
Graphical	Models	
Discrete	Inference	and	Learning	

MVA	
2022	–	2023	

http://thoth.inrialpes.fr/~alahari/disinflearn	
	

Lecturers	

Demian	Wassermann	Karteek	Alahari	

Email:	<firstname>.lastname@inria.fr	

Organization	

•  7	lectures	of	3	hours	each	
– Today	+	24/1,	31/1,	7/2,	28/2,	7/3,	14/3	

	
•  13:45	–	17:00	(except	today)	with	a	short	
break	or	two	

•  Last	lecture:	14th	March	

	 http://thoth.inrialpes.fr/~alahari/disinflearn	

Requirements	

•  Solid	understanding	of	mathematical	models	
– Linear	algebra	
–  Integral	transforms	
– Differential	equations	

•  Ideally,	a	basic	course	in	discrete	optimization	

Topics	covered	

•  Basic	concepts,	Bayesian	networks,	Markov	
random	fields	

•  Inference	algorithms:	belief	propagation,	tree-
reweighted	message	passing,	graph	cuts,	move-
making	algorithms,	Parameter	learning	

•  Deep	learning	in	graphical	models,	graph	neural	
networks,	other	recent	advances	

•  Causality	

Evaluation	

•  Projects	

•  In	groups	of	at	most	3	people	

•  Report	and	presentation	–	Date	TBD	

•  Topics:	your	own	or	see	list	on	25/1	

•  Bonus	points	for	excellent	class	participation	

What	you	will	learn?	

•  Fundamental	methods	

•  Real-world	applications	

•  Also,	pointers	to	using	these	methods	in	your	
work	

Your	tasks	

•  Following	the	lectures	and	participating	actively	

•  Reading	the	literature	
	
•  Doing	well	in	the	project		

Graphical	Models	
	Discrete	Inference	and	Learning	

Lecture	1	
MVA	

2022	–	2023	
http://thoth.inrialpes.fr/~alahari/disinflearn	

	
Slides	based	on	material	from	Stephen	Gould,	Pushmeet	Kohli,	Nikos	Komodakis,		
M.	Pawan	Kumar,	Carsten	Rother,	Daphne	Koller,	Dhruv	Batra	

Graphical	Models	?	

Slide	courtesy:	Dhruv	Batra	

What	this	class	is	about?	

•  Making	global	predictions	from	local	
observations	

•  Learning	such	models	from	large	quantities	of	
data	

Inference	

Learning	

Motivation	

•  Consider	the	example	of	medical	diagnosis	

Predisposing	factors	
Symptoms	
Test	results	

Diseases	
Treatment	outcomes	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Motivation	

•  A	very	different	example:	image	segmentation	

Millions	of	pixels	
Colours	/	features	

Pixel	labels	
{building,	grass,	cow,	sky}	

Slide	inspired	by	PGM	course,	Daphne	Koller	e.g.,	[He	et	al.,	2004;	Shotton	et	al.,	2006;	Gould	et	al.,	2009]	

Motivation	

•  What	do	these	two	problems	have	in	common?	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Motivation	

•  What	do	these	two	problems	have	in	common?	

– Many	variables	

– Uncertainty	about	the	correct	answer	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Graphical	Models	(or	Probabilistic	Graphical	Models)	
provide	a	framework	to	address	these	problems	

(Probabilistic)	Graphical	Models	

•  First,	it	is	a	model:	a	declarative	representation	
•  Can	also	define	the	model	

– with	domain	knowledge	
–  from	data	

Model	

Algorithm	
Algorithm	

Algorithm	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Data	

Learning	

Domain	expert	

(Probabilistic)	Graphical	Models	

•  Why	probabilistic	?	
•  To	model	uncertainty	
•  Uncertainty	due	to:	

– Partial	knowledge	of	state	of	the	world	
– Noisy	observations	
– Phenomena	not	observed	by	the	model	
–  Inherent	stochasticity	

Slide	inspired	by	PGM	course,	Daphne	Koller	

(Probabilistic)	Graphical	Models	

•  Probability	theory	provides	

– Standalone	representation	with	clear	semantics	

– Reasoning	patterns	(conditioning,	decision	making)	

– Learning	methods	

Slide	inspired	by	PGM	course,	Daphne	Koller	

(Probabilistic)	Graphical	Models	

•  Why	graphical	?	
•  Intersection	of	ideas	from	probability	theory	
and	computer	science	
– To	represent	large	number	of	variables	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Predisposing	factors	
Symptoms	
Test	results	

Millions	of	pixels	
Colours	/	features	

Random	variables			Y1,	Y2,	…,	Yn	

Goal:	capture	uncertainty	through	joint	distribution	P(Y1,…,Yn)	

(Probabilistic)	Graphical	Models	

(Probabilistic)	Graphical	Model	

•  Examples	

Bayesian	network	
(directed	graph)	

Markov	network	
(undirected	graph)	

Figure	courtesy:	D.	Koller	

(Probabilistic)	Graphical	Model	

•  Examples	

Diagnosis	network:	Pradhan	et	al.,	UAI’94	

Segmentation	network	(Courtesy	D.	Koller)	

