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Part	I 
Recap:	MRFs	and	Convex	

Relaxa:ons	



Discrete	MRF	op:miza:on	

•  Given:	
– Objects					from	a	graph	
– Discrete	label	set		

•  Assign	labels	(to	objects)	that	minimize	MRF	energy:	

edges	objects	

pairwise	poten:al	unary	poten:al	



Discrete	MRF	op:miza:on	

•  MRF	op:miza:on	ubiquitous	in	computer	vision	
•  segmenta:on 	stereo	matching	
op:cal	flow 	image	restora:on	
image	comple:on	 	object	detec:on/localiza:on	
...	

•  and	beyond	
•  medical	imaging,	computer	graphics,	digital	
communica:ons,	physics…	

	

•  Extensive	research	for	more	than	20	years	

•  Really	powerful	formula:on	



How	to	handle	MRF	op:miza:on?	
n  Unfortunately,	discrete	MRF	op:miza:on	is	extremely	
hard	(a.k.a.	NP-hard)	
q  E.g.,	highly	non-convex	energies	

MRF	pairwise	poten/al	

MRF	hardness	

linear	

exact	global		
op:mum	

arbitrary	

local	op:mum	

metric	

global	op:mum		
approxima:on		



How	to	handle	MRF	op:miza:on?	

MRF	pairwise	poten/al	

MRF	hardness	

linear	

exact	global		
op:mum	

arbitrary	

local	op:mum	

metric	

global	op:mum		
approxima:on		

We want: 
Move right in the horizontal axis,  
And remain low in the vertical axis  
(i.e. still be able to provide approximately optimal solution) 
 
We want to do it efficiently (fast)! 



MRFs and Optimization 
n  Deterministic methods 

q  Iterated conditional modes 
n  Non-deterministic methods 

q  Mean-field and simulated annealing 
n  Graph-cut based techniques such as alpha-

expansion 
q  Min cut/max flow, etc. 

n  Message-passing techniques 
q  Belief propagation networks, etc. 



n  We would like to have a method which 
provides theoretical guarantees to obtain a 
good solution 

n  Within a reasonably fast computational 
time 



Discrete optimization problems 

n  Typically x lives on a very high dimensional 
space 



How	to	handle	MRF	op:miza:on?	
n  Unfortunately,	discrete	MRF	op:miza:on	is	extremely	
hard	(a.k.a.	NP-hard)	
q  E.g.,	highly	non-convex	energies	

n  So	what	do	we	do?	
q  Is	there	a	principled	way	of	dealing	with	this	problem?	

n  Well,	first	of	all,	we	don’t	need	to	panic. 
Instead,	we	have	to	stay	calm	and	RELAX!	

n  Actually,	this	idea	of	relaxing	may	not	be	such	a	bad	
idea	aaer	all…	



The	relaxa:on	technique	
n  Very	successful	technique	for	dealing	with	difficult	
op:miza:on	problems		

n  Prac:cal	assump:ons:	
q  Relaxed	problem	must	always	be	easier	to	solve	
q  Relaxed	problem	must	be	related	to	the	original	one	

n  It	is	based	on	the	following	simple	idea:	
q  try	to	approximate	your	original	difficult	problem	with	

another	one	(the	so	called	relaxed	problem)	which	is	easier	
to	solve	



The	relaxa:on	technique		

true	op:mal	
solu:on	

op:mal	solu:on	to	
relaxed	problem	

feasible	set	

relaxed	
problem	



How	do	we	find	easy	problems?	

n  Convex	op:miza:on	to	the	rescue	
"…in	fact,	the	great	watershed	in	op4miza4on	isn't	
between	linearity	and	nonlinearity,	but	convexity	and	
nonconvexity"		 -	R.	Tyrrell	Rockafellar,	in	SIAM	Review,	1993		

n  Two	condi:ons	for	an	op:miza:on	problem	to	
be	convex:	
q  convex	objec:ve	func:on	
q  convex	feasible	set	



Why	is	convex	op:miza:on	easy?	

convex 
objective 
function 

n  Because	we	can	simply	let	gravity	do	all	the	hard	
work	for	us	

n  More	formally,	we	can	let	gradient	descent	do	all	
the	hard	work	for	us	

gravity 
force 



Why	do	we	need	the	feasible	set	to	be	
convex	as	well?	
n  Because,	otherwise	we	may	get	stuck	in	a	local	
op:mum	of	we	simply	“follow	gravity”	



How	do	we	get	a	convex	relaxa:on?	

n  By	dropping	some	constraints		
(so	that	the	enlarged	feasible	set	is	convex)	

	
n  By	modifying	the	objec:ve	func:on		
(so	that	the	new	func:on	is	convex)	

	
n  By	combining	both	of	the	above	



Linear	programming	(LP)	relaxa:ons	

•  Op:mize	linear	func:on	subject	to	linear	constraints,	
i.e.:	

•  Very	common	form	of	a	convex	relaxa:on,	because:	
•  Typically	leads	to	very	efficient	algorithms	

(important	due	to	large	scale	nature	of	problems	in	
computer	vision)		

