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Discrete MRF setting
—O.

* QGiven:
— Objects .fromagraph G = (V, &)
— The edgeVare undirected
— A probability function

\

P(G) = ey P(0[ N, objects % edges &

 We can then state a wide range of problems on finding a set

of assignments to maximize the probability P
arg max P(G|X) =10, cvP(v = xp|Ny)

' log P(G|X)
argm)%n og P(G] ng Tp) + Z fp ¢(Tp, Tq)

P,q:VqE



Discrete MRF optimization

—@

* Given:
— Objects ) from a graph G — (V,E)
— |If X can be an assignment of '\
discrete or continuous values objects V  edges &

e Assign labels (to objects) that minimize MRF energy:

arg mm—logP (G1X) = ng T,) + Z Ip.a(Tp, )
N P,q:vg €N, | Y J

unary potential pairwise potential



Continuous MRF optimization

Can be seen as a particular case of several machine learning
scenarios with a specific prior

Examples in computer vision and neuroimaging

e Restoration
Functional brain activation
optical flow

and beyond, connections with graph deep learning
Comfortable way to express spatial priors

Really powerful sound formulation



Continuous MRF optimization as
common Regression (ML?) Problems

' log P(G|X)
argm)én og P(G] ng (zp) + Z fp o(Tp, 2g)

P,q:vq <

Regularized arg m)}n CZ(YV7 g(,)(')) + f(X)

Ridge /Tik  arg m)}n Y — AX|)3 + \|TX

Lasso arg m)}n Y —AX g + A X

clasticet  argmin  [[Y — AX[3 + [T X[} + A [TX] 5

\WN \V)

—_

These can be solved through quadratic programming
[Hastie et al, Elements of Statistical Learning 2017]



Continuous MRF optimization as
common Regression (ML?) Problems

' log P(G|X)
argm)én og P(G] ng (zp) + Z fp o(Tp, 2g)

P,q:vq <

argmin ||V — AX|3 + A[TX3

V'Yt xtATAxY — oy Ax + X'ty
1

:§XT(ATA + Ay -yt Ax



Discrete MRF optimization

Extensive research for more than 30 years

MRF optimization ubiquitous in computer vision

* segmentation stereo matching
optical flow image restoration
image completion  object detection/localization

and beyond
* medical imaging, computer graphics, digital
communications, physics...

Really powerful formulation



‘ How to handle MRF optimization?

= Unfortunately, discrete MRF optimization is extremely
hard (a.k.a. NP-hard)

o E.g., highly non-convex energies

MRF hardness

local optimum sefkeeeaeasesnnnannnnns

global optimum
approximation

exact global

optimum MRF pairwise potential

linear metric arbitrary




‘ How to handle MRF optimization?

MRF hardness

|Oca|0ptimum i I I EE N EEEEEEEEEEEEESNm

global optimum
approximation

exact global I .

optimum . MRF pairwise potential

linear metric arbitrary

We want:

Move right in the horizontal axis,

And remain low in the vertical axis

(i.e. still be able to provide approximately optimal solution)

We want to do it efficiently (fast)!




MRFs and Optimization

Deterministic methods
0 Iterated conditional modes

Non-deterministic methods

0 Mean-field and simulated annealing
Graph-cut based techniques such as alpha-
expansion

a Min cut/max flow, etc.

Message-passing techniques

0 Belief propagation networks, etc.



We would like to have a method which provides
theoretical guarantees to obtain a good solution
Within a reasonably fast computational time



Discrete optimization problems

min f(z) (optimize an objective function)

s.t. z € C.. (subject to some constraints)

this is the so called feasible seft,
containing all x satisfying the constraints

= Typically x lives on a very high dimensional space




How to handle MRF optimization?

Unfortunately, discrete MRF optimization is extremely
hard (a.k.a. NP-hard)

o E.g., highly non-convex energies

So what do we do?
0 Is there a principled way of dealing with this problem?

Well, first of all, we don’t need to panic.
Instead, we have to stay calm and RELAX!

Actually, this idea of relaxing may not be such a bad
idea after all...



The relaxation technique

Very successful technique for dealing with difficult
optimization problems

It is based on the following simple idea:
0 try to approximate your original difficult problem with

another one (the so called relaxed problem) which is easier
to solve

Practical assumptions:
0 Relaxed problem must always be easier to solve
0 Relaxed problem must be related to the original one



The relaxation technique

relaxed
problem

fr(x)

. optimal solution to

true optimal .
. relaxed problem

solution

feasible set



How do we find easy problems?

