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Why Causality

Al / ML

* Underspecified Goals = Big Data Cures Everything

* Underspecified Limitations = Big Data Can Do Everything

* Underspecified Caveats = Big Data & Big Brother

Goals in Al

e Fair = Biases

 Accountable = cxplainability

* [ransparent = Decision making can be supported

* Robust = attacks / manipulations



Why Causality —What'’s the Issue with pure Al

 Biases in data, lots of them
e | eads to biased learnt models
e Robustness

* Scope becomes very important

References
 C. O’Nelll, Weapons of Math Destruction, 2016

 Zeynep Tufekci, We’re building a dystopia just to make people
click on ads, Ted Talks, Oct 2017.
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Why Causality —Some Issues with “Data is Everything”

 Biases in data, lots of them
e | eads to biased learnt models
e Robustness

* Scope becomes very important

References
 C. O’Nelll, Weapons of Math Destruction, 2016

o /. Tufekci, We’re building a dystopia just to make people
click on ads, Ted Talks, Oct 2017.
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ML Approach to Explainable Models

Discriminative or Generative modelling

* Given
D = {(zi,y;),z; € R* i €1...N}, iid samples P(X,Y)

A\

* Supervised learning 4: X~ Yie. argmax P(Y|X)
Y

« Generative modelling §: X xY — Ry, ie. P(X,Y)

Lead to Predictive Modelling which will reproduce data biases |

e.g.. If there are lots of umbrellas, then it rains

Caillebotte, 1877




ML Approach to Explainable Models

But Not All Biases are Bad

Seurat, 1884




The Implicit Big Data Promise

* |f you can predict, can you control?

Knowledge -> Prediction -> Control

So How can this be Tested? Interventions

e Think about nutrition

Pearl’s “Do” operator: do(X = a) means that
we Iintervene a system on event X to make
o Economy “a” true (Pearl 2009)

e Think about healthcare

e Climate



The Implicit Big Data Promise

X is a direct cause of Y if when we intervene it Y’s law changes
X —Y 1t

Py \do(X=a,z=c) 7 Py|do(xX=b,2=c)

Example: Cancer, Smoking, and Genetic Factors

($)—~(0)y—c)  Fcldo(s=1,G=0) 7 Pcdo(s=0,G=0)

A

Intervention



Correlation does not Imply Causation

Per capita cheese consumption
correlates with

Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Causality is Needed for
Interventions
g 30lbs — 400death;§

28.5lbs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Bedsheet tanglings-e- Cheese consumed

tylervigen.com

https://www.tylervigen.com/spurious-correlations



Prediction is not Causation

 Consider
X ~ Uniform(0, 1)
Ey,Ez; ~N(0,1)
Y <« 05X + By
/Y +E,
 Prediction

A

Y =0.250X +0.57

as a causal model suggests that Y depends on Z

Direction of prediction often indistinguishable
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Correlation does not Imply Causation: A Serious Case

354

Chocolate Consumption (kg/yr/capita)
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Laureates per 10 Million Population.

Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel

Nobel Laureates Ratio g

X
Chocolate Consumption

This means Confounders:
Variables are not Independent

chocolate consumption /L. nobel laurate ration

Probable Explanation:

Country Wealth

Variables are Independent Conditionally to Another Event

chocolate consumption 1L nobel laurate ration|country wealth
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Causality and Paradoxes

e |f mother smokes, child is small
* Tiny child, implies health issues
 However, P(tiny child, mother smokes)>P(tiny child)
So smoking is beneficial to child’s health?
Explain issues away:
* Multi-causality of children weight
* These causes also affect health
 Compared to these mother smoking is not that bad, but frequency of smoking?

e Conclusions Contain Social Biases: mother is always responsible (autism, etc)
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Why Causality

Goals in Al

o Fair = Biases

 Accountable = cxplainability

* [ransparent = Decision making can be supported
 Robust = attacks / manipulations

Causality Argued Advantages

* Decreased sensitivity wrt to Data
* Simulation of Interventions = variable clamping
 Hopes for explanation / bias detection

e Robust
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Causal Discovery

How

* (Gold Standard = Randomised Controlled Experiments
* Feasiblility =»| ow INn many cases, especially human
* The Al/ML Setting = discovery: infer model from data
What For?