(Probabilistic)	Graphical	Model	

•  Intuitive	&	compact	data	structure	

•  Efficient	reasoning	through	general-purpose	
algorithms	

•  Sparse	parameterization	
– Through	expert	knowledge,	or	
– Learning	from	data	

Slide	inspired	by	PGM	course,	Daphne	Koller	

(Probabilistic)	Graphical	Model	

•  Many	many	applications	
– Medical	diagnosis	
– Fault	diagnosis	
– Natural	language	processing	
– Traffic	analysis	
– Social	network	models	
– Message	decoding	
– Computer	vision:	segmentation,	3D,	pose	estimation	
– Speech	recognition	
– Robot	localization	&	mapping	 Slide	courtesy:	PGM	course,	Daphne	Koller	

Image	segmentation	

Image	 No	graphical	model	 With	graphical	model	

Sturgess	et	al.,	2009	

Multi-sensor	integration:	Traffic	

•  Learn	from	historical	data	to	make	predictions	

Slide	courtesy:	Eric	Horvitz,	MSR	

Learned	
Model	

Route	optimization	

Going	global:	Local	ambiguity	

•  Text	recognition	

Slide	courtesy:	Dhruv	Batra	

Smyth	et	al.,	1994	

Going	global:	Local	ambiguity	

•  Textual	information	extraction	

e.g.,	Mrs.	Green	spoke	today	in	New	York.	Green	
chairs	the	financial	committee.	

Slide	courtesy:	PGM	course,	Daphne	Koller	

Overview	

•  Representation	
–  How	do	we	store	P(Y1,…Yn)	
–  Directed	and	undirected	(model	implications/assumptions)	

•  Inference	
–  Answer	questions	with	the	model	
–  Exact	and	approximate	(marginal/most	probable	estimate)	

•  Learning	
– What	model	is	right	for	data	
–  Parameters	and	structure	 Slide	inspired	by	D.	Batra,	D.	Koller	’s	courses	

First,	a	recap	of	basics	

Graphs	

•  Concepts	
– Definition	of	G	
– Vertices/Nodes	
– Edges	
– Directed	vs	Undirected	
– Neighbours	vs	Parent/Child	
– Degree	vs	In/Out	degree	
– Walk	vs	Path	vs	Cycle	

Graphs	

Special	graphs	

•  Trees:	undirected	graph,	no	cycles	
•  Spanning	tree:	Same	set	of	vertices,	but	
subset	of	edges,	connected	and	no	cycles	

Slide	courtesy:	D.	Batra	

Directed	acyclic	graphs	(DAGs)	

Figure	courtesy:	D.	Batra	

Joint	distribution	

•  3	variables	
–  Intelligence	(I)	
– Difficulty	(D)	
– Grade	(G)	

•  Independent	 	 	 	 	 	 	 	 			
parameters?	

Example	courtesy:	PGM	course,	Daphne	Koller	

Conditioning	

•  Condition	on	g1

Example	courtesy:	PGM	course,	Daphne	Koller	

Conditioning	

•  P(Y	=	y	|	X	=	x)	
•  Informally,	

– What	do	you	believe	about	Y=y	when	I	tell	you	X=x	?	

•  P(France	wins	a	football	tournament	in	2023)	?	
•  What	if	I	tell	you:	

– France	almost	won	the	world	cup	2022	
– Hasn’t	had	catastrophic	results	since	J	

Slide	based	on	D.	Batra’s	course	

Conditioning:	Reduction	

•  Condition	on	g1	

Example	courtesy:	PGM	course,	Daphne	Koller	

Conditioning:	Renormalization	

Unnormalized	measure	

Example	courtesy:	PGM	course,	Daphne	Koller	

Conditional	probability	distribution	

•  Example		P(G | I, D)	

Example	courtesy:	PGM	course,	Daphne	Koller	

Conditional	probability	distribution	

Slide	courtesy:	Erik	Sudderth	

Marginalization	

P(I,D) Marginalize I

Example	courtesy:	PGM	course,	Daphne	Koller	

Marginalization	

•  Events	
– P(A)	=	P(A	and	B)	+	P(A	and	not	B)	

•  Random	variables	
–  		

Slide	courtesy:	Dhruv	Batra	

Marginalization	

Slide	courtesy:	Erik	Sudderth	

Factors	

•  A	factor	Φ(Y1,…,Yk)	

Φ:	Val(Y1,…,Yk)	à	R
	

•  Scope	=	{Y1,…,Yk}	

General	factors	

•  Not	necessarily	for	probabilities	

Example	courtesy:	PGM	course,	Daphne	Koller	

Factor	product	

Example	courtesy:	PGM	course,	Daphne	Koller	

Factor	marginalization	

Example	courtesy:	PGM	course,	Daphne	Koller	

Factor	reduction	

Why	factors	?	

•  Building	blocks	for	defining	distributions	in	
high-dimensional	spaces	

•  Set	of	basic	operations	for	manipulating	these	
distributions	

Bayesian	Networks	

•  DAGs	
– nodes	represent	variables	in	the	Bayesian	sense	
– edges	represent	conditional	dependencies	

•  Example	
– Suppose	that	we	know	the	following:	

•  The	flu	causes	sinus	inflammation	
•  Allergies	cause	sinus	inflammation	
•  Sinus	inflammation	causes	a	runny	nose	
•  Sinus	inflammation	causes	headaches	

– How	are	these	connected	?	
Slide	courtesy:	Dhruv	Batra	

Bayesian	Networks	

•  Example	

Slide	courtesy:	Dhruv	Batra	

Bayesian	Networks	

•  A	general	Bayes	net	
– Set	of	random	variables	
– DAG:	encodes	independence	assumptions	
– Conditional	probability	trees	
–  Joint	distribution	

Slide	courtesy:	Dhruv	Batra	

P(Y1,...,Yn) = P(Yi | PaYi)
i=1

n

∏

Bayesian	Networks	

•  A	general	Bayes	net	
– How	many	parameters	?	