Convex optimization to the rescue

"...in fact, the great watershed in optimization isn't
between linearity and nonlinearity, but convexity and
nonconvexity" - R. Tyrrell Rockafellar, in SIAM Review, 1993

Two conditions for an optimization problem
to be convex:

a0 convex objective function
1 convex feasible set



Why is convex optimization easy?

Because we can simply let gravity do all the hard
work for us

gravity

convex
— force

objective
function

More formally, we can let gradient descent do all
the hard work for us



Why do we need the feasible set to be
convex as well?

= Because, otherwise we may get stuck in a local
optimum of we simply “follow gravity”

level curves of e
objective function -~ _— ~—
x\‘, / - __,f""—_ = ﬁ\"-,.

global optimum — "~ e _—" " "\ non-convex
s feasible set




How do we get a convex relaxation?

By dropping some constraints
(so that the enlarged feasible set is convex)

By modifying the objective function
(so that the new function is convex)

By combining both of the above



Linear programming (LP) relaxations

* Optimize linear function subject to linear constraints,

l.e.:

min ¢l x

B =0

* Very common form of a convex relaxation, because:

* Typically leads to very efficient algorithms
(important due to large scale nature of problems in
computer vision)

e Also often leads to combinatorial algorithms

e Surprisingly good approximation for many problems



Geometric interpretation of LP

Max Z=5X+ 10Y

S.t.

X + 2Y <= 120 \\(?()\

X+Y>=60
X=-2Y>=0
X,Y>=0

510

v

Feasible

Region

60

SV



MRFs and Linear Programming

* Tight connection between MRF optimization and
Linear Programming (LP) recently emerged

e Active research topic with a lot of interesting work:

— MRFs and LP-relaxations [Schlesinger] [Boros]
[Wainwright et al. 05] [Kolmogorov 05] [Weiss et al. 07]
[Werner 07] [Globerson et al. 07] [Kohli et al. 08]...

— Tighter/alternative relaxations
[Sontag et al. 07, 08] [Werner 08] [Kumar et al. 07, 08]



MRFs and Linear Programming

 E.g., state of the art MRF algorithms are now known
to be directly related to LP:

— Graph-cut based technigues such as g-expansion:

generalized by primal-dual schema algorithms
(Komodakis et al. 05, 07)

— Message-passing techniques:
further generalized by Dual-Decomposition (Komodakis 07)

e The above statement is more or less true for almost
all state-of-the-art MRF techniques



Part |l
Primal-dual schema



The primal-dual schema

Highly successful technique for exact algorithms. Yielded exact
algorithms for cornerstone combinatorial problems:
matching network flow
minimum spanning tree minimum branching
shortest path

Soon realized that it’s also an extremely powerful tool for deriving
approximation algorithms [Vazirani]:

set cover steiner tree

steiner network feedback vertex set

scheduling



The primal-dual schema

Conjecture:

Any approximation algorithm can be derive
using the primal-dual schema

(has not been disproved yet)




The primal-dual schema

Say we seek an optimal solution x* to the following integer
program (this is our primal problem):

min ¢l x

b A b € (NP-hard problem)

To find an approximate solution, we first relax the integrality
constraints to get a primal & a dual linear program:

primal LP: min ¢’ x

st Ax = b

dual LP: max by
gt Ay 2



‘ Duality

min
subject to

max
subject to

25,{31
23’:1

+ 2x9
< L9
+ DYz
i 23}2
= Y2

Y2

T 43?3



‘ Duality

min By 2y
subject to

k2;15'1 = X9
max [2y1\ - l5y2
subject to |
2y1  + 1 2y
Y1 — w2 4§ 2
( Y2 <4




Duality

Theorem:
If the primal has an optimal solution,
the dual has an optimal solution with the same cost



The primal-dual schema

Goal: find integral-primal solution x, feasible dual solution y such that
their primal-dual costs are “close enough”, e.g.,

T
cX *
< —= f >
b'y T
CX _ =
< —=f—>
< . j j >
—»b'y »c'x ¢ x4
dual cost of cost of optimal primal cost of
solutiony integral solution x* solution x

Then x is an f -approximation to optimal solution x* I



‘ General form of the dual

min
subject to

max
subject to

CX

Yi

YA,
YA,

m VIV |

Il IA TV m

&S

Dual



‘ Properties of Duality

= The dual of the dual is the primal

Finite
Primal

Unbounded
Primal

Infeasible
Primal

Finite
Dual

Unbounded
Dual

Infeasible
Dual




‘ Primal and Dual

Primal
O

’*

Dual



‘ Properties of Duality

= The dual of the dual is the primal

Finite
Primal

Unbounded
Primal

Infeasible
Primal

Finite
B TE]]

Unbounded
Dual

Infeasible
Dual




‘ Primal and Dual

Primal
®)

Let x and II be feasible solutions

to the primal and dual respectively.
We have that cz > I1Ax > IIb.

