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Organization	

•  7	lectures	of	3	hours	each	
– Today	+	24/1,	31/1,	7/2,	28/2,	7/3,	14/3	

	
•  13:45	–	17:00	(except	today)	with	a	short	
break	or	two	

•  Last	lecture:	14th	March	

	 http://thoth.inrialpes.fr/~alahari/disinflearn	



Requirements	

•  Solid	understanding	of	mathematical	models	
– Linear	algebra	
–  Integral	transforms	
– Differential	equations	

•  Ideally,	a	basic	course	in	discrete	optimization	



Topics	covered	

•  Basic	concepts,	Bayesian	networks,	Markov	
random	fields	

•  Inference	algorithms:	belief	propagation,	tree-
reweighted	message	passing,	graph	cuts,	move-
making	algorithms,	Parameter	learning	

•  Deep	learning	in	graphical	models,	graph	neural	
networks,	other	recent	advances	

•  Causality	



Evaluation	

•  Projects	

•  In	groups	of	at	most	3	people	

•  Report	and	presentation	–	Date	TBD	

•  Topics:	your	own	or	see	list	on	25/1	

•  Bonus	points	for	excellent	class	participation	



What	you	will	learn?	

•  Fundamental	methods	

•  Real-world	applications	

•  Also,	pointers	to	using	these	methods	in	your	
work	



Your	tasks	

•  Following	the	lectures	and	participating	actively	

•  Reading	the	literature	
	
•  Doing	well	in	the	project		



Graphical	Models	
	Discrete	Inference	and	Learning	

Lecture	1	
MVA	

2022	–	2023	
http://thoth.inrialpes.fr/~alahari/disinflearn	

	
Slides	based	on	material	from	Stephen	Gould,	Pushmeet	Kohli,	Nikos	Komodakis,		
M.	Pawan	Kumar,	Carsten	Rother,	Daphne	Koller,	Dhruv	Batra	



Graphical	Models	?	

Slide	courtesy:	Dhruv	Batra	



What	this	class	is	about?	

•  Making	global	predictions	from	local	
observations	

•  Learning	such	models	from	large	quantities	of	
data	

Inference	

Learning	



Motivation	

•  Consider	the	example	of	medical	diagnosis	

Predisposing	factors	
Symptoms	
Test	results	

Diseases	
Treatment	outcomes	

Slide	inspired	by	PGM	course,	Daphne	Koller	



Motivation	

•  A	very	different	example:	image	segmentation	

Millions	of	pixels	
Colours	/	features	

Pixel	labels	
{building,	grass,	cow,	sky}	

Slide	inspired	by	PGM	course,	Daphne	Koller	e.g.,	[He	et	al.,	2004;	Shotton	et	al.,	2006;	Gould	et	al.,	2009]	



Motivation	

•  What	do	these	two	problems	have	in	common?	

Slide	inspired	by	PGM	course,	Daphne	Koller	



Motivation	

•  What	do	these	two	problems	have	in	common?	

– Many	variables	

– Uncertainty	about	the	correct	answer	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Graphical	Models	(or	Probabilistic	Graphical	Models)	
provide	a	framework	to	address	these	problems	



(Probabilistic)	Graphical	Models	

•  First,	it	is	a	model:	a	declarative	representation	
•  Can	also	define	the	model	

– with	domain	knowledge	
–  from	data	

Model	

Algorithm	
Algorithm	

Algorithm	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Data	

Learning	

Domain	expert	



(Probabilistic)	Graphical	Models	

•  Why	probabilistic	?	
•  To	model	uncertainty	
•  Uncertainty	due	to:	

– Partial	knowledge	of	state	of	the	world	
– Noisy	observations	
– Phenomena	not	observed	by	the	model	
–  Inherent	stochasticity	

Slide	inspired	by	PGM	course,	Daphne	Koller	



(Probabilistic)	Graphical	Models	

•  Probability	theory	provides	

– Standalone	representation	with	clear	semantics	

– Reasoning	patterns	(conditioning,	decision	making)	

– Learning	methods	

Slide	inspired	by	PGM	course,	Daphne	Koller	



(Probabilistic)	Graphical	Models	

•  Why	graphical	?	
•  Intersection	of	ideas	from	probability	theory	
and	computer	science	
– To	represent	large	number	of	variables	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Predisposing	factors	
Symptoms	
Test	results	

Millions	of	pixels	
Colours	/	features	

Random	variables			Y1,	Y2,	…,	Yn	

Goal:	capture	uncertainty	through	joint	distribution	P(Y1,…,Yn)	



(Probabilistic)	Graphical	Models	



(Probabilistic)	Graphical	Model	

•  Examples	

Bayesian	network	
(directed	graph)	

Markov	network	
(undirected	graph)	

Figure	courtesy:	D.	Koller	



(Probabilistic)	Graphical	Model	

•  Examples	

Diagnosis	network:	Pradhan	et	al.,	UAI’94	

Segmentation	network	(Courtesy	D.	Koller)	



(Probabilistic)	Graphical	Model	

•  Intuitive	&	compact	data	structure	

•  Efficient	reasoning	through	general-purpose	
algorithms	

•  Sparse	parameterization	
– Through	expert	knowledge,	or	
– Learning	from	data	

Slide	inspired	by	PGM	course,	Daphne	Koller	



(Probabilistic)	Graphical	Model	

•  Many	many	applications	
– Medical	diagnosis	
– Fault	diagnosis	
– Natural	language	processing	
– Traffic	analysis	
– Social	network	models	
– Message	decoding	
– Computer	vision:	segmentation,	3D,	pose	estimation	
– Speech	recognition	
– Robot	localization	&	mapping	 Slide	courtesy:	PGM	course,	Daphne	Koller	



Image	segmentation	

Image	 No	graphical	model	 With	graphical	model	

Sturgess	et	al.,	2009	



Multi-sensor	integration:	Traffic	

•  Learn	from	historical	data	to	make	predictions	

Slide	courtesy:	Eric	Horvitz,	MSR	

Learned	
Model	

Route	optimization	



Going	global:	Local	ambiguity	

•  Text	recognition	

Slide	courtesy:	Dhruv	Batra	

Smyth	et	al.,	1994	



Going	global:	Local	ambiguity	

•  Textual	information	extraction	

e.g.,	Mrs.	Green	spoke	today	in	New	York.	Green	
chairs	the	financial	committee.	