 Understandable, interpretable models
* Prioritise confirmatory experiments: enable some control

 (Generate new data: for simulation, privacy, medical training
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Applications

* Physics

* Neuroscience
 Epidemiology
« Economy

e Climate
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How do we do it?



Causal Modelling

Setting

e Assume we have the random variables
Xq1,.... X4
* with a sample joint distribution

D={z; cQ%i=1...n}
Formal Background
o Key concept

e Framework

 Approaches

18



Key Concept 1: Variable (in)Dependency

* Definition of Independency
X1Y + PX,)Y)=PX)P(Y)

« How do we test for independency?
Correlation? It only works for first order linear dependencies

Y = X* 4 € — correlation(X,Y) ~ 0

o9
(Ol
Tan ¥
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Key Concept 1: Variable (in)Dependency

* Definition of Independency
X1Y + PX,)Y)=PX)P(Y)

« How do we test for independency?
Different tests:

_ Y2 ° ~
. Correlation Y = X“ + € — correlation(X,Y) >~ 0
 HSIC, Hilbert-Schmitt Independence Criterion (Gretton et al 05)
HSIC(Prxy),F,G) = [|Cxvlis

where |Cxvy %5 is the Hilbert-Schmitt norm of the kernel correlation
matrix and /.Y are two kernels: i.e. it’s the kernel trick for correlation.
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Key Concept 2: Conditional (in)Dependency

* Definition of Conditional Independency
X 1 Y|C+ P(X,Y|C)=P(X|C)P(Y|C)

 C=rains, X=wet sidewalk,
Y=people with umbrellas

* Definition of Conditional Dependency
P(C|X,Y) # P(C|X)P(C|Y)
X ALY|IC=1<«+
P(X,Y)=P(X)P(Y)
P(X,Y|C =1)# P(X|C =1)P(Y|C =1)

« X=Complex Machine,
Y=Inexperienced worker, C=Accident
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Definition of Causal Relationship

X is a direct cause of Y if when we intervene it Y’s law changes
X —Y 1t

Py \do(X=a,z=c) 7 Py|do(xX=b,2=c)

Example: Cancer, Smoking, and Genetic Factors

($)—~(0)y—c)  Fcldo(s=1,G=0) 7 Pcdo(s=0,G=0)

A

Intervention
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Markov Equivalences

Markov Equivalent Class: A 1L C|Band A /L C

V-Structure: 4 /

C'|Band A

C



Key Concept 3: Causality with Distributional Asymmetry

* |everages Occam'’s Principle
The causal model as the simplest explaining the data (Janzig 19)

B=fA) ?
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Framework: Functional Causal Models (FCMs)

e Given X1,...,Xawhere Xi = filXpa(x,), £i),
with A Pa(X;) the parents or causes of X;, a deterministic function fi, and E: an error
representing independent random variable.

El But, what do we need for this system to
; represent a causal model?
1
E2 E3 E4 X1 = fi(E1)
.“‘\ /.._. o,v_. X2: f2(X]_,E2)
> f3 fa X3 = f3(X1, E3)
@ B @ Xa = f4(Es)
e X5 = f5(X3, X, Es)

@ P(X1,...,X4) = IP(Xi| X pa(x,)
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Conditions for Causal Model Representation

» Causal Sufficiency: no unobserved

confounders i.i;.’-‘
. . i
* Causal Markov: all d-separations in the
causal graph G imply conditional By ﬁb\ = Ey
independencies in the observational N\ '4 v

distribution P
. @ ::.Esz} @
e Causal Faithfulness: all conditional vV

independencies in P imply d-separations
in the causal graph G @
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How Do We Infer the Causal
Model From Data?



