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Recap: MRFs and Convex
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Discrete MRF optimization

o —
* @Given: / \/\
— Objects V from a graph G = (V’ S)O\‘ -
N X

— Discrete label set £
objects )% edges E

e Assign labels (to objects) that minimize MRF energy:

t

unary potential  pairwise potential



Discrete MRF optimization

Extensive research for more than 20 years

MRF optimization ubiquitous in computer vision

* segmentation stereo matching
optical flow image restoration
image completion  object detection/localization

and beyond

 medical imaging, computer graphics, digital
communications, physics...

Really powerful formulation



How to handle MRF optimization?

Unfortunately, discrete MRF optimization is extremely
hard (a.k.a. NP-hard)

o E.g., highly non-convex energies

MRF hardness

local optimum

global optimum /
approximation /
exact global

ootimum MRF pairwise potential
p d

linear metric arbitrary



How to handle MRF optimization?

MRF hardness

local optimum

global optimum

apprOXimation ---7..........................
exact global

ootimum MRF pairwise potential
P —p

linear metric arbitrary

We want:
Move right in the horizontal axis,

And remain low in the vertical axis
(i.e. still be able to provide approximately optimal solution)

We want to do it efficiently (fast)



MRFs and Optimization

Deterministic methods
o Iterated conditional modes

Non-deterministic methods
0 Mean-field and simulated annealing

Graph-cut based techniques such as alpha-
expansion

o Min cut/max flow, etc.

Message-passing techniques
o Belief propagation networks, etc.



We would like to have a method which
provides theoretical guarantees to obtain a
good solution

Within a reasonably fast computational
time



Discrete optimization problems

min f(x) (optimize an objective function)

st.z € C, (subject to some constraints)

this is the so called feasible seft,
containing all x satisfying the constraints

= Typically x lives on a very high dimensional
space



How to handle MRF optimization?

Unfortunately, discrete MRF optimization is extremely
hard (a.k.a. NP-hard)

o E.g., highly non-convex energies

So what do we do?
0 Is there a principled way of dealing with this problem?

Well, first of all, we don’t need to panic.
Instead, we have to stay calm and RELAX!

Actually, this idea of relaxing may not be such a bad
idea after all...



The relaxation technique

Very successful technique for dealing with difficult
optimization problems

It is based on the following simple idea:

o try to approximate your original difficult problem with
another one (the so called relaxed problem) which is easier
to solve

Practical assumptions:
0 Relaxed problem must always be easier to solve
0 Relaxed problem must be related to the original one



The relaxation technique

relaxed
problem

fr(z)

' optimal solution to

true optimal |
. relaxed problem

solution

feasible set



How do we find easy problems?

Convex optimization to the rescue

"...in fact, the great watershed in optimization isn't
between linearity and nonlinearity, but convexity and

nonconvexity" - R. Tyrrell Rockafellar, in SIAM Review, 1993

Two conditions for an optimization problem to
be convex:

0 convex objective function

0 convex feasible set



Why is convex optimization easy?

Because we can simply let gravity do all the hard
work for us

convex // ?gﬁzgy
objective
function

More formally, we can let gradient descent do all
the hard work for us



Why do we need the feasible set to be
convex as well?

= Because, otherwise we may get stuck in a local
optimum of we simply “follow gravity”

level curves of _— B
objective function - e R B
~‘\~‘§“ / — —_"“-‘
. .v
- > ‘\\ 4‘¢'
~ - \\
, SN Ry L.
g|0b0| ophmum " ) N — P P . non-convex

S e feasible set



How do we get a convex relaxation?

By dropping some constraints
(so that the enlarged feasible set is convex)

By modifying the objective function
(so that the new function is convex)

By combining both of the above



Linear programming (LP) relaxations

* Optimize linear function subject to linear constraints,

l.e.:

min ¢l x

st. Ax=Db

* Very common form of a convex relaxation, because:

* Typically leads to very efficient algorithms
(important due to large scale nature of problems in
computer vision)

e Also often leads to combinatorial algorithms

e Surprisingly good approximation for many problems



Geometric interpretation of LP
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MRFs and Linear Programming

* Tight connection between MRF optimization and
Linear Programming (LP) recently emerged

* Active research topic with a lot of interesting work:

— MRFs and LP-relaxations [Schlesinger] [Boros]
[Wainwright et al. 05] [Kolmogorov 05] [Weiss et al. 07]
[Werner 07] [Globerson et al. 07] [Kohli et al. 08]...

