

=	loss	when	using	decomposition	

•  																								
						(upper	bound	property)	

	



•  																																						denotes	following	decomposition:		
– One	slave	per	clique		
–  Corresponding	sub-hypergraph																														:	

																																													,	

•  Resulting	slaves	often	easy	(or	even	trivial)	to	solve	even	
if	global	problem	is	complex	and	NP-hard		
–  leads	to	widely	applicable	learning	algorithm	

•  Corresponding	dual	relaxation	is	an	LP	
–  Generalizes	well	known	LP	relaxation	for	pairwise	
MRFs	(at	the	core	of	most	state-of-the-art	methods)	

	

Choice	of	decompositions	



•  But	we	can	do	better	if	CRFs	have	special	structure…	

Choice	of	decompositions	

•  Structure	means:	
•  More	efficient	optimizer	for	slaves	(speed)	

•  Optimizer	that	handles	more	complex	slaves	
(accuracy)	

(Almost	all	known	examples	fall	in	one	of	above	two	cases)	

•  We	are	essentially	adapting	decomposition	to	exploit	the	
structure	of	the	problem	at	hand	



•  But	we	can	do	better	if	CRFs	have	special	structure…	

•  e.g.,	pattern-based	high-order	potentials	(for	a	clique	c) 
[Komodakis	&	Paragios	CVPR09]		

		 	subset	of	 	(its	vectors	called	patterns)	
	

Choice	of	decompositions	



•  Tree	decomposition	
(Ti  are	spanning	trees	that	cover	the	graph)	

Choice	of	decompositions	

•  No	improvement	in	accuracy	

•  But	improvement	in	speed	
(																				converges	faster	than																						)		



Image	denoising	
•  Piecewise	constant	images	

•  Potentials:	

•  Goal:	learn	pairwise	potential		

Z	 X	

( )k
p p p pu x x z= − ( ) ( ),k

pq p q p qh x x V x x= −



Image	denoising	

	learnt	potential	



Image	denoising	



Stereo	matching	
•  Potentials:	

•  Goal:	learn	function	f (.)	for	gradient-modulated	Potts	model		

( ) ( ) ( )k left right
p p pu x I p I p x= − −

( ) ( ), ( )k left
pq p q p qh x x f I p x x⎡ ⎤= ∇ ≠⎣ ⎦

	learnt	function		f 



Stereo	matching	

“Venus”	disparity	using		f (.)	as	estimated	at	
different	iterations	of	learning	algorithm	

•  Potentials:	

•  Goal:	learn	function	f (.)	for	gradient-modulated	Potts	model		

( ) ( ) ( )k left right
p p pu x I p I p x= − −

( ) ( ), ( )k left
pq p q p qh x x f I p x x⎡ ⎤= ∇ ≠⎣ ⎦

[Middlebury	dataset]	



Stereo	matching	

Sawtooth	
4.9%	

Poster		
3.7%	

Bull	
2.8%	

•  Potentials:	

•  Goal:	learn	function	f (.)	for	gradient-modulated	Potts	model		

( ) ( ) ( )k left right
p p pu x I p I p x= − −

( ) ( ), ( )k left
pq p q p qh x x f I p x x⎡ ⎤= ∇ ≠⎣ ⎦

[Middlebury	dataset]	



Stereo	matching	
•  Potentials:	

•  Goal:	learn	function	f (.)	for	gradient-modulated	Potts	model		

( ) ( ) ( )k left right
p p pu x I p I p x= − −

( ) ( ), ( )k left
pq p q p qh x x f I p x x⎡ ⎤= ∇ ≠⎣ ⎦



High-order	Pn	Potts	model	

Cost	for	optimizing	slave	CRF:	O(|L|)		

•  100	training	samples	
•  50x50	grid	
•  clique	size	3x3	
•  5	labels	(|L|=5)	

[Kohli	et	al.	CVPR07]	

Goal:	learn	high	order	CRF	with	potentials	given	by	

Fast	training	