Slide	courtesy:	PGM	course,	Daphne	Koller	



Overview	

•  Representation	
–  How	do	we	store	P(Y1,…Yn)	
–  Directed	and	undirected	(model	implications/assumptions)	

•  Inference	
–  Answer	questions	with	the	model	
–  Exact	and	approximate	(marginal/most	probable	estimate)	

•  Learning	
– What	model	is	right	for	data	
–  Parameters	and	structure	 Slide	inspired	by	D.	Batra,	D.	Koller	’s	courses	



First,	a	recap	of	basics	



Graphs	

•  Concepts	
– Definition	of	G	
– Vertices/Nodes	
– Edges	
– Directed	vs	Undirected	
– Neighbours	vs	Parent/Child	
– Degree	vs	In/Out	degree	
– Walk	vs	Path	vs	Cycle	



Graphs	



Special	graphs	

•  Trees:	undirected	graph,	no	cycles	
•  Spanning	tree:	Same	set	of	vertices,	but	
subset	of	edges,	connected	and	no	cycles	

Slide	courtesy:	D.	Batra	



Directed	acyclic	graphs	(DAGs)	

Figure	courtesy:	D.	Batra	



Joint	distribution	

•  3	variables	
–  Intelligence	(I)	
– Difficulty	(D)	
– Grade	(G)	

•  Independent	 	 	 	 	 	 	 	 			
parameters?	

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditioning	

•  Condition	on	g1 

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditioning	

•  P(Y	=	y	|	X	=	x)	
•  Informally,	

– What	do	you	believe	about	Y=y	when	I	tell	you	X=x	?	

•  P(France	wins	a	football	tournament	in	2023)	?	
•  What	if	I	tell	you:	

– France	almost	won	the	world	cup	2022	
– Hasn’t	had	catastrophic	results	since	J	

Slide	based	on	D.	Batra’s	course	



Conditioning:	Reduction	

•  Condition	on	g1	

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditioning:	Renormalization	

Unnormalized	measure	

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditional	probability	distribution	

•  Example		P(G | I, D)	

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditional	probability	distribution	

Slide	courtesy:	Erik	Sudderth	



Marginalization	

P(I,D) Marginalize I  

Example	courtesy:	PGM	course,	Daphne	Koller	



Marginalization	

•  Events	
– P(A)	=	P(A	and	B)	+	P(A	and	not	B)	

•  Random	variables	
–  		

Slide	courtesy:	Dhruv	Batra	



Marginalization	

Slide	courtesy:	Erik	Sudderth	



Factors	

•  A	factor	Φ(Y1,…,Yk)	

Φ:	Val(Y1,…,Yk)	à	R
	

•  Scope	=	{Y1,…,Yk}	



General	factors	

•  Not	necessarily	for	probabilities	

Example	courtesy:	PGM	course,	Daphne	Koller	



Factor	product	

Example	courtesy:	PGM	course,	Daphne	Koller	



Factor	marginalization	

Example	courtesy:	PGM	course,	Daphne	Koller	



Factor	reduction	



Why	factors	?	

•  Building	blocks	for	defining	distributions	in	
high-dimensional	spaces	

•  Set	of	basic	operations	for	manipulating	these	
distributions	



Bayesian	Networks	

•  DAGs	
– nodes	represent	variables	in	the	Bayesian	sense	
– edges	represent	conditional	dependencies	

•  Example	
– Suppose	that	we	know	the	following:	

•  The	flu	causes	sinus	inflammation	
•  Allergies	cause	sinus	inflammation	
•  Sinus	inflammation	causes	a	runny	nose	
•  Sinus	inflammation	causes	headaches	

– How	are	these	connected	?	
Slide	courtesy:	Dhruv	Batra	



Bayesian	Networks	

•  Example	

Slide	courtesy:	Dhruv	Batra	



Bayesian	Networks	

•  A	general	Bayes	net	
– Set	of	random	variables	
– DAG:	encodes	independence	assumptions	
– Conditional	probability	trees	
–  Joint	distribution	

Slide	courtesy:	Dhruv	Batra	

P(Y1,...,Yn ) = P(Yi | PaYi )
i=1

n

∏



Bayesian	Networks	

•  A	general	Bayes	net	
– How	many	parameters	?	

•  Discrete	variables	Y1,…,Yn	

•  Graph:	Defines	parents	of	Yi,	i.e.,	(PaYi)	

•  CPTs:	P(Yi|PaYi)	

Slide	courtesy:	Dhruv	Batra	



Markov	nets	

•  Set	of	random	variables	

•  Undirected	graph	
– Encodes	independence	assumptions	

•  Factors	

Slide	courtesy:	Dhruv	Batra	

Comparison	to	Bayesian	Nets	?	