•  Discrete	variables	Y1,…,Yn	

•  Graph:	Defines	parents	of	Yi,	i.e.,	(PaYi)	

•  CPTs:	P(Yi|PaYi)	

Slide	courtesy:	Dhruv	Batra	

Markov	nets	

•  Set	of	random	variables	

•  Undirected	graph	
– Encodes	independence	assumptions	

•  Factors	

Slide	courtesy:	Dhruv	Batra	

Comparison	to	Bayesian	Nets	?	

Pairwise	MRFs	

•  Composed	of	pairwise	factors	
– A	function	of	two	variables	
– Can	also	have	unary	terms	

•  Example	

Slide	courtesy:	Dhruv	Batra	

Markov	Nets:	Computing	probabilities	

•  Can	only	compute	ratio	of	probabilities	directly	

•  Need	to	normalize	with	a	partition	function	
– Hard	!	(sum	over	all	possible	assignments)	

•  In	Bayesian	Nets,	can	do	by	multiplying	CPTs	

Slide	courtesy:	Dhruv	Batra	

Markov	nets	ßà	Factorization	

•  Given	an	undirected	graph	H	over	variables	
Y={Y1,…,Yn}	

•  A	distribution	P	factorizes	over	H	if	there	exist	
– Subsets	of	variables	Si					Y	s.t.	Si	are	fully-
connected	in	H	

– Non-negative	potentials	(factors)	Φ1(S1),...,	
Φm(Sm):	clique	potentials	

– Such	that		

Slide	courtesy:	Dhruv	Batra	

P(Y1,...,Yn) =
1
Z i=1

m

∏Φi(Si)

Conditional	Markov	Random	Fields	
•  Also	known	as:	Markov	networks,	undirected	graphical	
models,	MRFs	

•  Note:	Not	making	a	distinction	between	CRFs	and	MRFs			
•  																:	observed	random	variables	
•  																																											:	output	random	variables	
•  							are	subset	of	variables	for	clique	
•  	Define	a	factored	probability	distribution	

Partition	function	
Exponential	number	
of	configurations	!	

MRFs	/	CRFs	

•  Several	applications,	e.g.,	computer	vision	

Interactive	figure-ground	
segmentation	[Boykov	and	Jolly,	
2001;	Boykov	and	Funka-Lea,	2006]	

Surface	context	[Hoiem	et	al.,	2005]	 Semantic	labeling	[He	et	al.,	2004;	
Shotton	et	al.,	2006;	Gould	et	al.,	
2009]	

Stereo	matching	[Kolmogorov	and	Zabih,	2001;	
Scharstein	and	Szeliski,	2002]	

Image	denoising	[Felzenszwalb	
and	Huttenlocher	2004]	

Low-level	vision	problems	

MRFs	/	CRFs	

•  Several	applications,	e.g.,	computer	vision	

Object	detection	[Felzenszwalb	et	al.,	2008]	 Pose	estimation	[Akhter	and	Black,	2015;		
Ramakrishna	et	al.,	2012]	

Scene	understanding	
[Fouhey	et	al.,	2014;	Ladicky	et	al.,	2010;	
Xiao	et	al.,	2013;	Yao	et	al.,	2012]	

High-level	vision	problems	

MRFs	/	CRFs	

•  Several	applications,	e.g.,	medical	imaging	

MRFs	/	CRFs	

•  Inherent	in	all	these	problems	are	graphical	
models	

Pixel	labeling	 Object	detection	
Pose	estimation	 Scene	understanding	

Maximum	a	posteriori	(MAP)	inference	

Maximum	a	posteriori	(MAP)	inference	

MAP	inference	ó	Energy	minimization	

The	energy	function	is	
	
where		 Clique	potential	

Clique	potentials	
•  Defines	a	mapping	from	an	assignment	of	
random	variables	to	a	real	number	

•  Encodes	a	preference	for	assignments	to	the	
random	variables	(lower	is	better)	

•  Parameterized	as	

Parameters	

Clique	potentials	

•  Arity	

Clique	potentials	

•  Arity	

Reason	1:	Texture	modelling		

Test	image	 Test	image	(60%	Noise)	Training	images	

Result	MRF	
9-connected	

(7	attractive;	2	repulsive)	

Result	MRF	
4-connected	

Result	MRF	
4-connected	
(neighbours)	

Reason2:	Discretization	artefacts	

	higher-connectivity	can	model	
true	Euclidean	length		

4-connected	
Euclidean	

8-connected	
Euclidean	

[Boykov	et	al.	’03;	’05]	

Graphical	representation	

•  Example	

Graphical	representation	

•  Example	

Graphical	representation	

•  Example	

A	Computer	Vision	Application	
Binary Image Segmentation

How ?