•  Also	oaen	leads	to	combinatorial	algorithms		

•  Surprisingly	good	approxima:on	for	many	problems	
		



Geometric	interpreta:on	of	LP	

Max	Z	=	5X	+	10Y	
s.t.		
X	+	2Y	<=	120	
X	+	Y	>=	60	
X	–	2Y	>=	0	
X,	Y	>=	0	



MRFs	and	Linear	Programming	

•  Tight	connec:on	between	MRF	op:miza:on	and		
Linear	Programming	(LP)	recently	emerged	

	
•  Ac:ve	research	topic	with	a	lot	of	interes:ng	work:	
	

– MRFs	and	LP-relaxa:ons	[Schlesinger]	[Boros]		
[Wainwright	et	al.	05]	[Kolmogorov	05]	[Weiss	et	al.	07]		
[Werner	07]	[Globerson	et	al.	07]	[Kohli	et	al.	08]…	

	
–  Tighter/alterna:ve	relaxa:ons		
[Sontag	et	al.	07,	08]	[Werner	08]	[Kumar	et	al.	07,	08]		



MRFs	and	Linear	Programming	

•  E.g.,	state	of	the	art	MRF	algorithms	are	now	known	
to	be	directly	related	to	LP:	

–  Graph-cut	based	techniques	such	as	a-expansion:	
generalized	by	primal-dual	schema	algorithms	
(Komodakis	et	al.	05,	07)	

further	generalized	by	Dual-Decomposi:on	(Komodakis	07)		
	

– Message-passing	techniques:	

•  The	above	statement	is	more	or	less	true	for	almost	
all	state-of-the-art	MRF	techniques	



Part	II 
Primal-dual	schema 

	



The primal-dual schema 
n  Highly successful technique for exact algorithms. Yielded 

exact algorithms for cornerstone combinatorial problems: 

  matching    network flow   
 minimum spanning tree  minimum branching 

  shortest path   ... 
 

n  Soon realized that it’s also an extremely powerful tool for 
deriving approximation algorithms [Vazirani]: 

  set cover    steiner tree 
  steiner network   feedback vertex set 
  scheduling    ... 



The primal-dual schema 

n  Conjecture:  
 
Any approximation algorithm can be 
derived using the primal-dual schema 

 (has not been disproved yet) 



The primal-dual schema 
§  Say we seek an optimal solution x* to the following 

integer program (this is our primal problem):  

(NP-hard problem) 

§  To find an approximate solution, we first relax the 
integrality constraints to get a primal & a dual linear 
program:  

primal LP: dual LP: 



Duality 

Duality
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�7Theorem: 
If the primal has an optimal solution,  
the dual has an optimal solution with the same cost 



The primal-dual schema 
n  Goal: find integral-primal solution x, feasible dual solution y 

such that their primal-dual costs are “close enough”, e.g.,  
 

Tb y Tc x
primal cost of  

solution x 
dual cost of  
solution y 

*Tc x
cost of optimal  

integral solution x* 

*f≤
T

T
c x
b y

*
*f≤

T

T
c x
c x

Then x is an f*-approximation to optimal solution x* 



General form of the dual 



Properties of Duality 

n  The dual of the dual is the primal 



Primal and Dual 



Properties of Duality 

n  The dual of the dual is the primal 



Primal and Dual 



Properties of Duality 

n  The dual of the dual is primal 



Primal/Dual Relationships 



Primal/Dual Relationships 



Certificate of Optimality 

n  NP-complete problems 
q  Certificate of feasibility 

n  Can you provide 
q  A certificate of optimality? 

n  Consider now a linear program 
q  Can you convince me that you have found an 

optimal solution? 



Certificate of Optimality 



Bounding 



Bounding 



Bounding 



Bounding 



Bounding 



Bounding 



Bounding 



Bounding 



Bounding 



Bounding 



Bounding 



Bounding 



Complementarity slackness 

n  Let x* and y* be the optimal solutions to 
the primal and dual. The following 
conditions are necessary and sufficient for 
the optimality of x* and y*: 



Economic Interpretation 
Maximizing profit: 

Capacity constraints on 
your production: 



Primal-Dual 

n  Why using the dual? 
q  I have an optimal solution and I want to add a 

new constraint 
q  The dual is still feasible (I am adding a new 

variable); the primal is not 
q  Optimize the dual and the primal becomes 

feasible at optimality 



The primal-dual schema 

1Tb y 1Tc x

sequence of dual costs sequence of primal costs 

2Tb y … kTb y
*Tc x unknown optimum 

2Tc x… kTc x

k
*

k f≤
T

T
c x
b y

n  The primal-dual schema works iteratively 

n  Global effects, through local improvements! 

n  Instead of working directly with costs (usually not easy), 
use relaxed complementary slackness conditions (easier) 

n    Different relaxations of complementary slackness  
 Different approximation algorithms!!! 