— Tighter/alternative relaxations
[Sontag et al. 07, 08] [Werner 08] [Kumar et al. 07, 08]



MRFs and Linear Programming

e E.g., state of the art MRF algorithms are now known
to be directly related to LP:

— Graph-cut based techniques such as g-expansion:

generalized by primal-dual schema algorithms
(Komodakis et al. 05, 07)

— Message-passing technigues:
further generalized by Dual-Decomposition (Komodakis 07)

e The above statement is more or less true for almost
all state-of-the-art MRF techniques



Part |l
Primal-dual schema



The primal-dual schema

Highly successful technique for exact algorithms. Yielded
exact algorithms for cornerstone combinatorial problems:

matching network flow

minimum spanning tree minimum branching
shortest path

Soon realized that it's also an extremely powerful tool for
deriving approximation algorithms [Vazirani]:
set cover steiner tree
steiner network feedback vertex set
scheduling



The primal-dual schema

Conjecture:

Any approximation algorithm can be
derived using the primal-dual schema

(has not been disproved yet)




The primal-dual schema

Say we seek an optimal solution x* to the following
integer program (this is our primal problem):

min ¢l x

s.t. Ax = b

< (NP-hard problem)

To find an approximate solution, we first relax the
integrality constraints to get a primal & a dual linear
program:

primal LP: min c¢’x dual LP: max b’y

s.t. Ax = b st. Aly <c




Duality

min 3r1 + 2x9 + 4xs
subject to

2:131 + To +

2:131 — To + I3
max 21+ dy2
subject to

21+ 2y2 <3

y1 — Y2 <2

y2 <4



‘ Duality

min 32y + 225 + Adzg)
subject to \ )
(2:1;1 + x|+
\2:13‘1 o G | =F
max {Zyl\ + I5y2
subject to \' |
2y + 1 2y
[ Y1  — Y2

[

Y2

<2
<4

.

.....



Duality

: min

.................................

.................................

© max

Theorem:

..............................

..............................

..............................

If the primal has an optimal solution,
the dual has an optimal solution with the same cost



The primal-dual schema

Goal: find integral-primal solution x, feasible dual solutiony
such that their primal-dual costs are “close enough”, e.g.,

< < £ >

bTy f T
c X .

< —= f—>»

¢'x
< j j j >
T T_* T
—>b'y e X ¢ x4
dual cost of cost of optimal primal cost of
solution y integral solution x* solution x

Then x is an f™-approximation to optimal solution x* |



General form of the dual

min
subject to

max
subject to

CcCxI

m IV IV |

Il IA TV m

HdoSsT s

(i € E)
(i el)
(J € P)
(J €0)

(i € E)
(iel)
(J€P)
(J €0)

Primal

Dual



Properties of Duality

= The dual of the dual is the primal

Finite
Primal

Unbounded
Primal

Infeasible
Primal

Finite
Dual

Unbounded
Dual

Infeasible
Dual




‘ Primal and Dual

Primal
@)

Dual



Properties of Duality

= The dual of the dual is the primal

Finite
Primal

Unbounded
Primal

Infeasible
Primal

Finite
Dual

Unbounded
Dual

Infeasible
Dual




‘ Primal and Dual

Primal
@)

Let  and II be feasible solutions

to the primal and dual respectively.
We have that cx > 1Az > 11b.

D*al



Properties of Duality

= The dual of the dual is primal

Finite Unbounded Infeasible
Primal Primal Primal

Finite
Dual

Unbounded
Dual

Infeasible
Dual




Primal/Dual Relationships

min T

subject to
ry + T > 1
—r1 — X9 > 1

infeasible primal

max Y1 + Y2
subject to
v — Y2 = 1
v — y2 = 0
yi =2 0

infeasible dual



Primal/Dual Relationships

min T1

subject to
r1 + 9 Z 1
—r1 — xo > 1
zj 2 0
infeasible primal

max oot Y2

subject to
v — Y2 < 1
v — Y2 < 0
yi = 0

unbounded dual



Certificate of Optimality

NP-complete problems
o Certificate of feasibility

Can you provide
o A certificate of optimality?

