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•  Preliminaries	
	

•  Maximum	Flow	

•  Algorithms	

•  Energy	minimization	with	max	flow/min	cut	
– Multi-Label	Energy	Functions	

Outline	



St-mincut	based	Move	algorithms	

•  Commonly	used	for	solving	non-
submodular	multi-label	problems	

•  Extremely	efficient	and	produce	good	
solutions	

•  Not	Exact:	Produce	local	optima	
	

E(x) =  ∑ θi (xi) + ∑ θij (xi,xj) 

 i,j i 

x ϵ Labels L = {l1, l2, … , lk} 
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Computing	the	Optimal	Move	

Search 
Neighbourhood 

Current Solution 

Optimal Move 

xc 
(t) Key Property 	
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•  Better solutions 	
•  Finding the optimal move hard	



Moves	using	Graph	Cuts 		
Expansion and Swap move algorithms	
[Boykov Veksler and Zabih, PAMI 2001]	
 

•  Makes a series of changes to the solution (moves)	
•  Each move results in a solution with smaller energy	
 
 

Space of Solutions (x) : LN 	

Move Space (t) : 2N 	

Search 
Neighbourhood	

Current Solution	

N	 Number of 
Variables	

L	 Number of  
Labels	



Moves	using	Graph	Cuts 		
Expansion and Swap move algorithms	
[Boykov Veksler and Zabih, PAMI 2001]	
 

•  Makes a series of changes to the solution (moves)	
•  Each move results in a solution with smaller energy	
 
 

Current Solution	

Construct a move 
function	

Minimize move function 
to get optimal move	

Move to new 
solution	

How to 
minimize move 

functions? 



Expansion Move 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

•  Variables take label α or retain current label 



Expansion Move 
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Initialize with Tree Status: 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

•  Variables take label α or retain current label 



Expansion Move 
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[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

•  Variables take label α or retain current label 
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Status: Expand House 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

•  Variables take label α or retain current label 
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Status: Expand Sky 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

•  Variables take label α or retain current label 



Expansion	Algorithm	

Initialize	labeling	x	=	x0	(say	x0p	=	0,	for	all	Xp)	

For	α	=	1,	2,	…	,	h-1	

End	

xα	=	argminx’	E(x’)		
	
s.t.	x’p	∈	{xp}	U	{lα}	

Update	x	=	xα		

Boykov,	Veksler	and	Zabih,	2001	

Repeat		
until		

convergence	



Expansion Move 

•  Move energy is submodular if: 
– Unary Potentials: Arbitrary 
– Pairwise potentials: Metric 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

Semi metric 

•  Variables take label α or retain current label 

Examples: Potts model, Truncated linear 
Cannot solve truncated quadratic  

θij (la,lb)  ≥ 0 
 

θij (la,lb)  = 0   iff   a = b 



Expansion Move 

•  Move energy is submodular if: 
– Unary Potentials: Arbitrary 
– Pairwise potentials: Metric 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

θij (la,lb) + θij (lb,lc) ≥ θij (la,lc) 
Triangle 

Inequality 

•  Variables take label α or retain current label 

Examples: Potts model, Truncated linear 
Cannot solve truncated quadratic  



Swap Move 
•  Variables labeled α, β can swap their labels 

[Boykov, Veksler, Zabih] 



Swap Move 

Sky 
House 

Tree 
Ground 

Swap Sky, House 

[Boykov, Veksler, Zabih] 

•  Variables labeled α, β can swap their labels 



Swap Move 
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[Boykov, Veksler, Zabih] 

•  Variables labeled α, β can swap their labels 



Swap Move 
•  Variables labeled α, β can swap their labels 

•  Move energy is submodular if: 
– Unary Potentials: Arbitrary 
– Pairwise potentials: Semimetric 

[Boykov, Veksler, Zabih] 

θij (la,lb)  ≥ 0 
 

θij (la,lb)  = 0           a = b 

Examples: Potts model, Truncated Convex 



General	Binary	Moves	

Move Type	 First 
Solution	

Second 
Solution	

Guarantee	

Expansion	 Old solution	 All alpha	 Metric	
Fusion	 Any solution 	 Any solution	 û 

Minimize over move variables t 	

x =  t x1 + (1-t) x2 
New 

solution	
First 

solution	
Second 
solution	



Solving	Continuous	Problems	using	
Fusion	Move	

x =  t x1 + (1-t) x2 

(Lempitsky et al. CVPR08, Woodford et al. CVPR08) 