Cost function Models our knowledge about natural images

Optimize cost function to obtain the segmentation

Object - white, Background - green/grey Graph G = (V,E)

Each vertex corresponds to a pixel

Edges define a 4-neighbourhood grid graph

Assign a label to each vertex from L = {obj,bkg}

A	Computer	Vision	Application	
Binary Image Segmentation

Graph G = (V,E)

Cost of a labelling f : V ➔ L Per Vertex Cost

Cost of label ‘obj’ low Cost of label ‘bkg’ high

Object - white, Background - green/grey

A	Computer	Vision	Application	
Binary Image Segmentation

Graph G = (V,E)

Cost of a labelling f : V ➔ L

Cost of label ‘obj’ high Cost of label ‘bkg’ low

Per Vertex Cost

UNARY COST

Object - white, Background - green/grey

A	Computer	Vision	Application	
Binary Image Segmentation

Graph G = (V,E)

Cost of a labelling f : V ➔ L Per Edge Cost

Cost of same label low

Cost of different labels high

Object - white, Background - green/grey

A	Computer	Vision	Application	
Binary Image Segmentation

Graph G = (V,E)

Cost of a labelling f : V ➔ L

Cost of same label high

Per Edge Cost

PAIRWISE
COST

Object - white, Background - green/grey

A	Computer	Vision	Application	
Binary Image Segmentation

Cost of different labels low

Graph G = (V,E)

Problem: Find the labelling with minimum cost f*

Object - white, Background - green/grey

A	Computer	Vision	Application	
Binary Image Segmentation

Graph G = (V,E)

Problem: Find the labelling with minimum cost f*

A	Computer	Vision	Application	
Binary Image Segmentation

Another	Computer	Vision	Application	
Stereo Correspondence

Disparity Map

How ?

Minimizing a cost function

Another	Computer	Vision	Application	
Stereo Correspondence

Graph G = (V,E)

Vertex corresponds to a pixel

Edges define grid graph

L = {disparities}

Stereo Correspondence

Cost of labelling f :

Unary cost + Pairwise Cost

Find minimum cost f*

Another	Computer	Vision	Application	

The	General	Problem	

b

a

e

d

c

g

Graph G = (V, E)

Discrete label set L = {1,2,…,h}

Assign a label to each vertex
 f: V ➜ L

1

1 2

2 2

3

Cost of a labelling Q(f)

Unary Cost Pairwise Cost

Find f* = arg min Q(f)

Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	

Remainder	of	today’s	lecture	

•  Belief	propagation	
•  TRW	
•  Graph	cuts	

Belief Propagation

A	Computer	Vision	Application	
Binary Image Segmentation

How ?

Cost function Models our knowledge about natural images

Optimize cost function to obtain the segmentation

Another	Computer	Vision	Application	
Stereo Correspondence

Disparity Map

How ?

Minimizing a cost function

The	General	Problem	

b

a

e

d

c

g

Graph G = (V, E)

Discrete label set L = {1,2,…,h}

Assign a label to each vertex
 f: V ➜ L

1

1 2

2 2

3

Cost of a labelling Q(f)

Unary Cost Pairwise Cost

Find f* = arg min Q(f)

Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	

Energy	Function	

Va Vb Vc Vd

Label l0

Label l1

Da Db Dc Dd

Random Variables V = {Va, Vb, ….}

Labels L = {l0, l1, ….} Data D

Labelling f: {a, b, …. } ➔ {0,1, …}

Energy	Function	

Va Vb Vc Vd

Da Db Dc Dd

Q(f) = ∑a θa;f(a)

Unary Potential

2

5

4

2

6

3

3

7
Label l0

Label l1

Easy to minimize

Neighbourhood

Energy	Function	

Va Vb Vc Vd

Da Db Dc Dd

E : (a,b) ∈ E iff Va and Vb are neighbours

E = { (a,b) , (b,c) , (c,d) }

2

5

4

2

6

3

3

7
Label l0

Label l1

Energy	Function	

Va Vb Vc Vd

Da Db Dc Dd

+∑(a,b) θab;f(a)f(b)
Pairwise Potential

0

1 1

0

0

2

1

1

4 1

0

3

2

5

4

2

6

3

3

7
Label l0

Label l1

Q(f) = ∑a θa;f(a)

Energy	Function	

Va Vb Vc Vd

Da Db Dc Dd

0

1 1

0

0

2

1

1

4 1

0

3

Parameter

2

5

4

2

6

3

3

7
Label l0

Label l1

+∑(a,b) θab;f(a)f(b) Q(f; θ) = ∑a θa;f(a)

Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	

MAP	Estimation	

Va Vb Vc Vd

2

5

4

2

6

3

3

7

0

1 1

0

0

2

1

1

4 1

0

3

Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b)

2 + 1 + 2 + 1 + 3 + 1 + 3 = 13

Label l0

Label l1

MAP	Estimation	

Va Vb Vc Vd

2

5

4

2

6

3

3

7

0

1 1

0

0

2

1

1

4 1

0

3

Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b)

5 + 1 + 4 + 0 + 6 + 4 + 7 = 27

Label l0

Label l1

MAP	Estimation	

Va Vb Vc Vd

2

5

4

2

6

3

3

7

0

1 1

0

0

2

1

1

4 1

0

3

Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b)

f* = arg min Q(f; θ)

q* = min Q(f; θ) = Q(f*; θ)

Label l0

Label l1

Equivalent to maximizing the associated probability

MAP	Estimation	

f(a) f(b) f(c) f(d) Q(f; θ)
0 0 0 0 18
0 0 0 1 15
0 0 1 0 27
0 0 1 1 20
0 1 0 0 22
0 1 0 1 19
0 1 1 0 27
0 1 1 1 20

16 possible labellings

f(a) f(b) f(c) f(d) Q(f; θ)
1 0 0 0 16
1 0 0 1 13
1 0 1 0 25
1 0 1 1 18
1 1 0 0 18
1 1 0 1 15
1 1 1 0 23
1 1 1 1 16

f* = {1, 0, 0, 1}
q* = 13

Computational	Complexity	

|V| = number of pixels ≈ 153600

Segmentation

2|V|

Can we do better than brute-force?