Key Approach 1: Constraint-Based Methods

* Constraint-based methods, through V-Structures and constraint propagation, output a
CPDAG (Completed Partially Directed Acyclic Graph).

(%, (%,
QEEOENOENOEEONNO
X %,
% %
(a) The exact DAG of G. (b) The CPDAG of G.

 Examples: Peter-Clark Algorithm (PC) and it’s extensions such as PC-Hist (Spires et al
00, Zhang et al 12)
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Key Approach 2: Score-Based

* Use an objective function to optimise the graph. For instance the Bayesian information
criterion

BIC(G) = —2In(L) + kIn(n)

* with L the likelihood of the model, k number of parameters, and n the number of samples
* We optimise the sample with operations such as:

 Add an edge

* remove an edge

e revert and dee

* An algorithm for this are Greedy Equivalence Search (GES) by Chickering et al 02.
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Key Approaches 1 and 2

e Limitations

Computational cost depending on the test/scoring/loss

Data hungry
|dentifiability issues

Example:

X1, Ex,,Ex, ~U(0,1)X;

Xy 1L X5]Y No V-struture

Y <« 0.5X; 4+ Ey,
X2 — Y + EX2

30
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Key Approach 3: Global Optimisation

 Assuming linear causal mechanisms, the system can be formulated in terms of
linear equations
X=B'X+E

where the triangular B matrix can be estimated through ICA for LInGAM (Shimizu
06, Hyvarien 99)

* This also can be done in terms of graphical models (Pearl 09, Friedman 08)

For instance with Max-Min Hill-Climbing (MMHC) by Tsamardinos (06) and
concave penalised Descent (CCDr) by Aragam (15)
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Key Approach 4: Exploiting Asymmetries

* |f no v-structure is available and causal discovery with 2 variables is hard, we can
leverage asymmetries in the distributions . For instance with the Additive Noise
Model (ANM) of Hoyer (09)
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Original data Residuals of X=g(Y) Residuals of Y=f(X)
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Key Approach 4: Exploiting Asymmetries

Limitations
* Restrictive assumptions on the type of causal mechanisms

 Conditional independence is not taken into account

X1, Ex,, Xo ~ N(0,1)X, 1L Ex,,Y 1 Ey,
Y « 0.5X1 + Xo + E4

(X1,Y) and (X2,Y) are a perfectly symmetric pairwise distribution after rescaling.
However, X1 AL Xo|Y g v-structure is at the origin of the data.
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Key Approach 5: Machine Learning Base

Guyon et al 2014—2015

» Pair Cause-Effect Challenges
 (Gather data: a sample is a pair of variables (Ai,Bi)

 lts label 4 is the “true” causal relation (e.g. age “causes” salary)

e [nput .
E = {(A,’, B,',f,'),f,' n { 7y < ,JJ_}}
Example A;, B; Label ¢;
A; causes B; —
B; causes A; —
A; and B; are independent Al

» Qutput: (4, B) — ¢
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Key Approach 5: Machine Learning Base

Guyon et al 2014—2015




Summary for “Key Approaches”

Scalability A Methods leveraging:
® GLS / FOGBES - ® Conditional independence
: ® Distributional asymmetries
LINGAM Both
: ® Feature selection
) PC
(2122 T 7= =
5 CAM
® GENIE-3
100 vars. |l oo, .................................. B i R
PC-HSIC
PalrwWilsSe | .o, ,.. ..... P — S ———— LR
Methods : ANM PNL GPI Jarfo
>
Linear Non-Linear General model
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A Python Package for Causal Discovery

All the presented framework 1s available on GitHub at :

https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox

It iIncludes multiple algorithms as well as tools for graph structure.

Published in Kalainathan Goudet 2019 JMLR - Open Source
Software
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