Consider now a linear program

o Can you convince me that you have found an
optimal solution?



Certificate of Optimality

primal : dual
min Cx max y b
subject to : subject to
Ax > b yA <c
T >0 Yy = 0

» Give me a x* that satisfies Ax* = b
» Give me a y* that satisfiesy*A<c
» Show me that ¢ x* = y* b.



Bounding

max dry + x9 + Ddxs + 3x4
subject to
r1 — X9 — x3 + 3x4 < 1
5581 -+ To + 3113‘3 + 8513‘4 < 5d
—xr1 + 2x9 + 3x3 — dxrgy < 3

»can we find an upper bound?

10y + 229 + 6x3 + 16x4 < 110



Bounding

max dry 4+ x2 + dxs + x4
subject to
rT — X9 — X3 + 3xga < 1
(bz1 + @ + 3w3 + 8xy < 55
—x1 + 2513‘2 + 3583 — 5334 < 3\

»can we find an upper bound?

107y + 229 + 6x3 + 16xs < 110



Bounding

max dxy + x2 + Odxr3 + 324
subject to
1T — X9 — X3 + 3xg4 < 1
(bz1 + @ + 3wz + 8xy < 55
—xr1 + 229 + 3x3 — dxa <

»can we find an upper bound?

/

O + @ + B + @B < 00



‘ Bounding

max 3 + 4
subject to f
r3 + 3564 S 1
3zs +| 8xy4 < 55
3rs —| by < 3\
»can we find an u nd?
+ \@4 < [110




‘ Bounding

max 3 —+ 4
subject to
r3 -+ 3%4 < 1
3z3 +| 8xy < 55
3rs —| bxy < 3\
»can we find an upper bound?
3 + g < 110
=+ 65133 + 35134 S 58




Bounding

max 4371 + To + 5373 + 35134
subject to
T — X9 — x3 + 3x4 < 1
55(31 + To + 35(33 + 8334 < 59
—x1 + 2x9 + 3x3 — dxry4 < 3
»can we find an upper bound?
10y + 229 + 6x3 + 16xy < 1101
dry + 3x9 + 6x3 + 34 < 58




Bounding

max 4xq To + Dx3 + 324
subject to
21 ro — x3 + 3xry < 1
Sy To + 3xs3 + 8xry < 5O
—I1 2372 + 3333 — 5.’174 S 3
»can we find an upper bound?
107 4+ 229 + 6x3 + 1624 < 110!
ey + Br2 + Bz + Bra < (68



‘ Bounding

max 1 -I—OIQ +

3 —|— 4
subject to
r1 —[ xo2 —| w23 +)3xy < 1
Sr1 + o +[| 3x3 4+ 8xy < 5D
—x1 H 222 H 3x3 —| dxry < 3
»can we find an L1pper boLrlnd?
102 +\22 +\6zs + {6z < 110]
4oy + Bk + 3 + By <




Bounding

max 432‘1 + To + 5333 + 35174
subject to
T — To — x3 + 3xga < 1
5331 -+ To + 35133 + 8564 < 5D
—x1 + 2x9 + 3x3 — Sy < 3

> positive combinations of the constraints



Bounding

max 4y + x2 + Ddxz + x4
subject to
Ty, — o — x3 + 3xa < 1
5561 -+ To + 3563 -+ 85134 < 515)
—x1 + 2x0 4+ 3x3 — odxy4 < 3

> positive combinations of the constraints

y1
Y2
Y3



Bounding

max 44
subject to

X1

5331

2

_|_
+

_|_
+

533’3 +

L3
3.2?3
35133 —

+
_|_

» positive combinations of the constraints

Y1 ( I1
Yo ( 5$1
ys ( —m

U1

~ +

L2
X2
25132
<

50y

+ 3:133
+ 3333

-+ 3y3

3%4
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Bounding

Imax

subject to

4:131
A

a1
5(131

_|_
_|_

_1_
_|_

532‘3 +

L3
3.’133
3[133 —

_|_
_|_

35174

3:64
8584
5:64

IAIA TN

> positive combinations of the constraints

Y1
Y2
Y3

minimize (1

(
(
(

(_:E_l\ — ro — I3
Sri1 + To + 3x3
—x1 + 29 + 3z3

o <
+ 55y2 + 3y

_l_
_|_

3.564
85134
5:134

1 iU
55 Yo

3 iy

)+

)+

)