Pairwise	MRFs	

•  Composed	of	pairwise	factors	
– A	function	of	two	variables	
– Can	also	have	unary	terms	

•  Example	

Slide	courtesy:	Dhruv	Batra	



Markov	Nets:	Computing	probabilities	

•  Can	only	compute	ratio	of	probabilities	directly	

•  Need	to	normalize	with	a	partition	function	
– Hard	!	(sum	over	all	possible	assignments)	

•  In	Bayesian	Nets,	can	do	by	multiplying	CPTs	

Slide	courtesy:	Dhruv	Batra	



Markov	nets	ßà	Factorization	

•  Given	an	undirected	graph	H	over	variables	
Y={Y1,…,Yn}	

•  A	distribution	P	factorizes	over	H	if	there	exist	
– Subsets	of	variables	Si					Y	s.t.	Si	are	fully-
connected	in	H	

– Non-negative	potentials	(factors)	Φ1(S1),...,	
Φm(Sm):	clique	potentials	

– Such	that		

Slide	courtesy:	Dhruv	Batra	

P(Y1,...,Yn ) =
1
Z i=1

m

∏Φi(Si)



Conditional	Markov	Random	Fields	
•  Also	known	as:	Markov	networks,	undirected	graphical	
models,	MRFs	

•  Note:	Not	making	a	distinction	between	CRFs	and	MRFs			
•  																:	observed	random	variables	
•  																																											:	output	random	variables	
•  							are	subset	of	variables	for	clique	
•  	Define	a	factored	probability	distribution	

Partition	function	
Exponential	number	
of	configurations	!	



MRFs	/	CRFs	

•  Several	applications,	e.g.,	computer	vision	

Interactive	figure-ground	
segmentation	[Boykov	and	Jolly,	
2001;	Boykov	and	Funka-Lea,	2006]	

Surface	context	[Hoiem	et	al.,	2005]	 Semantic	labeling	[He	et	al.,	2004;	
Shotton	et	al.,	2006;	Gould	et	al.,	
2009]	

Stereo	matching	[Kolmogorov	and	Zabih,	2001;	
Scharstein	and	Szeliski,	2002]	

Image	denoising	[Felzenszwalb	
and	Huttenlocher	2004]	

Low-level	vision	problems	



MRFs	/	CRFs	

•  Several	applications,	e.g.,	computer	vision	

Object	detection	[Felzenszwalb	et	al.,	2008]	 Pose	estimation	[Akhter	and	Black,	2015;		
Ramakrishna	et	al.,	2012]	

Scene	understanding	
[Fouhey	et	al.,	2014;	Ladicky	et	al.,	2010;	
Xiao	et	al.,	2013;	Yao	et	al.,	2012]	

High-level	vision	problems	



MRFs	/	CRFs	

•  Several	applications,	e.g.,	medical	imaging	



MRFs	/	CRFs	

•  Inherent	in	all	these	problems	are	graphical	
models	

Pixel	labeling	 Object	detection	
Pose	estimation	 Scene	understanding	



Maximum	a	posteriori	(MAP)	inference	



Maximum	a	posteriori	(MAP)	inference	

MAP	inference	ó	Energy	minimization	

The	energy	function	is	
	
where		 Clique	potential	



Clique	potentials	
•  Defines	a	mapping	from	an	assignment	of	
random	variables	to	a	real	number	

•  Encodes	a	preference	for	assignments	to	the	
random	variables	(lower	is	better)	

•  Parameterized	as	

Parameters	



Clique	potentials	

•  Arity	



Clique	potentials	

•  Arity	



Reason	1:	Texture	modelling		

Test	image	 Test	image	(60%	Noise)	Training	images	

Result	MRF	
9-connected	

(7	attractive;	2	repulsive)	

Result	MRF	
4-connected	

Result	MRF	
4-connected	
(neighbours)	



Reason2:	Discretization	artefacts	

	higher-connectivity	can	model	
true	Euclidean	length		

4-connected	
Euclidean	

8-connected	
Euclidean	

[Boykov	et	al.	’03;	’05]	



Graphical	representation	

•  Example	



Graphical	representation	

•  Example	



Graphical	representation	

•  Example	



A	Computer	Vision	Application	
Binary Image Segmentation 

How ? 

Cost function Models our knowledge about natural images 

Optimize cost function to obtain the segmentation 



Object - white, Background - green/grey Graph G = (V,E) 

Each vertex corresponds to a pixel 

Edges define a 4-neighbourhood grid graph 

Assign a label to each vertex from L = {obj,bkg} 

A	Computer	Vision	Application	
Binary Image Segmentation 



Graph G = (V,E) 

Cost of a labelling f : V ➔ L Per Vertex Cost 

Cost of label ‘obj’ low Cost of label ‘bkg’ high 

Object - white, Background - green/grey 

A	Computer	Vision	Application	
Binary Image Segmentation 



Graph G = (V,E) 

Cost of a labelling f : V ➔ L 

Cost of label ‘obj’ high Cost of label ‘bkg’ low 

Per Vertex Cost 

UNARY COST 

Object - white, Background - green/grey 

A	Computer	Vision	Application	
Binary Image Segmentation 



Graph G = (V,E) 

Cost of a labelling f : V ➔ L Per Edge Cost 

Cost of same label low 

Cost of different labels high 

Object - white, Background - green/grey 

A	Computer	Vision	Application	
Binary Image Segmentation 



Graph G = (V,E) 

Cost of a labelling f : V ➔ L 

Cost of same label high 

Per Edge Cost 

PAIRWISE 
COST 

Object - white, Background - green/grey 

A	Computer	Vision	Application	
Binary Image Segmentation 

Cost of different labels low 



Graph G = (V,E) 

Problem: Find the labelling with minimum cost f* 

Object - white, Background - green/grey 

A	Computer	Vision	Application	
Binary Image Segmentation 



Graph G = (V,E) 

Problem: Find the labelling with minimum cost f* 

A	Computer	Vision	Application	
Binary Image Segmentation 



Another	Computer	Vision	Application	
Stereo Correspondence 

Disparity Map 

How ? 