Dltal



‘ Properties of Duality

= The dual of the dual is primal

Finite Unbounded Infeasible
Primal Primal Primal

Finite

2 2
Dual Yes ' '

Unbounded
Dual

Infeasible
Dual




‘ Primal/Dual Relationships

min T1

subject to
I + I9
—1 G ).

ALY

infeasible primal

max y1 + Y2
subject to
n o — Yy =1
y1 — Y2 = 0
yi =2 0

infeasible dual



‘ Primal/Dual Relationships

min T1
subject to

j

I [ =+

Lo

2

0

AVARAYS

infeasible primal

max U1
subject to
N
U3
Yi

+

'V

Y2

Y2

Y2
0

IAIA

—

unbounded dual



Certificate of Optimality

NP-complete problems
o Certificate of feasibility

Can you provide
o A certificate of optimality?

Consider now a linear program
o Can you convince me that you have found an optimal
solution?



Certificate of Optimality

primal : dual
min cT max y b
subject to subject to
Ax > b yA <c
Tl b y = 0

» Give me a x* that satisfiesAx* =zb
» Give me a y* that satisfiesy"A<c
»Show me that ¢ x* = y* b.



Bounding

max dr1, 4+ x2 + bdxz + 3x4
subject to
1 — X9 — X3 + 3xa < 1
5:131 38 i B 3:133 iy 8$4 S 55
—@ T 2:132 I 3$3 — 53’}4 < 3

»can we find an upper bound?

107 + 2o + 6x3 + 1loxy < 110



‘ Bounding

max 4xq To ors + 3x4
subject to
T1 To r3 + 3xg4 < 1
[ 5x1 To 3v; + 8zy < 55
— 21 2o 3zs — bxy4 < 3\
»can we find an upper bound?
101 + 229 6rs + 16x4 < 110




‘ Bounding

max 4.581 i E To + 5:173 1 335'4
subject to
ry — X9 — X3 + 3xrg < 1
(bz1 + @ + 3wz + 8xy < 55
o s = 2:132 T 35133 — 5:194 §

»can we find an upper bound?

/

O + B o+ B + @ < 00



‘ Bounding

max ey + (o + Brs + (Bha
subject to f
L1 — La — X3

+
bx1 +H xo +| 3x3 4| 8x4
—x1 +H 2x0 -+

IATIA A
oL
S

»can we find an upper bound?




‘ Bounding

max 1 —|—OI2 = 3 Tt 4

subject to f f
L1 — g — r3 +[ 3xg < 1
br1 + xo +[ 3ws +| 8z4 < 55
—Tq T+ 2$2 S 35133 =S 55[34 é 3 \
»can we find an upper bound?
1+ 2 I 3+ 4 < |110
+ 3z + 6z3 + 3z4 < 58



‘ Bounding

max 4331 i Tro + 5333 . 3:134
subject to
r1 — Lo — r3 + 3dxg < 1
5.’,15‘1 + To + 3333 + 8334 = &) o)
—ig 295'2 + 3333 — 535'4 S 3
»can we find an upper bound?
101y + 2292 + 6x3 + 16xy4 < 1101
4ry + 3xz9 + 6x3 + 34 < 58




‘ Bounding

max 4y + x2 + dSx3 + 314
subject to
r1 — o — x3 + 3x4 < 1
53?1 + To T+ 3373 -+ 8£U4 S 55
= 2332 + 3583 — 5274 § 3
»can we find an upper bound?
Q1 + Bk + OBz + Bra < (B8



‘ Bounding

max
subject to

»can wet

41+ (J2 + (Brs + (3
/x1 —[ x9 —[ x3 +[3xsy < 1
5r1 + ro +[ 3x3 4+ 8xs < 55
—x1 H 220 H 3x3 —| dxrsa < 3
iInd an upper bo#nd?
10:131 2x2 4+ \6x3 + \boxgy < 1101
s 2 3+ Bks <



Bounding

max 4581 I T 5393 I 3513‘4
subject to
rK, — To — x3 + 3xg4 < 1
5:)91 I Ts T 3515‘3 a 8334 < 345
—xr1 + 229 + 3x3 — dxy < 3

