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Graphical Models: Discrete Inference and Learning 
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Introduction to DAG and their relationship with 
Probability Functions (Pearl)

[Pearl 1987]

[Kong et al 2019]2



And the Usual Graph Slide



Complex Systems to Understand the World

Wikipedia



Main Epistemological Angles on Graphs and 
Knowledge

[Pearl 1987]
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Main Epistemological Angles on Graphs and 
Knowledge

[Pearl 1987]
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Alternative General Undirected Graphs
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• Graph G(V, E, f, g), E ⊆ V × V, f : V ↦ F, g : E ↦ G

•  are the vertices


•  are the edges


•  is a mapping of features for 
vertices


•  is a mapping of features for 
edges
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• Graph G(V, E, f, g), E ⊆ V × V, f : V ↦ F, g : E ↦ G
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•  are the edges


•  is a mapping of features for 
vertices


•  is a mapping of features for 
edges


V

E

f

g

The Lattice Case, or an Image



Alternative General Undirected Graphs
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• Graph G(V, E, f, g), E ⊆ V × V, f : V ↦ F, g : E ↦ G

•  are the vertices


•  are the edges


•  is a mapping of features for 
vertices


• Learn 
 

for a fixed ordering 


V

E

f

arg min
θ

ℒ([ f(vi)]i, [ϕθ(vi)]i)

i

The Lattice Case, or an Image



Alternative General Undirected Graphs
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• Learn  for a fixed ordering arg min
θ

ℒ([ f2(vi)]i, [ϕθ( f1(vi))]i) i
The Lattice Case, or an Image

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)



Alternative General Undirected Graphs
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• Learn  for a fixed ordering arg min
θ

ℒ([ f2(vi)]i, [ϕθ( f1(vi))]i) i
The Lattice Case, or an Image

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)

Convolutional NN layer



Alternative General Undirected Graphs
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• Learn  for a fixed structurearg min
θ

ℒ([ f2(vi)]i, [ϕθ( f1(vi))]i)
The Graph Case, and now?

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)

Convolutional NN layer



Alternative General Undirected Graphs
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• Learn  for a fixed structurearg min
θ

ℒ([ f2(vi)]i, [ϕθ( f1(vi))]i)

The Graph Case, use the affinity matrix

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 1
1 1 0 1 0 0
0 0 0 1 0 0



Alternative General Undirected Graphs
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• Learn  for a fixed structurearg min
θ

ℒ([ f2(vi)]i, [ϕθ( f1(vi))]i)

The Graph Case, use the affinity matrix

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 1
1 1 0 1 0 0
0 0 0 1 0 0

Issues

• O(|V|) Parameters

• Not applicable different 

sizes

• Sensitive to node ordering



Convolutions on Graphs: Message Passing
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Convolutions on Graphs: Message Passing
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Image from T. Kipf’s blog. Kipf et al. ICLR 2017



Convolutions on Graphs: Message Passing
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Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = update(k)(h(k)

u , agg(k)
v∈𝒩(u)h

(k)
v )
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Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = update(k)(h(k)

u , agg(k)
v∈𝒩(u)h

(k)
v )

Main Points

• Each gray block is a trainable network

• Each node has a different architecture

• Some will have the same

• We can learn over different architectures



Convolutions on Graphs: Message Passing
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Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = update(k)(h(k)

u , agg(k)
v∈𝒩(u)h

(k)
v )

Main Points

• Each layer incorporates information from nodes k-

hops away

• Neighbours need to be aggregated need to be 

permutation invariant

• Different aggregations define different networks



Convolutions on Graphs: Message Passing
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Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = σ W(k) ∑

v∈𝒩(u)∪{u}

hv

|𝒩(u) | |𝒩(v) |
Main Points


• Each layer incorporates information from nodes k-
hops away


• Neighbours need to be aggregated need to be 
permutation invariant


• Different aggregations define different networks



Convolutions on Graphs: Deep Encoder
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Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = σ W(k) ∑

v∈𝒩(u)

h(k)
v

|𝒩(u) |
+ B(k)h(k)

u , h0
(u) = xv, h(L)

u = zv

Main Points

• Each layer incorporates information from nodes k-

hops away

• Neighbours need to be aggregated need to be 

permutation invariant

• Different aggregations define different networks



Convolutions on Graphs: Deep Encoder
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h(k+1)
u = σ W(k) ∑

v∈𝒩(u)

h(k)
v

|𝒩(u) |
+ B(k)h(k)

u , h0
(u) = xv, h(L)

u = zv

To train this model:

• Feed  and  to a loss and minimise with Stochastic gradient descent

• The matrices need to be shared across nodes

• In general, we can do this in matrix form , define the diagonal 

degree matrix 


• Then, 

•  is sparse

• If the aggregation function is complex, the matrix formulation does not work

W(k) B(k)

H(k) = [h(k)
i ]i

Du,u = Deg(u) = |𝒩(u) |
H(k+1) = σ(D−1AH(k)WkT + H(k)BkT)

D−1A



Convolutions on Graphs: Deep Encoder
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H(k+1) = σ(D−1AH(k)WkT + H(k)BkT), h(L)
u = zv

To train this model:


• Supervised learning 


• Example for classification with cross entropy loss



• For unsupervised learning  where  if 
nodes u and v are similar

arg min
θ

ℒ(Y, f(zv))

ℒ = ∑
u

yu log(σ(zT
u θ)) + (1 − yu)log(1 − σ(zT

u θ))

ℒ = sumu,vCE(yu,v, DEC(zu, zv)) yu,v = 1



Convolutions on Graphs: Deep Encoder

Design
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Design The model:

1. Define the embedding: define a neighbourhood aggregation function

2. Define a loss function on the embedding and batch-train

3. Train the model on batch-computed graphs. Which are selected from a node 

batch + subgraph

4. Generate embeddings for nodes. This is applicable to different graphs and 

nodes

Train GeneralizeDefine the embedding 
and loss



Convolutions on Graphs: Results
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Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs

27

Train GeneralizeDefine the embedding 
and loss

Change over different GNNs

h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v )), ψ(h(k)
u )), h0

(u) = xv, h(L)
u = zv



Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs
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GCN

•  is the sigmoid function

•  is the weighting of 

nodes 

•  is the average

•  is the identity function

•  is null

σ
Msg

W(k+1)h(k)
v

Agg
ϕ
ψ

GraphSage

•  is the sigmoid function

•  is the weighting of nodes 

•  is two-stage

• Aggregate from networks

• Different aggregation with the node itself


•  is the identity function

•  is null

σ
Msg W(k+1)h(k)

v
Agg

ϕ
ψ

h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v )), ψ(h(k)
u )), h0

(u) = xv, h(L)
u = zv



Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs
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GraphSage

•  is the sigmoid function 

sometimes  


•  is the weighting of nodes 

•  is two-stage

• Aggregate from networks

• Different aggregation with the node itself


•  is the identity function

•  is null

σ

σ(x) = σ ( x
∥x∥2 )

Msg W(k+1)h(k)
v

Agg

ϕ
ψ

GraphSage Aggregations

• Mean, like GCN

• Pool, by applying a non-identity 



• LSTM aggregations

ϕ

h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v )), ψ(h(k)
u )), h0

(u) = xv, h(L)
u = zv



GraphSage: Results
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Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs
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h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v )), ψ(h(k)
u )), h0

(u) = xv, h(L)
u = zv

Graph Attention Network (GAT)

• Most parameters are arbitrary 

•  is the weighting of nodes 

• this learnable weighting  will learn which nodes 

are more important for any give node embedding.

Msg αuvW(k+1)h(k)
v

αu,v

h(k+1)
u = σ ∑

v∈𝒩(u)

αu,vW(k) h(k)
v

|𝒩(u) |
+ B(k)h(k)

u , h0
(u) = xv, h(L)

u = zv, αu,⋅ = ∑
v∈𝒩(v)

αu,v = 1

αD,A



Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs
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h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v )), ψ(h(k)
u )), h0

(u) = xv, h(L)
u = zv

Graph Attention Network (GAT)

• Main Benefits:

• Implicit importance of neighbours

• Computationally efficient

• Storage efficient O(V+E) entries and fixed

• Localised

• Inductive, it doesn’t depend on the graph structure

αD,A



Graphic Attention Network Results
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Image from Hamilton, “Graph Representation Learning Book”

Summarising


• Graphs are good representations of data support and relationships

• Going from grid/lattices to graphs in non-trivial, we need permutation invariance, 

scale invariance, and sometimes topological invariance

• The main trick, is detect patches or motifs and generalise them to global 

structure

• There’s ample evidence that taking into account heterogeneous structure 

improves supervised/semi-supervised tasks

• Novel techniques in graph networks, like GCNN, GraphSage, GAT, and others 

clearly improve on the results that don’t take into account structure


