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Context

« Example: network optimization problems

Nodes Arcs Flow
Intersections Roads Vehicles
Airports Air lanes Aircraft
Switching points Wires, channels Messages
Pumping stations Pipes Fluids
Work centers Materials-handling routes Jobs




Maximum flow problem

* Applications

— Maximize the flow through a company’s
distribution network from factories to
customers

— Maximize the flow of oil through a system of
pipelines

— Maximize the flow of vehicles through a
transportation network



Functions on Arcs
D= (V, A)

Arc capacities c(a)

Function f: A = Reals

Excess function E«(v)

Incoming value

Outgoing value
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Functions on Arcs
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Arc capacities c(a)

Function f: A = Reals

Excess function E«(v)
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Functions on Arcs
D= (V, A)

Arc capacities c(a)

Function f: A = Reals

Excess function E«(v)
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Excess Functions of Vertex Subsets

Excess function E{(U)

Incoming Value

Outgoing Value




Excess Functions of Vertex Subsets

Excess function E{(U)

zaein-arcs(U) f(a)

Zanut-arcs(U) f(a)




Excess Functions of Vertex Subsets

Excess function E{(U)

f(in-arcs(U))

f(out-a-rcs(U))

E({v1,v2}) 3




Excess Functions of Vertex Subsets

Excess function E{(U)

f(in-arcs(U))
f(out-a-rcs(U))

Eq({vq,v2}) -6+ 14

E«(U) = 2oy EAV)
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s-t Flow

Function flow: A= R

Flow of arc < arc capacity

Flow is non-negative

For all vertex except s,t

Incoming flow

= Qutgoing flow




s-t Flow
Function flow: A = R
flow(a) < c(a)
flow(a) 2 0
Forallve V\{s,t}

2 uvyea flow((u,v))

= z(v,u)EA ﬂOW((Va u ))




s-t Flow
Function flow: A = R
flow(a) < c(a)
flow(a) 2 0
Forallve V\{s,t}
Efow(V) =0
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s-t Flow
Function flow: A = R
flow(a) < c(a)
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s-t Flow

Function flow: A= R

11 8
Q flow(a) < c(a)
v flow(a) 2 0
13 2
. Forallve V\ {s,t}
v Efow(V) =0
7 13

v



Value of s-t Flow

Outgoing flow of s

- Incoming flow of s




Value of s-t Flow

'Eflow(s) Eflow(t)

2 (s.vjea Tlow((s,v))

- 2, s)ea Tlow((u,s))




Value of s-t Flow

Eflow(s Eflow(t)

2 (s.vjea Tlow((s,v))

- 2, s)ea TlOw((u,s))
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Cut
D =(V, A)

Let U be a subset of V

C is a set of arcs such that
* (uv)EA

e ueu

e v&eV\U

C is a cut in the digraph D



Cut
D =(V, A)

What is C?
{(V1,V2),(Vq,vy)} 7
{(V4,V4),(V3,V,)} 7

VAR (A ¥

VAU



Cut
D =(V, A)

V\U U

What is C?
{(V1,V2),(V1,V4),(V3,V2)} 7
V' {(Vava)}?

{(V4,V4),(V3,V,)} 7




Cut
D =(V, A)

U VAU

What is C?
/ {(V4,V2),(V4,V4),(V3,V5)} 2
{(v3,Vp)} 7

{(V4,V4),(V3,V,)} 7




Cut
D =(V, A)

C = out-arcs(U)




Capacity of Cut

Sum of capacity of all
arcs in C




Capacity of Cut

Za eC C(a)




Capacity of Cut

VAU



Capacity of Cut

15




s-t Cut
D=(V,A)
A source vertex “s”
A sink vertex “t”

C iIs a cut such that
e s U
e teV\U

C is an s-t cut




Capacity of s-t Cut

za eC C(a)




Capacity of s-t Cut




Capacity of s-t Cut

17
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Flows vs. Cuts

An s-t flow function : A = Reals

An s-t cut C suchthatse U, t e V\U

Value of flow < Capacity of C



Flows vs. Cuts

Value of flow =-E;_,/(S)
= -Efouw(S) - szU\{S} Eqow(V)
= 'Eflow(U)

= flow(out-arcs(U))
- flow(in-arcs(U))

< Capacity of C
- flow(in-arcs(U))



Flows vs. Cuts

Value of flow =-Eg_.(s)
= “Enow(S) - Zveuys) EnowlV)
= -Eqow(U)

= flow(out-arcs(U))
- flow(in-arcs(U))

< Capacity of C

When does equality hold?