Minimizing a cost function 



Another	Computer	Vision	Application	
Stereo Correspondence 

Graph G = (V,E) 

Vertex corresponds to a pixel 

Edges define grid graph 

L = {disparities} 



Stereo Correspondence 

Cost of labelling f : 
 
Unary cost + Pairwise Cost 

Find minimum cost f* 

Another	Computer	Vision	Application	



The	General	Problem	

b 

a 

e 

d 

c 

g 

Graph G = ( V, E )  

Discrete label set L = {1,2,…,h} 

Assign a label to each vertex 
                f: V ➜ L 

1 

1 2 

2 2 

3 

Cost of a labelling Q(f) 

Unary Cost Pairwise Cost 

Find f* = arg min Q(f) 



Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	



Remainder	of	today’s	lecture	

•  Belief	propagation	
•  TRW	
•  Graph	cuts	



Belief Propagation 



A	Computer	Vision	Application	
Binary Image Segmentation 

How ? 

Cost function Models our knowledge about natural images 

Optimize cost function to obtain the segmentation 



Another	Computer	Vision	Application	
Stereo Correspondence 

Disparity Map 

How ? 

Minimizing a cost function 



The	General	Problem	

b 

a 

e 

d 

c 

g 

Graph G = ( V, E )  

Discrete label set L = {1,2,…,h} 

Assign a label to each vertex 
                f: V ➜ L 

1 

1 2 

2 2 

3 

Cost of a labelling Q(f) 

Unary Cost Pairwise Cost 

Find f* = arg min Q(f) 



Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	



Energy	Function	

Va Vb Vc Vd

Label l0

Label l1

Da Db Dc Dd

Random Variables V = {Va, Vb, ….} 

Labels L = {l0, l1, ….} Data D 

Labelling f: {a, b, …. } ➔ {0,1, …}  



Energy	Function	

Va Vb Vc Vd

Da Db Dc Dd

Q(f) = ∑a θa;f(a) 

Unary Potential 

2

5

4

2

6

3

3

7
Label l0

Label l1

Easy to minimize 

Neighbourhood 



Energy	Function	

Va Vb Vc Vd

Da Db Dc Dd

E : (a,b) ∈ E iff Va and Vb are neighbours 

E = { (a,b) , (b,c) , (c,d) } 

2

5

4

2

6

3

3

7
Label l0

Label l1



Energy	Function	

Va Vb Vc Vd

Da Db Dc Dd

+∑(a,b) θab;f(a)f(b) 
Pairwise Potential 

0

1 1

0

0

2

1

1

4 1

0

3

2

5

4

2

6

3

3

7
Label l0

Label l1

Q(f) = ∑a θa;f(a) 



Energy	Function	

Va Vb Vc Vd

Da Db Dc Dd

0

1 1

0

0

2

1

1

4 1

0

3

Parameter 

2

5

4

2

6

3

3

7
Label l0

Label l1

+∑(a,b) θab;f(a)f(b) Q(f; θ) = ∑a θa;f(a) 



Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	



MAP	Estimation	

Va Vb Vc Vd

2

5

4

2

6

3

3

7

0

1 1

0

0

2

1

1

4 1

0

3

Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b) 

2 + 1 + 2 + 1 + 3 + 1 + 3 = 13 

Label l0

Label l1



MAP	Estimation	

Va Vb Vc Vd

2

5

4

2

6

3

3

7

0

1 1

0

0

2

1

1

4 1

0

3

Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b) 

5 + 1 + 4 + 0 + 6 + 4 + 7 = 27 

Label l0

Label l1



MAP	Estimation	

Va Vb Vc Vd

2

5

4

2

6

3

3

7

0

1 1

0

0

2

1

1

4 1

0

3

Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b) 

f* = arg min Q(f; θ) 

q* = min Q(f; θ) = Q(f*; θ) 

Label l0

Label l1

Equivalent to maximizing the associated probability 



MAP	Estimation	

f(a) f(b) f(c) f(d) Q(f; θ) 
0 0 0 0 18 
0 0 0 1 15 
0 0 1 0 27 
0 0 1 1 20 
0 1 0 0 22 
0 1 0 1 19 
0 1 1 0 27 
0 1 1 1 20 

16 possible labellings 

f(a) f(b) f(c) f(d) Q(f; θ) 
1 0 0 0 16 
1 0 0 1 13 
1 0 1 0 25 
1 0 1 1 18 
1 1 0 0 18 
1 1 0 1 15 
1 1 1 0 23 
1 1 1 1 16 

f* = {1, 0, 0, 1} 
q* = 13 



Computational	Complexity	

|V| = number of pixels ≈ 153600 

Segmentation 

2|V| 

Can we do better than brute-force? 

MAP Estimation is NP-hard !! 