F	
x1 

x2 

x 

Optical Flow 	
Example	

Final 
Solution	

Solution 
from 

Method 1	

Solution 
from 

Method 2	



Results	–	Denoising	+	Inpainting	



Results	–	Denoising	+	Inpainting	



Results	–	Denoising	+	Inpainting	



Results	–	Denoising	+	Inpainting	



Recall	

•  Graphical	Models	
– Directed	vs	Undirected	
– Representation	and	Modeling	

•  Problem	formulation	
– Energy/cost	function	

•  MAP	estimation	
– Belief	propagation,	TRW,	graph	cuts,	LP	relaxation,	
primal-dual,	dual	decomposition	

•  Learning	
– Maximum	likelihood,	max-margin	learning	



Recall	



Remainder	of	this	class	

•  Bayesian	Networks	
– Parameter	Learning	
– Structure	Learning	
–  Inference	



But	first…	



A	quiz	!	
1.  How	would	you	parameterize		

						for	learning?	
	
2.  How	are	max-flow	and	min-cut	related?	

3.  What	are	two	methods	for	performing	max-
flow	and	their	drawbacks?	



Remainder	of	this	class	

•  Bayesian	Networks	
– Parameter	Learning	
– Structure	Learning	
–  Inference	



Bayesian	Networks	

•  A	general	Bayes	net	
– Set	of	random	variables	
– DAG:	encodes	independence	assumptions	
– Conditional	probability	trees	
–  Joint	distribution	

Slide	courtesy:	Dhruv	Batra	

P(Y1,...,Yn ) = P(Yi | PaYi )
i=1

n

∏



Bayesian	Networks	

•  Example	

Slide	courtesy:	Dhruv	Batra	



Independencies	in	problem	

Slide	courtesy:	Carlos	Guestrin,	Dhruv	Batra	



Learning	Bayesian	Nets	

Slide	courtesy:	Dhruv	Batra	



Learning	Bayesian	Nets	
Known	structure	 Unknown	structure	

Fully	observable	
data	 Very	easy	 Hard	

Missing	data	 Somewhat	easy	
(EM)	 Very	very	hard	

Slide	credit:	Carlos	Guestrin,	Dhruv	Batra	



Maximum	Likelihood	Estimation	

•  Goal:	Find	a	good	θ	

•  What	is	a	good	θ?	
– One	that	makes	it	likely	for	us	to	have	seen	this	data	
– Quality	of	θ	=	Likelihood(θ;	D)	=	P(D|θ)	

•  Why	MLE?	
– Log-likelihood(θ)	=	entropy(P*)	–	KL(P*,	P(D|θ))	
–  i.e.,	maximizing	LL	=	minimizing	KL	

Slide	courtesy:	Dhruv	Batra	



MLE:	Learning	the	CPTs	

Slide	credit:	Carlos	Guestrin,	Dhruv	Batra	



Bayesian	Estimation	

•  Exploit	priors	
– Priors:	Beliefs	before	experiments	are	conducted	
– Help	deal	with	unseen	data	
– Bias	us	towards	“simpler”	models	

•  Beta	prior	distribution	

Slide	courtesy:	Dhruv	Batra	

constant	



Bayesian	Estimation	

•  Posterior	

Slide	courtesy:	Dhruv	Batra	



Bayesian	Estimation	

•  MAP:	use	most	likely	parameter	

•  Beta	prior	equiv.	to	extra	H/T	
•  As	m	à	inf,	prior	is	“forgotten”	
•  But,	for	small	sample	size,	prior	is	important	!		

Slide	courtesy:	Dhruv	Batra	



Bayesian	Estimation	

•  What	about	the	multinomial	case?	

•  Use	a	Dirichlet	for	the	prior	



Meta	BN:	Bayesian	view	of	BN	

•  Show	parameters	explicitly	as	variables	

•  Two	examples	(on	board)	
	

Slide	courtesy:	Dhruv	Batra	



Global	parameter	independence	

•  All	CPT	parameters	are	independent	
– Common	assumption	

•  Prior	over	parameters	is	product	of	prior	over	
CPTs,	i.e.,	

Slide	courtesy:	Dhruv	Batra	



Parameter	Sharing	

•  Consider	the	scenario,	where	n	random	
variables	X1,	X2,	…	Xn	represent	coin	tosses	of	
the	same	coin.	

•  What	is	the	corresponding	BN?	



Parameter	Sharing	

•  Plate	notation	

Slide	courtesy:	Dhruv	Batra	



Hierarchical	Bayesian	Models	

•  Why	stop	with	a	single	prior?	