Flows vs. Cuts

Value of flow =-E;_,/(S)

= 'Eflow(s) - ZVEU\{S} Eflow(v)

= - Eflow( U )

< Capacity of C

flow(a) = c(a), a € out-arcs(U) flow(a) =0, a € in-arcs(U)



Flows vs. Cuts

Value of flow =-Eg_.(s)
= “Enow(S) - Zveuys) EnowlV)
= -Eqow(U)

= flow(out-arcs(U))
- flow(in-arcs(U))

= Capacity of C

flow(a) = c(a), a € out-arcs(U) flow(a) =0, a € in-arcs(U)
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Maximum Flow Problem

Find the flow with the
maximum value !!

z(s,v)EA ﬂOW((S,V))

) z(u,s.)EA flow((u,s))

First suggestion to solve this problem !!



Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs




Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs

Pass maximum allowable
flow through the arcs




Passing Flow through s-t Paths

Find an s-t path where

4 2 flow(a) < c(a) for all arcs

Pass maximum allowable

2 2 flow through the arcs



Passing Flow through s-t Paths

Find an s-t path where

4 2 flow(a) < c(a) for all arcs

No more paths. Stop.

Will this give us maximum flow? NO !l



Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs

Pass maximum allowable

2 2 flow through the arcs



Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs

No more paths. Stop.

Another method?

Incorrect Answer !!
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Residual Graph

Arcs where flow(a) < c(a)



Residual Graph

2 2

Including arcs to s and from t is not necessary
Inverse of arcs where flow(a) > 0



Maximum Flow using Residual Graphs

Start with zero flow.



Maximum Flow using Residual Graphs

Find an s-t path in the residual graph.



Maximum Flow using Residual Graphs

Find an s-t path in the residual graph.



Maximum Flow using Residual Graphs

For inverse arcs in path, subtract flow K.



Maximum Flow using Residual Graphs

Choose maximum allowable value of K.
For forward arcs in path, add flow K.



Maximum Flow using Residual Graphs

2 2

Choose maximum allowable value of K.
For forward arcs in path, add flow K.



Maximum Flow using Residual Graphs

Update the residual graph.



Maximum Flow using Residual Graphs

Find an s-t path in the residual graph.



Maximum Flow using Residual Graphs

Find an s-t path in the residual graph.



Maximum Flow using Residual Graphs

2 2

Choose maximum allowable value of K.
Add K to (s,v,) and (v,,t). Subtract K from (v,,v,).



Maximum Flow using Residual Graphs

2 2

Choose maximum allowable value of K.
Add K to (s,v,) and (v,,t). Subtract K from (v,,v,).



Maximum Flow using Residual Graphs

Update the residual graph.



Maximum Flow using Residual Graphs

Find an s-t path in the residual graph.



Maximum Flow using Residual Graphs

No more s-t paths. Stop.



Maximum Flow using Residual Graphs

Correct Answer.



Maximum Flow using Residual Graphs

How can | be sure this will always work?
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Max-Flow Min-Cut

2 2

tis notin U.

Let the subset of vertices U be reachable from s.



Max-Flow Min-Cut

2 2

Or else a will be in the residual graph.

For all a € out-arcs(U), flow(a) = c(a).



Max-Flow Min-Cut

2 2

Or else inverse of a will be in the residual graph.

For all a € in-arcs(U), flow(a) = 0.



Max-Flow Min-Cut

2 2

For all a € out-arcs(U), flow(a) = c(a).
For all a € in-arcs(U), flow(a) = 0.



Flows vs. Cuts

Value of flow =-Eg_.(s)
= “Enow(S) - Zveuys) EnowlV)
= -Eqow(U)

= flow(out-arcs(U))
- flow(in-arcs(U))

= Capacity of C

flow(a) = c(a), a € out-arcs(U) flow(a) =0, a € in-arcs(U)



Max-Flow Min-Cut

2 2

Minimum Cut Maximum Flow
Capacity(C)

Value(flow)
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Ford-Fulkerson Algorithm

Start with flow = 0 for all arcs.
Find an s-t path in the residual graph.

Pass maximum allowable flow.
—REPEAT

Subtract from inverse arcs.

Add to forward arcs.

—

Until s and t are disjoint in the residual graph.



Ford-Fulkerson Algorithm

Start with zero flow



Ford-Fulkerson Algorithm

Find an s-t path in the residual graph.



Ford-Fulkerson Algorithm

Find an s-t path in the residual graph.



Ford-Fulkerson Algorithm

Pass the maximum allowable flow.



Ford-Fulkerson Algorithm

Pass the maximum allowable flow.



Ford-Fulkerson Algorithm

Update the residual graph.