MAP Estimation is NP-hard !!

MAP	Inference	/	Energy	Minimization	
•  Computing	the	assignment	minimizing	the	energy	
in	NP-hard	in	general	

•  Exact	inference	is	possible	in	some	cases,	e.g.,	
–  Low	treewidth	graphs	à	message-passing	
–  Submodular	potentials	à	graph	cuts	

•  Efficient	approximate	inference	algorithms	exist	
– Message	passing	on	general	graphs	
– Move-making	algorithms	
– Relaxation	algorithms	

Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	

Min-Marginals	

Va Vb Vc Vd

2

5

4

2

6

3

3

7

0

1 1

0

0

2

1

1

4 1

0

3

f* = arg min Q(f; θ) such that f(a) = i

Min-marginal qa;i

Label l0

Label l1

Not a marginal (no summation)

Min-Marginals	
16 possible labellings qa;0 = 15
f(a) f(b) f(c) f(d) Q(f; θ)
0 0 0 0 18
0 0 0 1 15
0 0 1 0 27
0 0 1 1 20
0 1 0 0 22
0 1 0 1 19
0 1 1 0 27
0 1 1 1 20

f(a) f(b) f(c) f(d) Q(f; θ)
1 0 0 0 16
1 0 0 1 13
1 0 1 0 25
1 0 1 1 18
1 1 0 0 18
1 1 0 1 15
1 1 1 0 23
1 1 1 1 16

Min-Marginals	
16 possible labellings qa;1 = 13

f(a) f(b) f(c) f(d) Q(f; θ)
1 0 0 0 16
1 0 0 1 13
1 0 1 0 25
1 0 1 1 18
1 1 0 0 18
1 1 0 1 15
1 1 1 0 23
1 1 1 1 16

f(a) f(b) f(c) f(d) Q(f; θ)
0 0 0 0 18
0 0 0 1 15
0 0 1 0 27
0 0 1 1 20
0 1 0 0 22
0 1 0 1 19
0 1 1 0 27
0 1 1 1 20

Min-Marginals	and	MAP	
•  Minimum min-marginal of any variable =
 energy of MAP labelling

 minf Q(f; θ) such that f(a) = i

qa;i mini

mini ()

Va has to take one label

 minf Q(f; θ)

Summary	

MAP Estimation

f* = arg min Q(f; θ)

Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b)

Min-marginals

qa;i = min Q(f; θ) s.t. f(a) = i

Energy Function

Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	

Reparameterization	

f(a) f(b) Q(f; θ)

0 0 7 + 2 - 2

0 1 10 + 2 - 2

1 0 5 + 2 - 2

1 1 6 + 2 - 2

Add a constant to all θa;i

Subtract that constant from all θb;k

Q(f; θ’) = Q(f; θ)

Va Vb

2

5

4

2

0

0

2 +

2 +

- 2

- 2

1 1

Reparameterization	

Va Vb

2

5

4

2

0

1 1

0

f(a) f(b) Q(f; θ)

0 0 7

0 1 10 - 3 + 3

1 0 5

1 1 6 - 3 + 3

- 3 + 3
- 3

Q(f; θ’) = Q(f; θ)

Add a constant to one θb;k

Subtract that constant from θab;ik for all ‘i’

Reparameterization	

 Q(f; θ’) = Q(f; θ), for all f

θ’ is a reparameterization of θ, iff

θ’ ≡ θ

θ’b;k = θb;k

θ’a;i = θa;i

θ’ab;ik = θab;ik

+ Mab;k

- Mab;k

+ Mba;i

- Mba;i

Equivalently Kolmogorov, PAMI, 2006

Va Vb

2

5

4

2

0

0

2 +

2 +

- 2

- 2

1 1

Recap	
MAP Estimation

f* = arg min Q(f; θ)
Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b)

Min-marginals

qa;i = min Q(f; θ) s.t. f(a) = i

 Q(f; θ’) = Q(f; θ), for all f θ’ ≡ θ
Reparameterization

Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	

Belief	Propagation	

•  Belief Propagation gives exact MAP for chains

•  Remember, some MAP problems are easy

•  Exact MAP for trees

•  Clever Reparameterization

Two	Variables	

Va Vb

2

5 2

1

0
Va Vb

2

5

40

1

Choose the right constant θ’b;k = qb;k

Add a constant to one θb;k

Subtract that constant from θab;ik for all ‘i’