The primal-dual schema for MRFs 

(only one label assigned per vertex) 
 

enforce consistency between     
variables xp,a, xq,b and variable xpq,ab 
 

Binary 
variables 
 

xp,a=1  label a is assigned to node p 
xpq,ab=1  labels a, b are assigned to nodes p, q 
 



Complementary slackness 

 
 
Complementary slackness conditions: 
 
 
Theorem. If x and y are primal and dual feasible and 
satisfy the complementary slackness condition then 
they are both optimal. 

primal LP: dual LP: 



Relaxed complementary slackness 

 
 
Exact CS: 
 
Relaxed CS: 
 
          implies 'exact' complemetary slackness (why?) 
 
Theorem. If x, y primal/dual feasible and satisfy the 
relaxed CS condition then x is an f-approximation of the 
optimal integral solution, where f = max_j f_j. 

primal LP: dual LP: 



Complementary slackness and 
the primal-dual schema 
Theorem (previous slide). If x, y primal/dual feasible 
and satisfy the relaxed CS condition then x is an f-
approximation of the optimal integral solution, where f = 
max_j f_j. 
 
Goal of the primal dual schema: find a pair (x,y) that 
satisfies: 
- Primal feasibility 
- Dual feasibility 
- (Relaxed) complementary slackness conditions. 



n  Regarding the PD schema for MRFs, it turns out that: 
each update of 
primal and dual 

variables 

solving max-flow in 
appropriately 

constructed graph 

n  Max-flow graph defined from current primal-dual pair (xk,yk)  
q  (xk,yk) defines connectivity of max-flow graph 
q  (xk,yk) defines capacities of max-flow graph 

n  Max-flow graph is thus continuously updated 

n  Resulting flows tell us how to update both: 
q  the dual variables, as well as 
q  the primal variables 

for each iteration of 
primal-dual schema 

FastPD: primal-dual schema for MRFs 



n  Very general framework. Different PD-algorithms by 
RELAXING complementary slackness conditions differently. 

n  Theorem: All derived PD-algorithms shown to satisfy 
certain relaxed complementary slackness conditions 

n  Worst-case optimality properties are thus guaranteed  

n  E.g., simply by using a particular relaxation of complementary 
slackness conditions (and assuming Vpq(·,·) is a metric)  
THEN resulting algorithm shown equivalent to a-expansion! 
[Boykov,Veksler,Zabih]  

n  PD-algorithms for non-metric potentials Vpq(·,·) as well 

FastPD: primal-dual schema for MRFs 



Per-instance optimality guarantees 

n  Primal-dual algorithms can always tell you (for free) how 
well they performed for a particular instance 

2Tb y *Tc x

unknown optimum 

2Tc x1Tb y 1Tc x… kTb y … kTc x

T

T
c x
b y

2

2 2r =

per-instance approx. factor 

per-instance lower bound  
(per-instance certificate) 

per-instance upper bound  



Computational efficiency (static MRFs) 
n  MRF algorithm only in the primal domain (e.g., a-expansion) 

primalk primalk-1 primal1 
… 

primal costs 

dual1 

fixed dual cost 
gapk 

STILL BIG Many augmenting paths per max-flow 

Theorem: primal-dual gap = upper-bound on #augmenting paths 
(i.e., primal-dual gap indicative of time per max-flow) 

dualk dual1 dualk-1 
… 

dual costs 
gapk 

primalk primalk-1 primal1 
… 

primal costs 

SMALL Few augmenting paths per max-flow 

n  MRF algorithm in the primal-dual domain (Fast-PD) 



Computational efficiency (static MRFs) 

dramatic decrease 

always very high 

n  Incremental construction of max-flow graphs 
(recall that max-flow graph changes per iteration) 

Possible because we keep both primal and dual information 

n  Principled way for doing this construction via the primal-dual 
framework 

n    

noisy image denoised image 



Computational efficiency (static MRFs) 
penguin Tsukuba SRI-tree 

almost constant 

dramatic decrease 



Computational efficiency (dynamic MRFs) 
n  Fast-PD can speed up dynamic MRFs [Kohli,Torr] as well 

(demonstrates the power and generality of this framework) 

gap 

primalx dualy 

SMALL 

primalx 

gap 

dualy 

SMALL 
few path augmentations 

primalx 

SMALL 

gap 

dual1 

fixed dual cost 

primalx 

gap 
LARGE 

many path augmentations 

n  Principled (and simple) way to update dual variables when 
switching between different MRFs 

Fast-PD algorithm 

primal-based 
algorithm 



Drop: Deformable Registration using 
Discrete Optimization [Glocker et al. 07, 08] 

n  Easy to use GUI 
n  Main focus on medical imaging 
n  2D-2D registration 
n  3D-3D registration 
n  Publicly available: 

http://campar.in.tum.de/Main/Drop 



primal-dual  
framework 

Handles wide 
class of MRFs 

Approximately 
optimal  

solutions 

Theoretical 
guarantees AND  
tight certificates 

per instance 

Significant speed-up 
for static MRFs 

Significant speed-up 
for dynamic MRFs 

-  New theorems 
- New insights into 
 existing techniques 

- New view on MRFs 
 



Powerful	framework	for	systema:cally	tackling		
the	MRF	op:miza:on	problem	

Unifying	view	for	the	state-of-the-art		
MRF	op:miza:on	techniques	

Take	home	message:	

LP	and	its	duality	theory	provides:	