MAP	Inference	/	Energy	Minimization	
•  Computing	the	assignment	minimizing	the	energy	
in	NP-hard	in	general	

•  Exact	inference	is	possible	in	some	cases,	e.g.,	
–  Low	treewidth	graphs	à	message-passing	
–  Submodular	potentials	à	graph	cuts	

•  Efficient	approximate	inference	algorithms	exist	
– Message	passing	on	general	graphs	
– Move-making	algorithms	
– Relaxation	algorithms	



Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	



Min-Marginals	

Va Vb Vc Vd

2

5

4

2

6

3

3

7

0

1 1

0

0

2

1

1

4 1

0

3

f* = arg min Q(f; θ) such that f(a) = i 

Min-marginal qa;i 

Label l0

Label l1

Not a marginal (no summation) 



Min-Marginals	
16 possible labellings qa;0 = 15 
f(a) f(b) f(c) f(d) Q(f; θ) 
0 0 0 0 18 
0 0 0 1 15 
0 0 1 0 27 
0 0 1 1 20 
0 1 0 0 22 
0 1 0 1 19 
0 1 1 0 27 
0 1 1 1 20 

f(a) f(b) f(c) f(d) Q(f; θ) 
1 0 0 0 16 
1 0 0 1 13 
1 0 1 0 25 
1 0 1 1 18 
1 1 0 0 18 
1 1 0 1 15 
1 1 1 0 23 
1 1 1 1 16 



Min-Marginals	
16 possible labellings qa;1 = 13 

f(a) f(b) f(c) f(d) Q(f; θ) 
1 0 0 0 16 
1 0 0 1 13 
1 0 1 0 25 
1 0 1 1 18 
1 1 0 0 18 
1 1 0 1 15 
1 1 1 0 23 
1 1 1 1 16 

f(a) f(b) f(c) f(d) Q(f; θ) 
0 0 0 0 18 
0 0 0 1 15 
0 0 1 0 27 
0 0 1 1 20 
0 1 0 0 22 
0 1 0 1 19 
0 1 1 0 27 
0 1 1 1 20 



Min-Marginals	and	MAP	
•  Minimum min-marginal of any variable =  
  energy of MAP labelling 

 minf Q(f; θ) such that f(a) = i 

qa;i  mini  

mini ( ) 

Va has to take one label 

 minf Q(f; θ) 



Summary	

MAP Estimation 

f* = arg min Q(f; θ) 

Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b) 

Min-marginals 

qa;i =  min Q(f; θ) s.t. f(a) = i 

Energy Function 



Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	



Reparameterization	

f(a) f(b) Q(f; θ) 

0 0 7  + 2 - 2 

0 1 10 + 2 - 2 

1 0 5  + 2 - 2 

1 1 6  + 2 - 2 

Add a constant to all θa;i 

Subtract that constant from all θb;k 

Q(f; θ’) = Q(f; θ) 

Va Vb

2

5

4

2

0

0

2 +

2 +

- 2

- 2

1 1



Reparameterization	

Va Vb

2

5

4

2

0

1 1

0

f(a) f(b) Q(f; θ) 

0 0 7 

0 1 10 - 3 + 3 

1 0 5 

1 1 6 - 3 + 3 

- 3 + 3
- 3

Q(f; θ’) = Q(f; θ) 

Add a constant to one θb;k  

Subtract that constant from θab;ik for all ‘i’  



Reparameterization	

   Q(f; θ’)  = Q(f; θ), for all f 

θ’ is a reparameterization of θ, iff 

θ’  ≡  θ 

θ’b;k = θb;k 

θ’a;i = θa;i 

θ’ab;ik = θab;ik 

+ Mab;k 

- Mab;k 

+ Mba;i 

- Mba;i 

Equivalently Kolmogorov, PAMI, 2006 

Va Vb

2

5

4

2

0

0

2 +

2 +

- 2

- 2

1 1



Recap	
MAP Estimation 

f* = arg min Q(f; θ) 
Q(f; θ) = ∑a θa;f(a) + ∑(a,b) θab;f(a)f(b) 

Min-marginals 

qa;i =  min Q(f; θ) s.t. f(a) = i 

   Q(f; θ’)  = Q(f; θ), for all f θ’  ≡  θ 
Reparameterization 



Overview	
•  Basics:	problem	formulation	

– Energy	Function	
– MAP	Estimation	
– Computing	min-marginals	
– Reparameterization	

	
•  Solutions	

– Belief	Propagation	and	related	methods	
– Graph	cuts	



Belief	Propagation	

•  Belief Propagation gives exact MAP for chains 

•  Remember, some MAP problems are easy 

•  Exact MAP for trees 

•  Clever Reparameterization 



Two	Variables	

Va Vb

2

5 2

1

0
Va Vb

2

5

40

1

Choose the right constant θ’b;k  =  qb;k 

Add a constant to one θb;k  

Subtract that constant from θab;ik for all ‘i’  