Ford-Fulkerson Algorithm

Find an s-t path in the residual graph.



Ford-Fulkerson Algorithm

Find an s-t path in the residual graph.



Ford-Fulkerson Algorithm

Complexity is exponential in k.



Ford-Fulkerson Algorithm

For examples, see Uri Zwick, 1993

Irrational arc lengths can lead to infinite iterations.



Ford-Fulkerson Algorithm

Choose wisely.

There are good paths and bad paths.
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Dinits Algorithm

Start with flow = 0 for all arcs.

Find the minimum s-t path
In the residual graph.

Pass maximum allowable flow. -
REPEAT

Subtract from inverse arcs.

Add to forward arcs.

—

Until s and t are disjoint in the residual graph.



Dinits Algorithm

Start with zero flow



Dinits Algorithm

Find the minimum s-t path in the residual graph.



Dinits Algorithm

Find the minimum s-t path in the residual graph.



Dinits Algorithm

Pass the maximum allowable flow.



Dinits Algorithm

Pass the maximum allowable flow.



Dinits Algorithm

Update the residual graph.



Dinits Algorithm

Find the minimum s-t path in the residual graph.



Dinits Algorithm

Find the minimum s-t path in the residual graph.



Dinits Algorithm

Pass the maximum allowable flow.



10K
10k

10K
10K

Dinits Algorithm

10K
10K

Pass the maximum allowable flow.



10K
10k

10K
10K

Dinits Algorithm

10K
10K

Update the residual graph.



10K
10k

10K
10K

Dinits Algorithm

10K
10K

No more s-t paths. Stop.



Solvers for the Minimum-Cut Problem

Augmenting Path and Push-Re
year | discoverer(s) | bound

1951 | Dantzig O(n?mU)

1955 | Ford & Fulkerson O(m?U)

1970 | Dinitz O(n’m)

1972 | Edmonds & Karp O(m?logU)

1973 | Dinitz O(nmlogU)

1974 | Karzanov O(n>)

1977 | Cherkassky O (n?°m1/?)

1980 | Galil & Naamad O(nmlog?n)

1983 | Sleator & Tarjan O(nmlogn)

1986 | Goldberg & Tarjan O(nmlog(n?/m))

1987 | Ahuja & Orlin O(nm + n?log U)

1987 | Ahuja et al. O(nmlog(nylogU/m))
1989 | Cherivan & Hagerup | E(nm + n?log?n)

1990 | Cheriyan et al. O(n3/logn)

1990 | Alon O(nm + n®3logn)

1992 | King et al. O(nm + n?Te)

1993 | Phillips & Westbrook | O(nm(log,,;,n + log?T<n))
1994 | King et al. O(nm 109, /(n10gn) ™)
1997 | Goldberg & Rao O(m3/?1og(n?/m)logU)

(.')(/12*’:3/71 |Og(/12‘,ﬂ"‘n1) log U)

abel

n: #nodes
m: #arcs

U: maximum
arc length

[Slide credit: Andrew Goldberg]



Max-Flow in Computer Vision

« Specialized algorithms for vision
problems ®
— Grid graphs
— Low connectivity (m ~ O(n)) ¢

 Dual search tree augmenting path
algorithm
[Boykov and Kolmogorov PAMI 2004]

* Finds approximate shortest
augmenting paths efficiently

« High worst-case time complexity
« Empirically outperforms other

. - 5 4.0 .000 .0
algorithms on vision problems ""...
+ Efficient code available on the web

http://www.adastral.ucl.ac.uk/~vladkolm/software.html
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Interactive Binary Segmentation

Foreground histogram of RGB values FG
Background histogram of RGB values BG

‘1" indicates foreground and ‘O’ indicates background



Interactive Binary Segmentation

More likely to be foreground than background



Interactive Binary Segmentation

0,(0) proportional to -log(BG(d,))
0,(1) proportional to -log(FG(d,))

More likely to be background than foreground



Interactive Binary Segmentation

‘ ‘ ‘ More likely to belong to same label




Interactive Binary Segmentation

6,,(i.k) proportional to exp(-(d,-dp)?) if i # k
B,q(i,k) = 0ifi=k

Less likely to belong to same label



Overview

One vertex per random variable

R D

Compute
Minimum
Cut

+ Additional vertices “s” and “t”
U and V\U

Digraph

v, € Uimplies x, = 0

Labeling

) ¢ Vv, € VAU implies x, = 1




Digraph for Unary Potentials

0,(1)