» positive combinations of the constraints



Bounding

max 4r1 + x2 + dSx3 + 3234
subject to
L1 - To — r3 + 3xrg < 1
5331 i By I 3333 I 8.564 = 5%5)
—x1 + 2292 4+ 3x3 — oy < 9

» positive combinations of the constraints

-----



Bounding

max 414
subject to

L1

5%1

— 2

_|_
_|_

536‘3 a5

333‘3

s I
+

3513‘3 =

» positive combinations of the constraints

Y1 ( T1
Yo ( 5:191
ys ( —m1

+ -

X2
X2
2:132
&

50y

_|_
_|_

L3
3373
32?3

3y3

3:134

Szs < 1 iy
8zy < 55 Y2
S5ry, < 3 iysz:
+ 3z4 ) +
+ 8:134 ) 1-
— 5334 )



‘ Bounding

max
subject to

4$1
A

U1
503‘1

_|_
_|_

532‘3 .

La
3333 S
3333 ==

3334

3334
8334
55(34

IAIAIA

» positive combinations of the constraints

y1
Y2 (
(

Y3

minimize (%1

(_27_1\ e 8 — I3
Sri1| + To —+ 33
—x1 + 229 4+ 3z3

o <
+ 55y + 3y

+  3x4
=+ 8234

5334

55 Y2
3 iy
) +

) +

)



Complementarity slackness

Let x* and y* be the optimal solutions to the
primal and dual. The following conditions are
necessary and sufficient for the optimality of x*
and y*:

n

Y aizi=b Vy; =0 (1<i<m)

)=l

1

Z(L.,:..,-y:‘ =c¢; Vz; =0 (1<j<n)

1=1

e



Economic Interpretation

Maximizing profit:

n
max E CjCEj
j=1

subject to

T

Capacity constraints on Z .

Q;;T 5 < D, t; 1<i<m

your production: . REIL= (1<i<m)
1=

» for some small t;, this linear program has an
optimal solution

m
2¥ + Zy: Li
g=]

/

optimal primal objective  dual solution



Primal-Dual

Why using the dual?

2 | have an optimal solution and | want to add a new
constraint

o The dual is still feasible (I am adding a new variable);
the primal is not

0 Optimize the dual and the primal becomes feasible at
optimality



The primal-dual schema

The primal-dual schema works iteratively

sequence of dual costs cx* \ sequence of primal costs
P M | b’ F</ S A |
, < >
i i » i i = = 1>
b'yl——b'y’—=—b'y T ¢lxfe—"—¢c'x«—c'x
T_* .
C X+ unknown optimum

Global effects, through local improvements!

Instead of working directly with costs (usually not easy), use relaxed
complementary slackness conditions (easier)

Different relaxations of complementary slackness
Different approximation algorithms!!!



‘ The primal-dual schema for MRFs

min [Z Y Vip@zpat > D Vigla,b)apgas ]

peG ae L pq€E a,beL

s.t. ZGEL Tpg =1 « (only one label assigned per vertex)

L b — Lq,b :
ZaEL pa,a 1 }<_ enforce consistency between
E oo 1, Tpa.ab = Tp,a variables x, » Xq and variable X, ap

Tpa 2 0, Tpq,ab = 0

Binary ||Xpa=1 < labelais assigned to node p
variables Xpgab=1 <= labels a, b are assigned to nodes p, q




Complementary slackness

primal LP: min ¢’x dual LP: max by

st. Ax=b,x>0 S.t. A'Ty < e

Complementary slackness conditions:

m
Vlﬁjgn xj>O:>Za¢jy@-:cj
Theorem. ] . i=1 tisfy the
complementary slackness condition then they are both optimal.



Relaxed complementary slackness

primal LP: min ¢’x dual LP: max b'y
st. Ax=b, x>0 st. Aly <c
m
Exact CS: Vi< i nm: $j>oz>zaijyizcj
=1
Relaxed CS: m
YL= § =7 8 Ij>O:>Zaz’jyz'ZCj/fj
implies 'e =1
fi=1Vj

1neorem. If X, y primal/dual feasible and satisfy the
relaxed CS condition then x is an f-approximation of the optimal
integral solution, where f = max_j f j.



Complementary slackness and the
primal-dual schema

Theorem (previous slide). If x, y primal/dual feasible and satisfy
the relaxed CS condition then x is an f-approximation of the
optimal integral solution, where f = max_j f _j.

Goal of the primal dual schema: find a pair (x,y) that satisfies:
- Primal feasibility

- Dual feasibility

- (Relaxed) complementary slackness conditions.