Slide	courtesy:	Dhruv	Batra	



Summary:	Learning	BN	

•  MLE	
– Decomposes;	results	in	counting	procedure	

•  Bayesian	estimation	
– Priors	=	regularization	(smoothing)	
– Hierarchical	priors	

•  Plate	notation	
•  Shared	parameters	



Known	Tree	Structure	

v0 

v2 v1 

v4 v5 

v3 

Distribution	

vp(a)	=	“parent”	of	va		

Estimate	



Known	Tree	Structure	

v0 

v2 v1 

v4 v5 

v3 

Distribution	

Which	tree?	Estimate	

vp(a)	=	“parent”	of	va		



Learning	Bayesian	Nets	
Known	structure	 Unknown	structure	

Fully	observable	
data	 Very	easy	 Hard	

Missing	data	 Somewhat	easy	
(EM)	 Very	very	hard	

Slide	credit:	Carlos	Guestrin,	Dhruv	Batra	



Learning	Bayesian	Nets:	Structure	

Slide	credit:	Carlos	Guestrin,	Dhruv	Batra	

•  Prediction:	Care	about	a	good	structure	=>	
good	prediction	

•  Discovery:	Understand	some	system	



Learning	Bayesian	Nets:	Structure	

•  Truth	

•  Recovered	

Slide	courtesy:	Dhruv	Batra	



Learning	Bayesian	Nets:	Structure	

•  Constraint-based	approach	
–  Test	conditional	independencies	in	data	
–  Find	an	I-map	

•  Score-based	approach	
–  Finding	structure	and	parameters	=>	
density	estimation	task	

–  Evaluate	model,	similar	to	parameter	
estimation	

•  MLE	
•  Bayesian	estimation	

Slide	courtesy:	Dhruv	Batra	



Score-based	Approach	

Slide	credit:	Carlos	Guestrin,	Dhruv	Batra	



Score-based	Approach	

•  Say	there	are	N	vertices?	

•  How	many	(undirected)	graphs	in	the	search	
space?	

•  How	many	(undirected)	trees?	

Slide	courtesy:	Dhruv	Batra	



Score-based	Approach	

•  What	is	a	good	score?	

•  How	about	log-likelihood?	
– Score(G)	=	log-likelihood(G:	D,	θMLE)	=	log	P(D|G,	θMLE)	

•  How	do	we	interpret	this	Max	Likelihood	score?	
– Consider	a	two-node	graph	(on	board)	

Slide	courtesy:	Dhruv	Batra	



Kullback-Leibler	Divergence	

Substitute	P1	=	P	and	P2 = PT.	Minimize	KL(P || PT)

Constant	



Estimating	the	Tree	Structure	



Estimating	the	Tree	Structure	



Estimating	the	Tree	Structure	



Estimating	the	Tree	Structure	



Estimating	the	Tree	Structure	



Estimating	the	Tree	Structure	

Independent	of	the	tree	structure	



Estimating	the	Tree	Structure	

Mutual	Information	



Score-based	Approach	

•  For	a	general	graph	G,	

Slide	credit:	Carlos	Guestrin,	Dhruv	Batra	



Score-based	Approach	

	
•  Implications	

–  Intuitive:	higher	mutual	info	à	higher	score	
– Decomposes	over	families	(nodes	and	its	parents)	
–  Information	never	hurts!	
– But….		

Slide	courtesy:	Dhruv	Batra	



Score-based	Approach	

•  Adding	an	edge	only	improves	score!	
– Thus,	MLE	=	complete	graph	

•  Two	fixes	
– Restrict	space	of	graphs	

•  Say	only	d	parents	allowed	
– Put	priors	on	graphs	

•  Prefer	sparser	graphs	

Slide	courtesy:	Dhruv	Batra	



Chow-Liu	Tree	Learning	-	I	

•  For	each	pair	of	variables	Xi,	Xj	
– Compute	the	empirical	distribution	

– Compute	mutual	information	

•  Define	graph	
– Nodes	X1,	X2,…,	Xn	
–  Edge	(i,j)	gets	weight	

Slide	credit:	Carlos	Guestrin,	Dhruv	Batra	



Chow-Liu	Tree	Learning	-	II	

•  Optimal	tree	BN	
– Compute	maximum	weight	spanning	tree	

– Directions:	
•  Pick	any	node	as	root	
•  Direct	edges	from	root	(breadth-first	search	for	example)	

Slide	credit:	Carlos	Guestrin,	Dhruv	Batra	



Score-based	Approach	

•  Bayesian	score	
=>	Prior	distributions	
– Over	structures	
– Over	parameters	of	a	structure	

•  Posterior	over	structures	(given	data)	

Slide	courtesy:	Dhruv	Batra	



Bayesian	Score:	Structure	Prior	

	
•  Common	choices	

– Uniform:	P(G)	α	c	
– Sparsity	prior:	P(G)	α	c|G|	
– Prior	penalizing	number	of	parameters	
– P(G)	should	decompose	like	the	family	score	

Slide	courtesy:	Dhruv	Batra	



Bayesian	Score:	Parameter	Prior	&	
Integrals	

	
•  If	P(θG|G)	is	Dirichlet,	then	the	integral	has	
closed	form!	