Digraph for Unary Potentials




Digraph for Unary Potentials

- e
B X, =1

xp—1

Constant

A
B
0

0




Digraph for Unary Potentials

LetA=B




Digraph for Unary Potentials

LetA<B




Digraph for Unary Potentials

LetA<B

X, = 0
Constant

0

.+

B-A



Digraph for Pairwise Potentials
Bpq(1,1)

x. =0 X, =1

1 B D

A A

B-A B-A



Digraph for Pairwise Potentials

AN
Xq =1 B D ‘
Constant ‘ ‘

B

B-A B-A




Digraph for Pairwise Potentials

e
0

, 0 DB 0 C:BDA
0 D-B 0 0

Unary Potential
Xq =1

B-A B-£




Digraph for Pairwise Potentials

Unary Potential --

Xp =1 0 DB/ 0 0




Digraph for Pairwise Potentials

Pairwise Potential
X, = 1, Xq = 0



Digraph for Pairwise Potentials

C+B-D-Az20 Submodular Energy

General 2-label MAP estimation is NP-hard



Results — Image Segmentation

Boykov and Jolly, ICCV 2001



Results — Image Segmentation

Boykov and Jolly, ICCV 2001



Results — Image Segmentation

Boykov and Jolly, ICCV 2001



Results — Image Synthesis

Kwatra et al., SIGGRAPH 2003



Results — Image Synthesis

Kwatra et al., SIGGRAPH 2003
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St-mincut based Move algorithms
E(x) = Z O (x;) + Z 0, (xi.x;)
i i,

X € Labels L = {Il, Iz, o, Ik}

 Commonly used for solving non-
submodular multi-label problems

« Extremely efficient and produce good
solutions

* Not Exact: Produce local optima



Move-Making Algorithms

Space of All Labelings




Energy

Move Making Algorithms

Solution Space

Current Solution

| .......... Search
Neighbourhood

........ » Optimal Move



Computing the Optimal Move

Energy

Current Solution

| .......... Search
Neighbourhood

........ » Optimal Move

Key Property
Move Space

Solution Space

Bigger move
space

» Better solutions

* Finding the optimal move hard




Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

* Makes a series of changes to the solution (moves)
« Each move results in a solution with smaller energy

® Current Solution

Search
° Neighbourhood

Move Space (t) : 2V N Number of
Variables

L Number of

Space of Solutions (x) : LN Labels




Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

* Makes a series of changes to the solution (moves)
« Each move results in a solution with smaller energy

Current Solution

Construct a move HOW to
solution function minimize move

functions?

Minimize move function
to get optimal move




Expansion Algorithm

Variables take label |, or retain current label
—p [ Tree

—l Ground
— House
Status: MDipializbBigisddee —p [ Sky

Slide courtesy Pushmeet Kohli



Expansion Algorithm

Initialize labeling x = x° (say x°, = 0, for all X))

Fora=1,62, ..., h-1

X% = argmin,. E(x’)

Repeat
s.t. X', € {x,} U {l,} - until
convergence
Update x = x©
End —

Boykov, Veksler and Zabih, 2001



Expansion Algorithm

Restriction on pairwise potentials?

 Move energy is submodular if:
— Unary Potentials: Arbitrary
— Pairwise potentials: Metric

eij (o.1p) + eij (I,.1) 2 eij (1..10)

Example: Potts model

[Boykov, Veksler, Zabih]



Swap Move

« Variables labeled a, # can swap their labels

Swap Sky, House — House
—p [ Sky

[Boykov, Veksler, Zabih]



Swap Move

« Variables labeled a, # can swap their labels

 Move energy is submodular if:
— Unary Potentials: Arbitrary

— Pairwise potentials: Semimetric
eij ('avlb) >0

eij (laclb) - O P Q = b

Example: Potts model

[Boykov, Veksler, Zabih]



General Binary Moves

X = t;ﬂ + (1-t) x?

New First Second
solution solution solution

Minimize over move variables t

Move Type First Second Guarantee
Solution Solution

Expansion Old solution All alpha Metric
Fusion Any solution  Any solution x



Solving Continuous Problems using
Fusion Move

x = tx!+ (1-t) x?

2

Optical Flow
Example

P 5 P G T SRR a2 e 3 <

- T N+ RS
Solution & &
~“-& A Agsadgre. €5 4|
from %o
Method 2 . =

Solution |
Method 1 x1 X

Final
Solution

(Lempitsky et al. CVPR08, Woodford et al. CVPRO08)



Results — Denoising + Inpainting




Results — Denoising + Inpainting




Results — Denoising + Inpainting




Results — Denoising + Inpainting




Paper presentation

« Tarabalka et al., “Spatio-temporal video
segmentation with shape growth or
shrinkage constraint”, Transactions on
Image Processing 2014.