Va Vb

2

5 2

1

0
Va Vb

2

5

40

1

Choose the right constant θ’b;k = qb;k

θa;0 + θab;00 = 5 + 0

θa;1 + θab;10 = 2 + 1
min Mab;0 =

Two	Variables	

Va Vb

2

5 5

-2

-3
Va Vb

2

5

40

1

Choose the right constant θ’b;k = qb;k

f(a) = 1

θ’b;0 = qb;0

Two	Variables	

Potentials along the red path add up to 0

Va Vb

2

5 5

-2

-3
Va Vb

2

5

40

1

Choose the right constant θ’b;k = qb;k

θa;0 + θab;01 = 5 + 1

θa;1 + θab;11 = 2 + 0
min Mab;1 =

Two	Variables	

Va Vb

2

5 5

-2

-3
Va Vb

2

5

6-2

-1

Choose the right constant θ’b;k = qb;k

f(a) = 1

θ’b;0 = qb;0

f(a) = 1

θ’b;1 = qb;1

Minimum of min-marginals = MAP estimate

Two	Variables	

Va Vb

2

5 5

-2

-3
Va Vb

2

5

6-2

-1

Choose the right constant θ’b;k = qb;k

f(a) = 1

θ’b;0 = qb;0

f(a) = 1

θ’b;1 = qb;1

f*(b) = 0 f*(a) = 1

Two	Variables	

Va Vb

2

5 5

-2

-3
Va Vb

2

5

6-2

-1

Choose the right constant θ’b;k = qb;k

f(a) = 1

θ’b;0 = qb;0

f(a) = 1

θ’b;1 = qb;1

We get all the min-marginals of Vb

Two	Variables	

Recap	
We only need to know two sets of equations

General form of Reparameterization

θ’a;i = θa;i

θ’ab;ik = θab;ik

+ Mab;k

- Mab;k

+ Mba;i

- Mba;i

θ’b;k = θb;k

Reparameterization of (a,b) in Belief Propagation

Mab;k = mini { θa;i + θab;ik }
Mba;i = 0

Three Variables

Va Vb

2

5 2

1

0
Vc

4 60

1

0

1

3

2 3

Reparameterize the edge (a,b) as before

l0

l1

Va Vb

2

5 5-3
Vc

6 60

1

-2

3

Reparameterize the edge (a,b) as before

f(a) = 1

f(a) = 1

-2 -1 2 3

Three Variables

l0

l1

Va Vb

2

5 5-3
Vc

6 60

1

-2

3

Reparameterize the edge (a,b) as before

f(a) = 1

f(a) = 1

Potentials along the red path add up to 0

-2 -1 2 3

Three Variables

l0

l1

Va Vb

2

5 5-3
Vc

6 60

1

-2

3

Reparameterize the edge (b,c) as before

f(a) = 1

f(a) = 1

Potentials along the red path add up to 0

-2 -1 2 3

Three Variables

l0

l1

Va Vb

2

5 5-3
Vc

6 12-6

-5

-2

9

Reparameterize the edge (b,c) as before

f(a) = 1

f(a) = 1

Potentials along the red path add up to 0

f(b) = 1

f(b) = 0

qc;0

qc;1
-2 -1 -4 -3

Three Variables

l0

l1

Va Vb

2

5 5-3
Vc

6 12-6

-5

-2

9

f(a) = 1

f(a) = 1

f(b) = 1

f(b) = 0

qc;0

qc;1

f*(c) = 0 f*(b) = 0 f*(a) = 1
Generalizes to any length chain

-2 -1 -4 -3

Three Variables

l0

l1

Va Vb

2

5 5-3
Vc

6 12-6

-5

-2

9

f(a) = 1

f(a) = 1

f(b) = 1

f(b) = 0

qc;0

qc;1

f*(c) = 0 f*(b) = 0 f*(a) = 1
Only Dynamic Programming

-2 -1 -4 -3

Three Variables

l0

l1

Why Dynamic Programming?

3 variables ≡ 2 variables + book-keeping
n variables ≡ (n-1) variables + book-keeping

Start from left, go to right

Reparameterize current edge (a,b)
Mab;k = mini { θa;i + θab;ik }

θ’ab;ik = θab;ik + Mab;k - Mab;k θ’b;k = θb;k

Repeat

Why Dynamic Programming?

Start from left, go to right

Reparameterize current edge (a,b)
Mab;k = mini { θa;i + θab;ik }

θ’ab;ik = θab;ik + Mab;k - Mab;k θ’b;k = θb;k

Repeat

Messages Message Passing

Why stop at dynamic programming?

Va Vb

2

5 5-3
Vc

6 12-6

-5

-2

9

Reparameterize the edge (c,b) as before

-2 -1 -4 -3

Three Variables

l0

l1

Va Vb

2

5 9-3
Vc

11 12-11

-9

-2

9

Reparameterize the edge (c,b) as before

-2 -1 -9 -7

θ’b;i = qb;i

Three Variables

l0

l1

Va Vb

9

11 9-9
Vc

11 12-11

-9

-9

9

Reparameterize the edge (b,a) as before

-9 -7 -9 -7

θ’a;i = qa;i

Three Variables

l0

l1

Va Vb

9

11 9-9
Vc

11 12-11

-9

-9

9

Forward Pass è ç Backward Pass

-9 -7 -9 -7

All min-marginals are computed

Three Variables

l0

l1

Chains	

X1 X2 X3 Xn……..	

Reparameterize	the	edge	(1,2)	

Chains	

X1 X2 X3 Xn……..	

Reparameterize	the	edge	(2,3)	

Chains	

X1 X2 X3 Xn……..	

Reparameterize	the	edge	(3,4)	

Chains	

X1 X2 X3 Xn……..	

