
Graph Neural Networks
Demian Wassermann, Inria

Graphical Models: Discrete Inference and Learning

1

Introduction to DAG and their relationship with
Probability Functions (Pearl)

[Pearl 1987]

[Kong et al 2019]2

And the Usual Graph Slide

Complex Systems to Understand the World

Wikipedia

Main Epistemological Angles on Graphs and
Knowledge

[Pearl 1987]

5

Main Epistemological Angles on Graphs and
Knowledge

[Pearl 1987]

6

Alternative General Undirected Graphs

7

• Graph G(V, E, f, g), E ⊆ V × V, f : V ↦ F, g : E ↦ G

• are the vertices

• are the edges

• is a mapping of features for
vertices

• is a mapping of features for
edges

V

E

f

g

Alternative General Undirected Graphs

8

• Graph G(V, E, f, g), E ⊆ V × V, f : V ↦ F, g : E ↦ G

• are the vertices

• are the edges

• is a mapping of features for
vertices

• is a mapping of features for
edges

V

E

f

g

The Lattice Case, or an Image

Alternative General Undirected Graphs

9

• Graph G(V, E, f, g), E ⊆ V × V, f : V ↦ F, g : E ↦ G

• are the vertices

• are the edges

• is a mapping of features for
vertices

• Learn

for a fixed ordering

V

E

f

arg min
θ

ℒ([f(vi)]i, [ϕθ(vi)]i)

i

The Lattice Case, or an Image

Alternative General Undirected Graphs

10

• Learn for a fixed ordering arg min
θ

ℒ([f2(vi)]i, [ϕθ(f1(vi))]i) i
The Lattice Case, or an Image

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)

Alternative General Undirected Graphs

11

• Learn for a fixed ordering arg min
θ

ℒ([f2(vi)]i, [ϕθ(f1(vi))]i) i
The Lattice Case, or an Image

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)

Convolutional NN layer

Alternative General Undirected Graphs

12

• Learn for a fixed structurearg min
θ

ℒ([f2(vi)]i, [ϕθ(f1(vi))]i)
The Graph Case, and now?

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)

Convolutional NN layer

Alternative General Undirected Graphs

13

• Learn for a fixed structurearg min
θ

ℒ([f2(vi)]i, [ϕθ(f1(vi))]i)

The Graph Case, use the affinity matrix

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 1
1 1 0 1 0 0
0 0 0 1 0 0

Alternative General Undirected Graphs

14

• Learn for a fixed structurearg min
θ

ℒ([f2(vi)]i, [ϕθ(f1(vi))]i)

The Graph Case, use the affinity matrix

f1(v1)

f 2(vN)

f 2(v1)

f 2(vN)

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 1
1 1 0 1 0 0
0 0 0 1 0 0

Issues

• O(|V|) Parameters

• Not applicable different

sizes

• Sensitive to node ordering

Convolutions on Graphs: Message Passing

15

Convolutions on Graphs: Message Passing

16

Convolutions on Graphs: Message Passing

17

Image from T. Kipf’s blog. Kipf et al. ICLR 2017

Convolutions on Graphs: Message Passing

18

Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = update(k)(h(k)

u , agg(k)
v∈𝒩(u)h

(k)
v)

Convolutions on Graphs: Message Passing

19

Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = update(k)(h(k)

u , agg(k)
v∈𝒩(u)h

(k)
v)

Main Points

• Each gray block is a trainable network

• Each node has a different architecture

• Some will have the same

• We can learn over different architectures

Convolutions on Graphs: Message Passing

20

Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = update(k)(h(k)

u , agg(k)
v∈𝒩(u)h

(k)
v)

Main Points

• Each layer incorporates information from nodes k-

hops away

• Neighbours need to be aggregated need to be

permutation invariant

• Different aggregations define different networks

Convolutions on Graphs: Message Passing

21

Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = σ W(k) ∑

v∈𝒩(u)∪{u}

hv

|𝒩(u) | |𝒩(v) |
Main Points

• Each layer incorporates information from nodes k-
hops away

• Neighbours need to be aggregated need to be
permutation invariant

• Different aggregations define different networks

Convolutions on Graphs: Deep Encoder

22

Image from Hamilton, “Graph Representation Learning Book”

h(k+1)
u = σ W(k) ∑

v∈𝒩(u)

h(k)
v

|𝒩(u) |
+ B(k)h(k)

u , h0
(u) = xv, h(L)

u = zv

Main Points

• Each layer incorporates information from nodes k-

hops away

• Neighbours need to be aggregated need to be

permutation invariant

• Different aggregations define different networks

Convolutions on Graphs: Deep Encoder

23

h(k+1)
u = σ W(k) ∑

v∈𝒩(u)

h(k)
v

|𝒩(u) |
+ B(k)h(k)

u , h0
(u) = xv, h(L)

u = zv

To train this model:

• Feed and to a loss and minimise with Stochastic gradient descent

• The matrices need to be shared across nodes

• In general, we can do this in matrix form , define the diagonal

degree matrix

• Then,

• is sparse

• If the aggregation function is complex, the matrix formulation does not work

W(k) B(k)

H(k) = [h(k)
i]i

Du,u = Deg(u) = |𝒩(u) |
H(k+1) = σ(D−1AH(k)WkT + H(k)BkT)

D−1A

Convolutions on Graphs: Deep Encoder

24

H(k+1) = σ(D−1AH(k)WkT + H(k)BkT), h(L)
u = zv

To train this model:

• Supervised learning

• Example for classification with cross entropy loss

• For unsupervised learning where if
nodes u and v are similar

arg min
θ

ℒ(Y, f(zv))

ℒ = ∑
u

yu log(σ(zT
u θ)) + (1 − yu)log(1 − σ(zT

u θ))

ℒ = sumu,vCE(yu,v, DEC(zu, zv)) yu,v = 1

Convolutions on Graphs: Deep Encoder

Design

25

Design The model:

1. Define the embedding: define a neighbourhood aggregation function

2. Define a loss function on the embedding and batch-train

3. Train the model on batch-computed graphs. Which are selected from a node

batch + subgraph

4. Generate embeddings for nodes. This is applicable to different graphs and

nodes

Train GeneralizeDefine the embedding 
and loss

Convolutions on Graphs: Results

26

Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs

27

Train GeneralizeDefine the embedding 
and loss

Change over different GNNs

h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v)), ψ(h(k)
u)), h0

(u) = xv, h(L)
u = zv

Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs

28

GCN

• is the sigmoid function

• is the weighting of

nodes

• is the average

• is the identity function

• is null

σ
Msg

W(k+1)h(k)
v

Agg
ϕ
ψ

GraphSage

• is the sigmoid function

• is the weighting of nodes

• is two-stage

• Aggregate from networks

• Different aggregation with the node itself

• is the identity function

• is null

σ
Msg W(k+1)h(k)

v
Agg

ϕ
ψ

h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v)), ψ(h(k)
u)), h0

(u) = xv, h(L)
u = zv

Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs

29

GraphSage

• is the sigmoid function 

sometimes

• is the weighting of nodes

• is two-stage

• Aggregate from networks

• Different aggregation with the node itself

• is the identity function

• is null

σ

σ(x) = σ (x
∥x∥2)

Msg W(k+1)h(k)
v

Agg

ϕ
ψ

GraphSage Aggregations

• Mean, like GCN

• Pool, by applying a non-identity

• LSTM aggregations

ϕ

h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v)), ψ(h(k)
u)), h0

(u) = xv, h(L)
u = zv

GraphSage: Results

30

Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs

31

h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v)), ψ(h(k)
u)), h0

(u) = xv, h(L)
u = zv

Graph Attention Network (GAT)

• Most parameters are arbitrary

• is the weighting of nodes

• this learnable weighting will learn which nodes

are more important for any give node embedding.

Msg αuvW(k+1)h(k)
v

αu,v

h(k+1)
u = σ ∑

v∈𝒩(u)

αu,vW(k) h(k)
v

|𝒩(u) |
+ B(k)h(k)

u , h0
(u) = xv, h(L)

u = zv, αu,⋅ = ∑
v∈𝒩(v)

αu,v = 1

αD,A

Convolutions on Graphs: Deep Encoder

General Case Across Different GNNs

32

h(k+1)
u = σ (Aggv∈𝒩(u)(Msg ϕ(h(k)

v)), ψ(h(k)
u)), h0

(u) = xv, h(L)
u = zv

Graph Attention Network (GAT)

• Main Benefits:

• Implicit importance of neighbours

• Computationally efficient

• Storage efficient O(V+E) entries and fixed

• Localised

• Inductive, it doesn’t depend on the graph structure

αD,A

Graphic Attention Network Results

33

34

Image from Hamilton, “Graph Representation Learning Book”

Summarising

• Graphs are good representations of data support and relationships

• Going from grid/lattices to graphs in non-trivial, we need permutation invariance,

scale invariance, and sometimes topological invariance

• The main trick, is detect patches or motifs and generalise them to global

structure

• There’s ample evidence that taking into account heterogeneous structure

improves supervised/semi-supervised tasks

• Novel techniques in graph networks, like GCNN, GraphSage, GAT, and others

clearly improve on the results that don’t take into account structure