•  And,	it	factorizes	according	to	families	in	G	

Slide	courtesy:	Dhruv	Batra	



Bayesian	Score:	Parameter	Prior	&	
Integrals	

	
•  How	should	we	choose	Dirichlet	hyperparameters?	

–  K2	prior:	Fix	an	α,	P(θXi|PaXi)	=	Dirichlet(α,…,	α)	

–  BDe	Prior:	Pick	a	“prior”	BN		
–  Compute	P(Xi,PaXi)	under	this	prior	BN	

	

Slide	courtesy:	Dhruv	Batra	



Learning	Bayesian	Nets:	Structure	

•  Question:	Are	these	score-based	approaches	
really	Bayesian?	

•  So	far,	we	have	selected	only	one	structure	

•  We	must	average	over	structures	
– Similar	to	averaging	over	parameters	



This	class	

•  Bayesian	Networks	
– Parameter	Learning	
– Structure	Learning	
–  Inference	



BNs:	Inference	

•  Evidence	E=e	(e.g.,	N=t)	
•  Query	variables	of	interest	Y	

•  Conditional	probability:	P(Y	|	E=e)	
– e.g.,	P(F,A	|	N=t)	
– Special	case:	Marginals	P(F)	

•  Maximum	a	posteriori:	argmax	P(all	var	|	E=e)	
– argmax_{f,a,s,h}	P(f,a,s,h	|	N=t)	

Slide	courtesy:	Dhruv	Batra	



BNs:	Inference	

•  Evidence	E=e	(e.g.,	N=t)	
•  Query	variables	of	interest	Y	

•  Marginal-MAP:	argmax_y	P(Y	|	E=e)	
– argmax_y							P(Y=y,	O=o	|	E=e)	

Slide	courtesy:	Dhruv	Batra	



BNs:	Inference	

•  Are	MAP	and	max	of	marginals	consistent?	
•  Verify	with	this	example:	

Slide	courtesy:	Dhruv	Batra	

0.5	 0	

0.5	 1	

S=0	 S=1	
N=0	

N=1	



BNs:	Inference	

•  In	general,	(at	least)	NP-hard	

•  In	practice,		
– Exploit	structure	
– Many	effective	approximate	algorithms	

•  We	will	look	at	
– Exact	and	approximate	inference	

Slide	courtesy:	Dhruv	Batra	



BNs:	Inference	

•  Variable	Elimination	
•  Sum-product	belief	propagation	
•  Sampling:	MCMC	

•  Integer	programing	(LP	relaxation)	
•  Combinatorial	optimization	(e.g.,	graphcuts)	



Marginal	Inference	

•  Consider	the	example	
– Evidence:	N=t	
– Compute:	P(F	|	N=t)	

•  (On	board,	if	time	permits)	



Variable	Elimination	

•  Given	a	BN	and	a	query	P(Y|e)	≈	P(Y,e),	
•  Choose	an	ordering	on	variables,	e.g.,	X1,…Xn	

•  For	i=1...n,	if	Xi		
– Collect	factors	f1…fk	that	include	Xi	
– Generate	a	new	factor	by	eliminating	Xi	from	them	

•  Normalize	P(Y,e)	to	obtain	P(Y|e)	
Slide	courtesy:	Dhruv	Batra	



MAP	Inference	

•  Evidence	E=e	(e.g.,	N=t)	
•  Query	variables	of	interest	Y	

•  Maximum	a	posteriori:	argmax	P(all	var	|	E=e)	
– argmax_{f,a,s,h}	P(f,a,s,h	|	N=t)	

Slide	courtesy:	Dhruv	Batra	



Variable	Elimination	for	MAP	Inference	

•  Given	a	BN	and	a	query	maxx1…xn	P(x1…xn,e),	
•  Choose	an	ordering	on	variables,	e.g.,	X1,…Xn	

•  For	i=1...n,	if	Xi					E		
– Collect	factors	f1…fk	that	include	Xi	
– Generate	a	new	factor	by	eliminating	Xi	from	them	

•  (This	completes	the	forward	pass)	
Slide	courtesy:	Dhruv	Batra	



Variable	Elimination	for	MAP	Inference	

•  {x1*…xn*}	will	store	the	maximizing	assignment	
	
•  For	i=n...1,	if	Xi					E		

– Take	factors	f1…fk	used	when	Xi	was	eliminated	
–  Instantiate	f1…fk	with	{xi+1*…xn*}	
– Generate	maximizing	assignment	for	Xi:	

•  (This	completes	the	backward	pass)	
Slide	courtesy:	Dhruv	Batra	