Va Vb

2

5 2

1

0
Va Vb

2

5

40

1

Choose the right constant θ’b;k  =  qb;k 

θa;0 + θab;00 =  5 + 0 

θa;1 + θab;10 =  2 + 1 
min Mab;0 =  

Two	Variables	



Va Vb

2

5 5

-2

-3
Va Vb

2

5

40

1

Choose the right constant θ’b;k  =  qb;k 

f(a) = 1 

θ’b;0  =  qb;0 

Two	Variables	

Potentials along the red path add up to 0 



Va Vb

2

5 5

-2

-3
Va Vb

2

5

40

1

Choose the right constant θ’b;k  =  qb;k 

θa;0 + θab;01 =  5 + 1 

θa;1 + θab;11 =  2 + 0 
min Mab;1 =  

Two	Variables	



Va Vb

2

5 5

-2

-3
Va Vb

2

5

6-2

-1

Choose the right constant θ’b;k  =  qb;k 

f(a) = 1 

θ’b;0  =  qb;0 

f(a) = 1 

θ’b;1  =  qb;1 

Minimum of min-marginals = MAP estimate 

Two	Variables	



Va Vb

2

5 5

-2

-3
Va Vb

2

5

6-2

-1

Choose the right constant θ’b;k  =  qb;k 

f(a) = 1 

θ’b;0  =  qb;0 

f(a) = 1 

θ’b;1  =  qb;1 

f*(b) = 0 f*(a) = 1 

Two	Variables	



Va Vb

2

5 5

-2

-3
Va Vb

2

5

6-2

-1

Choose the right constant θ’b;k  =  qb;k 

f(a) = 1 

θ’b;0  =  qb;0 

f(a) = 1 

θ’b;1  =  qb;1 

We get all the min-marginals of Vb 

Two	Variables	



Recap	
We only need to know two sets of equations 

General form of Reparameterization 

θ’a;i = θa;i 

θ’ab;ik = θab;ik 

+ Mab;k 

- Mab;k 

+ Mba;i 

- Mba;i 

θ’b;k = θb;k 

Reparameterization of (a,b) in Belief Propagation 

Mab;k =  mini { θa;i + θab;ik }  
Mba;i =  0 



Three Variables 

Va Vb

2

5 2

1

0
Vc

4 60

1

0

1

3

2 3

Reparameterize the edge (a,b) as before 

l0

l1



Va Vb

2

5 5-3
Vc

6 60

1

-2

3

Reparameterize the edge (a,b) as before 

f(a) = 1 

f(a) = 1 

-2 -1 2 3

Three Variables 

l0

l1



Va Vb

2

5 5-3
Vc

6 60

1

-2

3

Reparameterize the edge (a,b) as before 

f(a) = 1 

f(a) = 1 

Potentials along the red path add up to 0 

-2 -1 2 3

Three Variables 

l0

l1



Va Vb

2

5 5-3
Vc

6 60

1

-2

3

Reparameterize the edge (b,c) as before 

f(a) = 1 

f(a) = 1 

Potentials along the red path add up to 0 

-2 -1 2 3

Three Variables 

l0

l1



Va Vb

2

5 5-3
Vc

6 12-6

-5

-2

9

Reparameterize the edge (b,c) as before 

f(a) = 1 

f(a) = 1 

Potentials along the red path add up to 0 

f(b) = 1 

f(b) = 0 

qc;0 

qc;1 
-2 -1 -4 -3

Three Variables 

l0

l1



Va Vb

2

5 5-3
Vc

6 12-6

-5

-2

9

f(a) = 1 

f(a) = 1 

f(b) = 1 

f(b) = 0 

qc;0 

qc;1 

f*(c) = 0 f*(b) = 0 f*(a) = 1 
Generalizes to any length chain 

-2 -1 -4 -3

Three Variables 

l0

l1



Va Vb

2

5 5-3
Vc

6 12-6

-5

-2

9

f(a) = 1 

f(a) = 1 

f(b) = 1 

f(b) = 0 

qc;0 

qc;1 

f*(c) = 0 f*(b) = 0 f*(a) = 1 
Only Dynamic Programming 

-2 -1 -4 -3

Three Variables 

l0

l1



Why Dynamic Programming? 

3 variables ≡ 2 variables + book-keeping 
n variables ≡ (n-1) variables + book-keeping 

Start from left, go to right 

Reparameterize current edge (a,b) 
Mab;k =  mini { θa;i + θab;ik }  

θ’ab;ik = θab;ik + Mab;k - Mab;k θ’b;k = θb;k 

Repeat 



Why Dynamic Programming? 

Start from left, go to right 

Reparameterize current edge (a,b) 
Mab;k =  mini { θa;i + θab;ik }  

θ’ab;ik = θab;ik + Mab;k - Mab;k θ’b;k = θb;k 

Repeat 

Messages Message Passing 

Why stop at dynamic programming? 



Va Vb

2

5 5-3
Vc

6 12-6

-5

-2

9

Reparameterize the edge (c,b) as before 

-2 -1 -4 -3

Three Variables 

l0

l1



Va Vb

2

5 9-3
Vc

11 12-11

-9

-2

9

Reparameterize the edge (c,b) as before 

-2 -1 -9 -7

θ’b;i = qb;i 

Three Variables 

l0

l1



Va Vb

9

11 9-9
Vc

11 12-11

-9

-9

9

Reparameterize the edge (b,a) as before 

-9 -7 -9 -7

θ’a;i = qa;i 

Three Variables 

l0

l1



Va Vb

9

11 9-9
Vc

11 12-11

-9

-9

9

Forward Pass è       ç Backward Pass 

-9 -7 -9 -7

All min-marginals are computed 

Three Variables 

l0

l1



Chains	

X1 X2 X3 Xn……..	

Reparameterize	the	edge	(1,2)	



Chains	

X1 X2 X3 Xn……..	

Reparameterize	the	edge	(2,3)	



Chains	

X1 X2 X3 Xn……..	

Reparameterize	the	edge	(3,4)	



Chains	

X1 X2 X3 Xn……..	

Reparameterize	the	edge	(n-1,n)	

Min-marginals	en(i)	for	all	labels	



Belief	Propagation	on	Chains	

Start from left, go to right 

Reparameterize current edge (a,b) 
Mab;k =  mini { θa;i + θab;ik }  

θ’ab;ik = θab;ik + Mab;k - Mab;k θ’b;k = θb;k 

Repeat till the end of the chain 

Start from right, go to left 

Repeat till the end of the chain 



Belief	Propagation	on	Chains	

•  A way of computing reparam constants 

•  Generalizes to chains of any length 

•  Forward Pass - Start to End 
•  MAP estimate 
•  Min-marginals of final variable 

•  Backward Pass - End to start 
•  All other min-marginals 



Computational	Complexity	

Number	of	reparameterization	constants	=	(n-1)h	

Complexity	for	each	constant	=	O(h)	

Total	complexity	=	O(nh2)	

Better	than	brute-force	O(hn)	

Total	complexity	



Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(4,2)	



Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(5,2)	



Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(6,3)	



Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(7,3)	



Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(2,1)	



Trees	

X2

X1

X3

X4 X5 X6 X7

Reparameterize	the	edge	(3,1)	