Reparameterize	the	edge	(n-1,n)	

Min-marginals	en(i)	for	all	labels	

Belief	Propagation	on	Chains	

Start from left, go to right

Reparameterize current edge (a,b)
Mab;k = mini { θa;i + θab;ik }

θ’ab;ik = θab;ik + Mab;k - Mab;k θ’b;k = θb;k

Repeat till the end of the chain

Start from right, go to left

Repeat till the end of the chain

Belief	Propagation	on	Chains	

•  A way of computing reparam constants

•  Generalizes to chains of any length

•  Forward Pass - Start to End
•  MAP estimate
•  Min-marginals of final variable

•  Backward Pass - End to start
•  All other min-marginals

Computational	Complexity	

Number	of	reparameterization	constants	=	(n-1)h	

Complexity	for	each	constant	=	O(h)	

Total	complexity	=	O(nh2)	

Better	than	brute-force	O(hn)	

Total	complexity	

Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(4,2)	

Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(5,2)	

Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(6,3)	

Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(7,3)	

Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(2,1)	

Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(3,1)	

Min-marginals	e1(i)	for	all	labels	

Trees	

X2

X1

X3

X4 X5 X6 X7

Start	from	leaves	and	move	towards	root	

Pick	the	minimum	of	min-marginals	

Backtrack	to	find	the	best	labeling	x	

•  Preliminaries
– s-t Flow
– s-t Cut
– Flows vs. Cuts

•  Maximum Flow
•  Algorithms
•  Energy minimization with max flow/min cut

Outline

s-t Flow

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

Function flow: A è R

Flow of arc ≤ arc capacity

Flow is non-negative

For all vertex except s,t

Incoming flow

= Outgoing flow

s-t Flow

Function flow: A è R

flow(a) ≤ c(a)

Flow is non-negative

For all vertex except s,t

Incoming flow

= Outgoing flow

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

s-t Flow

Function flow: A è R

flow(a) ≤ c(a)

For all vertex except s,t

Incoming flow

= Outgoing flow

flow(a) ≥ 0 v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

s-t Flow

Function flow: A è R

flow(a) ≤ c(a)

flow(a) ≥ 0

For all v ∈ V \ {s,t}

Incoming flow

= Outgoing flow

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

s-t Flow

Function flow: A è R

flow(a) ≤ c(a)

flow(a) ≥ 0

For all v ∈ V \ {s,t}

= Outgoing flow

Σ(u,v)∈A flow((u,v))

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

s-t Flow

Function flow: A è R

flow(a) ≤ c(a)

flow(a) ≥ 0

For all v ∈ V \ {s,t}

= Σ(v,u)∈A flow((v,u))

Σ(u,v)∈A flow((u,v))

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

s-t Flow

Function flow: A è R

flow(a) ≤ c(a)

flow(a) ≥ 0

For all v ∈ V \ {s,t}

Eflow(v) = 0

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

s-t Flow

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

Function flow: A è R

flow(a) ≤ c(a)

flow(a) ≥ 0

For all v ∈ V \ {s,t}

Eflow(v) = 0

3

1 10

3

4

✗

s-t Flow

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

Function flow: A è R

flow(a) ≤ c(a)

flow(a) ≥ 0

For all v ∈ V \ {s,t}

Eflow(v) = 0

-1

-1

-1
✗

s-t Flow

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

Function flow: A è R

flow(a) ≤ c(a)

flow(a) ≥ 0

For all v ∈ V \ {s,t}

Eflow(v) = 0

 1

 1

 1
✓

Value of s-t Flow

Outgoing flow of s

- Incoming flow of s

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

Value of s-t Flow

v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

Σ(s,v)∈A flow((s,v))

- Σ(u,s)∈A flow((u,s))

-Eflow(s) Eflow(t)

 1

 1

 1

Value = 1

•  Preliminaries
– Functions and Excess Functions
– s-t Flow
– s-t Cut
– Flows vs. Cuts

•  Maximum Flow
•  Algorithms
•  Energy minimization with max flow/min cut

Outline

Cut

v1 v2

v3 v4

10

5

3 2

Let U be a subset of V

C is a set of arcs such that
•  (u,v) ∈ A
•  u ∈ U
•  v ∈ V\U

D = (V, A)

C is a cut in the digraph D

Cut

v1 v2

v3 v4

What is C?

D = (V, A)
U

V\U

{(v1,v2),(v1,v4)} ?

{(v1,v4),(v3,v2)} ?

{(v1,v4)} ? ✓

10

5

3 2

Cut

v1 v2

v3 v4

What is C?

D = (V, A)
U V\U

{(v1,v2),(v1,v4),(v3,v2)} ?

{(v1,v4),(v3,v2)} ?

{(v4,v3)} ? ✓

10

5

3 2

Cut

What is C?

D = (V, A)
V\U U

{(v1,v2),(v1,v4),(v3,v2)} ?

{(v1,v4),(v3,v2)} ?

{(v3,v2)} ?

✓ v1 v2

v3 v4

10

5

3 2

Cut

C = out-arcs(U)

D = (V, A)

v1 v2

v3 v4

10

5

3 2

Capacity of Cut

Sum of capacity of all
arcs in C

v1 v2

v3 v4

10

5

3 2

Capacity of Cut

Σa ∈ C c(a)

v1 v2

v3 v4

10

5

3 2

Capacity of Cut

3 v1 v2

v3 v4

U

V\U

10

5

3 2

Capacity of Cut

15

V\U U

v1 v2

v3 v4

10

5

3 2

s-t Cut

A source vertex “s”

C is a cut such that
•  s ∈ U
•  t ∈ V\U

D = (V, A)

C is an s-t cut

A sink vertex “t” v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

Capacity of s-t Cut

Σa ∈ C c(a) v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

Capacity of s-t Cut

5 v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

Capacity of s-t Cut

17 v1 v2

v3 v4

6

5

3

s

t

1 8

7 3

2

•  Preliminaries
– s-t Flow
– s-t Cut
– Flows vs. Cuts

•  Maximum Flow
•  Algorithms
•  Energy minimization with max flow/min cut

Outline

•  Preliminaries

•  Maximum Flow
– Residual Graph
– Max-Flow Min-Cut Theorem

•  Algorithms

•  Energy minimization with max flow/min cut

Outline

Maximum Flow Problem

Find the flow with the
maximum value !!