Complementarity slackness

Let x* and y* be the optimal solutions to
the primal and dual. The following
conditions are necessary and sufficient for
the optimality of x* and y*:

n

Z a;ijz; =b; Vy; =0 (1 <i<m)

j=1

n

Zu,.,-.jy;‘ =c¢; Vz; =0 (1<j<n)

1=1



Economic Interpretation

Maximizing profit:
n
max E Cjy
j=1

subject to
mn

Capacity constraints on ax: < bt (1<i<m
your production: Z:l W = 2 (l<sism)
o =
» for some small t;, this linear program has an

optimal solution

2+ ) Yt
g=1

/

optimal primal objective  dual solution



Primal-Dual

Why using the dual?

o I have an optimal solution and T want to add a
hew constraint

o The dual is still feasible (I am adding a new
variable); the primal is not

o Optimize the dual and the primal becomes
feasible at optimality



The primal-dual schema

The primal-dual schema works iteratively

sequence of dual costs ¢'x* . | sequence of primal costs
‘ A - bT k = f . \ -
i e N y S e
< i i i i i i i >
bTyl bTy2 bTyk T cTXk ece® cTX2 cTXI

¢'x— unknown optimum

Global effects, through local improvements!

Instead of working directly with costs (usually not easy),
use relaxed complementary slackness conditions (easier)

@ Different relaxations of complementary slackness
Different approximation algorithmsl!!!



The primal-dual schema for MRFs

min | Y 5 Vil@)pat X X Vin(a Do |

peG ac L pqeElE a,beL

8.t ZQGL Tpa =1 < (only one label assigned per vertex)

Lpq,ab — Lq,b :
2 per Trrad = T }4_ enforce consistency between
D vey Traab = Tpa variables x,, X, and variable x, .,

Lp.a > 0, Lpq,ab >0

variables

Binary || x,,=1 <> label ais assigned to node p
Xpqab=1 < labels a, b are assigned to nodes p, q




Complementary slackness

primal LP: min ¢’ x dual LP: max bly
st. Ax=b.x>0 st ATy < c

Complementary slackness conditions:

\Vlléjgn xj>O:>Zaijyi:Cj
1=1
Theorem. If x and y are primal and dual feasible and

satisfy the complementary slackness condition then
they are both optimal.



Relaxed complementary slackness

primal LP: min cT'x dual LP: max bly
st. Ax=b,x>0 st. Aly <c

Exact CS: \Vllgjén £Cj>O:>ZCLZ'jyi:Cj
1=1

Relaxed CS: V1 < j <n: Tj > 0= Zaijyi > Cj/fj
1=1
f; = 1Vj implies "exact’ complemetary slackness (why?)

Theorem. If x,y primal/dual feasible and satisfy the
relaxed CS condition then x is an f-approximation of the
optimal integral solution, where f = max_j f_j.



Complementary slackness and
the primal-dual schema

Theorem (previous slide). If x,y primal/dual feasible
and satisfy the relaxed CS condition then x is an f-
approximation of the optimal integral solution, where f =

max_j f_j.

Goal of the primal dual schema: find a pair (x,y) that
satisfies:

- Primal feasibility

- Dual feasibility

- (Relaxed) complementary slackness conditions.



FastPD: primal-dual schema for MRFs

Regarding the PD schema for MRFs, it turns out that:

each update of
primal and dual
variables

solving max-flow in
appropriately
constructed graph

Resulting flows tell us how to update both:

a the dual variables, as well as
o the primal variables

for each iteration of
primal-dual schema

Max-flow graph defined from current primal-dual pair (x¥,yk)
o (xkyk) defines connectivity of max-flow graph
o (xky¥) defines capacities of max-flow graph

Max-flow graph is thus continuously updated



FastPD: primal-dual schema for MRFs

Very general framework. Different PD-algorithms b
RELAXING complementary slackness conditions differently.