Min-marginals	e1(i)	for	all	labels	



Trees	

X2

X1

X3

X4 X5 X6 X7

Start	from	leaves	and	move	towards	root	

Pick	the	minimum	of	min-marginals	

Backtrack	to	find	the	best	labeling	x	



•  Preliminaries 
– s-t Flow 
– s-t Cut 
– Flows vs. Cuts 

•  Maximum Flow 
•  Algorithms 
•  Energy minimization with max flow/min cut 

Outline 



s-t Flow 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 

Function flow: A è R 

Flow of arc ≤ arc capacity 

Flow is non-negative 

For all vertex except s,t 

Incoming flow 

= Outgoing flow 



s-t Flow 

Function flow: A è R 

flow(a) ≤ c(a)  

Flow is non-negative 

For all vertex except s,t 

Incoming flow 

= Outgoing flow 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



s-t Flow 

Function flow: A è R 

flow(a) ≤ c(a)  

For all vertex except s,t 

Incoming flow 

= Outgoing flow 

flow(a) ≥ 0 v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



s-t Flow 

Function flow: A è R 

flow(a) ≤ c(a)  

flow(a) ≥ 0 

For all v ∈ V \ {s,t}  
 
Incoming flow 

= Outgoing flow 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



s-t Flow 

Function flow: A è R 

flow(a) ≤ c(a)  

flow(a) ≥ 0 

For all v ∈ V \ {s,t}  
 

= Outgoing flow 

Σ(u,v)∈A flow((u,v)) 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



s-t Flow 

Function flow: A è R 

flow(a) ≤ c(a)  

flow(a) ≥ 0 

For all v ∈ V \ {s,t}  
 

= Σ(v,u)∈A flow((v,u)) 

Σ(u,v)∈A flow((u,v)) 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



s-t Flow 

Function flow: A è R 

flow(a) ≤ c(a)  

flow(a) ≥ 0 

For all v ∈ V \ {s,t}  
 
Eflow(v) = 0 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



s-t Flow 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 

Function flow: A è R 

flow(a) ≤ c(a)  

flow(a) ≥ 0 

For all v ∈ V \ {s,t}  
 
Eflow(v) = 0 

3 

1 10 

3 

4 

✗ 



s-t Flow 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 

Function flow: A è R 

flow(a) ≤ c(a)  

flow(a) ≥ 0 

For all v ∈ V \ {s,t}  
 
Eflow(v) = 0 

-1 

-1 

-1 
✗ 



s-t Flow 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 

Function flow: A è R 

flow(a) ≤ c(a)  

flow(a) ≥ 0 

For all v ∈ V \ {s,t}  
 
Eflow(v) = 0 

 1 

 1 

 1 
✓ 



Value of s-t Flow 

Outgoing flow of s 

- Incoming flow of s 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



Value of s-t Flow 

v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 

Σ(s,v)∈A flow((s,v)) 

- Σ(u,s)∈A flow((u,s)) 

-Eflow(s) Eflow(t) 

 1 

 1 

 1 

Value = 1 



•  Preliminaries 
– Functions and Excess Functions 
– s-t Flow 
– s-t Cut 
– Flows vs. Cuts 

•  Maximum Flow 
•  Algorithms 
•  Energy minimization with max flow/min cut 

Outline 



Cut 

v1 v2 

v3 v4 

10 

5 

3 2 

Let U be a subset of V 

C is a set of arcs such that 
•  (u,v) ∈ A 
•  u ∈ U 
•  v ∈ V\U 

D = (V, A) 

C is a cut in the digraph D 



Cut 

v1 v2 

v3 v4 

What is C? 

D = (V, A) 
U 

V\U 

{(v1,v2),(v1,v4)} ? 

{(v1,v4),(v3,v2)} ? 

{(v1,v4)} ? ✓ 

10 

5 

3 2 



Cut 

v1 v2 

v3 v4 

What is C? 

D = (V, A) 
U V\U 

{(v1,v2),(v1,v4),(v3,v2)} ? 

{(v1,v4),(v3,v2)} ? 

{(v4,v3)} ? ✓ 

10 

5 

3 2 



Cut 

What is C? 

D = (V, A) 
V\U U 

{(v1,v2),(v1,v4),(v3,v2)} ? 

{(v1,v4),(v3,v2)} ? 

{(v3,v2)} ? 

✓ v1 v2 

v3 v4 

10 

5 

3 2 



Cut 

C = out-arcs(U) 

D = (V, A) 

v1 v2 

v3 v4 

10 

5 

3 2 



Capacity of Cut 

Sum of capacity of all 
arcs in C 

v1 v2 

v3 v4 

10 

5 

3 2 



Capacity of Cut 

Σa ∈ C c(a) 

v1 v2 

v3 v4 

10 

5 

3 2 



Capacity of Cut 

3 v1 v2 

v3 v4 

U 

V\U 

10 

5 

3 2 



Capacity of Cut 

15 

V\U U 

v1 v2 

v3 v4 

10 

5 

3 2 



s-t Cut 

A source vertex “s” 

C is a cut such that 
•  s ∈ U 
•  t ∈ V\U 

D = (V, A) 

C is an s-t cut 

A sink vertex “t” v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



Capacity of s-t Cut 

Σa ∈ C c(a) v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



Capacity of s-t Cut 

5 v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



Capacity of s-t Cut 

17 v1 v2 

v3 v4 

6 

5 

3 

s 

t 

1 8 

7 3 

2 



•  Preliminaries 
– s-t Flow 
– s-t Cut 
– Flows vs. Cuts 

•  Maximum Flow 
•  Algorithms 
•  Energy minimization with max flow/min cut 

Outline 



•  Preliminaries 
 

•  Maximum Flow 
– Residual Graph 
– Max-Flow Min-Cut Theorem 

•  Algorithms 

•  Energy minimization with max flow/min cut 

Outline 



Maximum Flow Problem 

Find the flow with the 
maximum value !! 