Σ(s,v)∈A flow((s,v))

- Σ(u,s)∈A flow((u,s))

v1 v2
3

s

t

2 4

1 2

First suggestion to solve this problem !!

Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs

v1 v2
3

s

t

2 4

1 2
Pass maximum allowable
flow through the arcs

1

1

Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs

v1 v2
3

s

t

2 4

1 2

1

1

Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs

v1 v2
3

s

t

2 4

1 2

1

1
Pass maximum allowable
flow through the arcs

2

2

Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs

v1 v2
3

s

t

2 4

1 2

1

1
No more paths.

2

2
Stop.

Will this give us maximum flow? NO !!!

Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs

v1 v2
3

s

t

2 4

1 2
Pass maximum allowable
flow through the arcs

2
2

2

Passing Flow through s-t Paths

Find an s-t path where
flow(a) < c(a) for all arcs

v1 v2
3

s

t

2 4

1 2

2
2

2
No more paths. Stop.

Incorrect Answer !!

Another method?

•  Preliminaries

•  Maximum Flow
– Residual Graph
– Max-Flow Min-Cut Theorem

•  Algorithms

•  Energy minimization with max flow/min cut

Outline

Residual Graph

v1 v2
3

s

t

2 4

1 2

2
2

2

v1 v2

s

t

Arcs where flow(a) < c(a)

Residual Graph

v1 v2
3

s

t

2 4

1 2

2
2

2

v1 v2

s

t

Inverse of arcs where flow(a) > 0
Including arcs to s and from t is not necessary

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

Start with zero flow.

v1 v2

s

t

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

Find an s-t path in the residual graph.

v1 v2

s

t

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

For inverse arcs in path, subtract flow K.

v1 v2

s

t

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

For forward arcs in path, add flow K.

v1 v2

s

t

Choose maximum allowable value of K.

2
2

2

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

Update the residual graph.

2
2

2

v1 v2

s

t

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

2
2

2

v1 v2

s

t

Find an s-t path in the residual graph.

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

2
1

2

v1 v2

s

t

Add K to (s,v2) and (v1,t). Subtract K from (v1,v2).
Choose maximum allowable value of K.

1

1

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

2
1

2

v1 v2

s

t

1

1

Update the residual graph.

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

2
1

2

v1 v2

s

t

1

1

Find an s-t path in the residual graph.

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

2
1

2

v1 v2

s

t

1

1

No more s-t paths. Stop.

Maximum Flow using Residual Graphs

v1 v2
3

s

t

2 4

1 2

2
1

2

v1 v2

s

t

1

1

Correct Answer.

•  Preliminaries

•  Maximum Flow
•  Residual Graph
•  Max-Flow Min-Cut Theorem

•  Algorithms

•  Energy minimization with max flow/min cut

Outline

History of Maxflow Algorithms

[Slide credit: Andrew Goldberg]

Augmenting Path and Push-Relabel n: #nodes

m: #edges

U: maximum
edge weight

Algorithms
assume non-
negative edge

weights

History of Maxflow Algorithms

[Slide credit: Andrew Goldberg]

Augmenting Path and Push-Relabel n: #nodes

m: #edges

U: maximum
edge weight

Algorithms
assume non-
negative edge

weights

Augmenting Path based Algorithms

a1 a2

1000
1

Sink

Source

1000

1000 1000
0

Ford Fulkerson: Choose any augmenting path

a1 a2

1000
1

Sink

Source

1000

1000 1000
0

Augmenting Path based Algorithms

Ford Fulkerson: Choose any augmenting path

a1 a2

1000
1

Sink

Source

1000

1000 1000
0

Augmenting Path based Algorithms

Bad
Augmenting

Path

Ford Fulkerson: Choose any augmenting path

a1 a2

999
0

Sink

Source

1000

1000 999
1

Augmenting Path based Algorithms

Ford Fulkerson: Choose any augmenting path

a1 a2

999
0

Sink

Source

1000

1000 999
1

Ford Fulkerson: Choose any augmenting path
n: #nodes

m: #edges

We will have to perform 2000 augmentations!

Worst case complexity: O (m x Total_Flow)
(Pseudo-polynomial bound: depends on flow)

Augmenting Path based Algorithms

Dinitz: Choose shortest augmenting path
n: #nodes

m: #edges

Worst case complexity: O (m n2)

Augmenting Path based Algorithms

a1 a2

1000
1

Sink

Source

1000

1000 1000
0

Maxflow in Computer Vision

•  Specialized algorithms for vision
problems
–  Grid graphs
–  Low connectivity (m ~ O(n))

•  Dual search tree augmenting path
algorithm
 [Boykov and Kolmogorov PAMI 2004]

•  Finds approximate shortest
augmenting paths efficiently

•  High worst-case time complexity
•  Empirically outperforms other

algorithms on vision problems
•  Efficient code available on the web

e.g., http://pub.ist.ac.at/~vnk/software.html