FastPD: primal-dual schema for MRFs

Regarding the PD schema for MRFs, it turns out that:

each update of solving max-flow in
primal and dual appropriately
variables

constructed graph

Resulting flows tell us how to update both:

o the dual variables, as well as for each iteration of
0 the primal variables | primal-dual schema

Max-flow graph defined from current primal-dual pair (x*,y¥)
o (x*,y¥) defines connectivity of max-flow graph
o (x*,y¥) defines capacities of max-flow graph

Max-flow graph is thus continuously updated



FastPD: primal-dual schema for MRFs

Very general framework. Different PD-algorithms by RELAXING
complementary slackness conditions differently.

E.g., simply by using a particular relaxation of complementary slackness
conditions (and assuming V,(:,) is a metric)

THEN resulting algorithm shown equivalent to a-expansion!
[Boykov,Veksler,Zabih]

PD-algorithms for non-metric potentials V,4(-,7) as well

Theorem: All derived PD-algorithms shown to satisfy certain
relaxed complementary slackness conditions

Worst-case optimality properties are thus guaranteed




Per-instance optimality guarantees

Primal-dual algorithms can always tell you (for free) how well they
performed for a particular instance

per-instance approx. factor —— per-instance upper bound

CTX2
< po= >
2 bTy2 /
< i I i . i i i >

bTyl—’b y'—=—b'y" ¢ X clTxfe——¢Tx%e—¢'x!'

T L

per-instance lower bound
(per-instance certificate)

unknown optimum




Computational efficiency (static MRFs)

MRF algorithm only in the primal domain (e.g., a-expansion)

STILLBIG —* Many augmenting paths per max-flow

fixed dual cost j primal costs

< gapk

v

dual, primal, <—primal,+——primal;

MRF algorithm in the primal-dual domain (Fast-PD)

SMALL — Few augmenting paths per max-flow
dual costs \ primal costs

e 8aPk —*

dual;, — dual,.;7 dualy primal, < primal,#+——primal,

Theorem: primal-dual gap = upper-bound on #augmenting paths
(i.e., primal-dual gap indicative of time per max-flow)




Computational efficiency (static MRFs)

— 0 e RRnacoccs
C  NS0e

always very high %

T

o]

=3 -~ PD3,

= -0~ (-expansion

dramatic decrease © -©- Fast-PD

o "

= -:3;;3::3::3::3::‘
a7, . ; 1471013161922
noisy |mage denoised image outer iteration

= Incremental construction of max-flow graphs
(recall that max-flow graph changes per iteration)

= | Possible because we keep both primal and dual information I

= Principled way for doing this construction via the primal-dual
framework




‘ Computational efficiency (static MRFs)

penguin Tsukuba SRI-tree

I \
I ‘ 1 =
almost constant [

- -

0
O
GJ .
L _ -~ PD3 2 -9~ PD3
o) 4 : : 2 o 0.2 2
= =€~ o-expansion | | £ 17 -~ -expansion - -6~ o-expansion
= 2] -0~ Fast-PD : -8~ Fast-PD '+ 0.1 -©- Fast-PD
0 C:A-T—‘::::::;:::::: i 0 S e S ] I A——h-e—e
1 4 7 10 13 1 1 2 384 5 6 7 1 2 3 4 5 6

outer iteration outeriiteration outer iteration

Q

penguin( | 17.44|173.1
tsukuba | 3 15.63

SRI tree | 0.54 | 2.56




Computational efficiency (dynamic MRFs)

Fast-PD can speed up dynamic MRFs [Kohli,Torr] as well
(demonstrates the power and generality of this framework)

« gap few path augmentations I

: «——gap —
#
dual, dualy prlmalx- prlmal

Fast-PD algorithm

:< gap,\i many path augmentations I
’ <« : LARGE

'4 gap >
| | ¥ primal-based
dual, prlmal pr|maI

algorithm
v\fixed dual cost \SMALL

Principled (and simple) way to update dual variables when switching
between different MRFs



Drop: Deformable Registration using
Discrete Optimization [Glocker et al. 07, 08]

Easy to use GUI

Main focus on medical imaging
2D-2D registration

3D-3D registration

Publicly available:
http://campar.in.tum.de/Main/Drop




‘ - New theorems Handles wide class
- New insights into of MRFs
existing techniques

- New view on MRFs

Approximately
optimal
solutions

Significant speed-up Theoretical guarantees
for static MRFs AND

tight certificates
per instance

Significant speed-up
for dynamic MRFs




Take home message:

LP and its duality theory provides:

Powerful framework for systematically tackling
the MRF optimization problem

P—————————————————————

Unifying view for the state-of-the-art
MRF optimization techniques