Σ(s,v)∈A flow((s,v)) 

- Σ(u,s)∈A flow((u,s)) 

v1 v2 
3 

s 

t 

2 4 

1 2 

First suggestion to solve this problem !! 



Passing Flow through s-t Paths 

Find an s-t path where 
flow(a) < c(a) for all arcs 

v1 v2 
3 

s 

t 

2 4 

1 2 
Pass maximum allowable 
flow through the arcs 

1 

1 



Passing Flow through s-t Paths 

Find an s-t path where 
flow(a) < c(a) for all arcs 

v1 v2 
3 

s 

t 

2 4 

1 2 

1 

1 



Passing Flow through s-t Paths 

Find an s-t path where 
flow(a) < c(a) for all arcs 

v1 v2 
3 

s 

t 

2 4 

1 2 

1 

1 
Pass maximum allowable 
flow through the arcs 

2 

2 



Passing Flow through s-t Paths 

Find an s-t path where 
flow(a) < c(a) for all arcs 

v1 v2 
3 

s 

t 

2 4 

1 2 

1 

1 
No more paths. 

2 

2 
Stop. 

Will this give us maximum flow? NO !!! 



Passing Flow through s-t Paths 

Find an s-t path where 
flow(a) < c(a) for all arcs 

v1 v2 
3 

s 

t 

2 4 

1 2 
Pass maximum allowable 
flow through the arcs 

2 
2 

2 



Passing Flow through s-t Paths 

Find an s-t path where 
flow(a) < c(a) for all arcs 

v1 v2 
3 

s 

t 

2 4 

1 2 

2 
2 

2 
No more paths. Stop. 

Incorrect Answer !! 

Another method? 



•  Preliminaries 
 

•  Maximum Flow 
– Residual Graph 
– Max-Flow Min-Cut Theorem 

•  Algorithms 

•  Energy minimization with max flow/min cut 

Outline 



Residual Graph 

v1 v2 
3 

s 

t 

2 4 

1 2 

2 
2 

2 

v1 v2 

s 

t 

Arcs where flow(a) < c(a) 



Residual Graph 

v1 v2 
3 

s 

t 

2 4 

1 2 

2 
2 

2 

v1 v2 

s 

t 

Inverse of arcs where flow(a) > 0 
Including arcs to s and from t is not necessary 



Maximum Flow using Residual Graphs 

v1 v2 
3 

s 

t 

2 4 

1 2 

Start with zero flow. 

v1 v2 

s 

t 



Maximum Flow using Residual Graphs 

v1 v2 
3 

s 

t 

2 4 

1 2 

Find an s-t path in the residual graph. 

v1 v2 

s 

t 



Maximum Flow using Residual Graphs 

v1 v2 
3 

s 

t 

2 4 

1 2 

For inverse arcs in path, subtract flow K. 

v1 v2 

s 

t 



Maximum Flow using Residual Graphs 

v1 v2 
3 

s 

t 

2 4 

1 2 

For forward arcs in path, add flow K. 

v1 v2 

s 

t 

Choose maximum allowable value of K. 

2 
2 

2 



Maximum Flow using Residual Graphs 

v1 v2 
3 

s 

t 

2 4 

1 2 

Update the residual graph. 

2 
2 

2 

v1 v2 

s 

t 



Maximum Flow using Residual Graphs 

v1 v2 
3 

s 

t 

2 4 

1 2 

2 
2 

2 

v1 v2 

s 

t 

Find an s-t path in the residual graph. 



Maximum Flow using Residual Graphs 

v1 v2 
3 

s 

t 

2 4 

1 2 

2 
1 

2 

v1 v2 

s 

t 

Add K to (s,v2) and (v1,t). Subtract K from (v1,v2). 
Choose maximum allowable value of K. 

1 

1 



Maximum Flow using Residual Graphs 

v1 v2 
3 

s 

t 

2 4 

1 2 

2 
1 

2 

v1 v2 
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Update the residual graph. 



Maximum Flow using Residual Graphs 
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Find an s-t path in the residual graph. 



Maximum Flow using Residual Graphs 
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No more s-t paths. Stop. 



Maximum Flow using Residual Graphs 
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Correct Answer. 



•  Preliminaries 

•  Maximum Flow 
•  Residual Graph 
•  Max-Flow Min-Cut Theorem 

•  Algorithms 

•  Energy minimization with max flow/min cut 

Outline 
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Augmenting Path based Algorithms 
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a1 a2 
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Sink 
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1000 999 
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Ford Fulkerson: Choose any augmenting path  
n: #nodes 

 

m: #edges 

We will have to perform 2000 augmentations! 
 

Worst case complexity: O (m x Total_Flow) 
(Pseudo-polynomial bound: depends on flow) 

Augmenting Path based Algorithms 



Dinitz: Choose shortest augmenting path  
n: #nodes 

 

m: #edges 

Worst case complexity: O (m n2) 

Augmenting Path based Algorithms 
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Maxflow in Computer Vision 

•  Specialized algorithms for vision 
problems 
–  Grid graphs  
–  Low connectivity (m ~ O(n)) 

•  Dual search tree augmenting path 
algorithm 
 [Boykov and Kolmogorov PAMI 2004] 

•  Finds approximate shortest 
augmenting paths efficiently 

•  High worst-case time complexity 
•  Empirically outperforms other 

algorithms on vision problems 
•  Efficient code available on the web 

e.g., http://pub.ist.ac.at/~vnk/software.html 