E.g., simply by using a particular relaxation of complementary
slackness conditions (and assuming V,(-,’) is a metric)

THEN resulting algorithm shown equivalent to a-expansion!
[Boykov, Veksler,Zabih]

PD-algorithms for non-metric potentials V,(:,) as well

Theorem: All derived PD-algorithms shown to satisfy
certain relaxed complementary slackness conditions

Worst-case optimality properties are thus guaranteed




Per-instance optimality guarantees

Primal-dual algorithms can always tell you (for free) how
well they performed for a particular instance

per-instance approx. factor——— per-instance upper bound
¢'x’
< < r, = bTyZ > >
bTyl bTy2 . bTyk cTX>l< cTXkl coo cTX2 chl

T L

per-instance lower bound
(per-instance certificate)

unknown optimum




Computational efficiency (static MRFs)

MRF algorithm only in the primal domain (e.g., a-expansion)

STILL BIG ——{Many augmenting paths per max-flow

fixed dual cost primal costs

« gapy

v

dual, primal, «primalg=—primal,

MRF algorithm in the primal-dual domain (Fast-PD)

SMALL —— Few augmenting paths per max-flow

dual costs \ primal costs

dual; —*— dual,;* dual, primal, < primal = —primal,

Theorem: primal-dual gap = upper-bound on #augmenting paths
(i.e., primal-dual gap indicative of time per max-flow)




Computational efficiency (static MRFs)

— 0 e RRRRRRRRE
g A SEEa00AAAARAAARARARRARE

always very high =

S 1 5] |

)

g) -6~ PD3,

= -0~ o-expansion
dramatic decrease | © - Fast-PD

@)

Z

e NSNS SN NSNFNN
- W W W W W W W W Wwwwwwvwew

7 10 13 16 19 2
outer iteration

4

- . S

o

hoisy image

denoised image

= Incremental construction of max-flow graphs
(recall that max-flow graph changes per iteration)

= |Possible because we keep both primal and dual information

= Principled way for doing this construction via the primal-dual
framework



‘ CompuTa’rlonal efficiency (STGTIC MRFs)

Tsukuba

SRI tree

.' . - =
almost constant §
A )
o & PD3 5 PD3 PD3
= =©- o-expansion | | £ 17 -6~ o-expansion e =0~ o~expansion
=2; Q |-© Fast-PD S -0~ Fast-PD = 0. c -©- Fast-PD
0 \:“‘::::::;:;:::;‘ i 0—‘%6 A——-‘—-e—e
1 4 7 10 13 16419 22 1 2 3:4 5 2 3 4 5 6
_______________ outer iteration ~ i outeriteraton outeriteraton
tatnl S
dramatic decrease
—essT Q¢ w

penguin(|17.44|173.1
tsukuba | 3.37 [15.63
SRI tree | 0.54 | 2.56




Computational efficiency (dynamic MRFs)

Fast-PD can speed up dynamic MRFs [Kohli,Torr] as well
(demonstrates the power and generality of this framework)

< a > few path augmentations I

i «—gap =
# .
duc;vg[y dualy primgl§ pr’i'malx Fast-PD algorithm

~ Fid - _

gap - |
# . I—b d
. ! primal-base
primals p/glmalx algorithm

fixed dual cost TTTYT—SMALL

Principled (and simple) way to update dual variables when
switching between different MRFs



Drop: Deformable Registration using
Discrete Optimization [6locker et al. 07, 08]

= Easy to use GUI

= Main focus on medical imaging
= 2D-2D registration

» 3D-3D registration

= Publicly available:
http://campar.in.tum.de/Main/Drop




- New theorems

- New insights into
existing techniques

- New view on MRFs

Significant speed-up
for dynamic MRFs

Significant speed-up
for static MRFs

primal-dual
framework

Handles wide
class of MRFs

Approximately
optimal
solutions

Theoretical
guarantees AND
tight certificates

per instance




Take home message:

LP and its duality theory provides:

Powerful framework for systematically tackling
the MRF optimization problem

Unifying view for the state-of-the-art
MRF optimization techniques




