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Recap



Graphs are a general
language for describing and
analyzing entities with
relations/interactions









Many Types of Data are Graphs (1)
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Many Types of Data are Graphs (2)

Social Networks Economic Networks Communication Networks

Citation Networks Internet Networks of Neuroys

Slide courtesy: http://cs224w.Stanford.edu



Many Types of Data are Graphs (3)
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Graphs and Relational Data
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Graphs: Machine Learning

Complex domains have a rich relational
structure, which can be represented as a
relational graph

By explicitly modeling relationships we
achieve better performance!



What have we seen?

* Inference
— Belief propagation

— Graph cuts (to be completed)
— Variational inference

— Simulation-based inference



Outline

The st-mincut problem

Connection between st-mincut
and energy minimization?

What problems can we solve
using st-mincut?

st-mincut based Move algorithms

12



St-mincut and Energy Minimization

‘Minimizing a Qudratic |
Pseudoboolean
function E(x)

Functions of boolean Pseudoboolean?

variables ™M o~
E: {0,1}" > R

E(y) = civi* 2 c;¥i(1y) | | ¢;20
i ij

t

Polynomial time st-mincut algorithms
require non-negative edge weights




So how does this work?

Construct a graph such that:
1.Any st-cut corresponds to an assignment of x

2.The cost of the cut is equal to the energy of x :
E(x)

S st-.mincut

Solution

14



E(a,,a,) = 2a,

Graph Construction

Source (0)
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Graph Construction

E(a,,a,) = 2a, + 53,

Source (0)
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Graph Construction

E(a,,a,) = 2a, + 5a,+ 9a, + 4a,

Source (0)
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Graph Construction

E(a,,a,) = 2a, + 5a,+ 9a, + 4a, + 2a,a,

Source (0)
Ag

a1© Oaz

N\ /s

B sink (1)
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Graph Construction

E(a,,a,) = 2a, + 5a,+ 9a, + 4a, + 2a,a, +a,a,

Source (0)

2

« 0~
< —

N/4

B sink (1)



Graph Construction

E(a,,a,) = 2a,+ 5a,+ 9a,+ 4a,+ 2a,a, +a,a,

Source (0)

Cost of cut = 11

a,;=1 a,=1

E(1,1) = 11

.

~

20



Graph Construction

E(a,,a,) = 2a, + 5a,+ 9a, + 4a, + 2a,a, +a,a,

Source (0)

9 st-mincut cost = 8

gs®”

a, O—a—»g a, a,=1 a,=0

2 %es A E(1,0)=8
S 4 -

21



Energy Function Reparameterization

Two functions E, and E, are reparameterizations if

E, (xX)=E, (x) forall x

For instance:

o | a lirza-3n | 3va
E, (a,) = 1+ 2a, + 33, = 1 7 7

E,(a;)=3+a, 1 0 3 3

22



Flow and Reparametrization

E(a,,a,) = 2a, + 5a,+ 9a, + 4a, + 2a,a, +a,a,

Source (0)

2
2a, + 53,

31 O__’O =2 |=2(a,+a,) + 34,

2
\ / =2 + 33,
5 4 .

B sink (1)
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Flow and Reparametrization

E(a,,a,) =2+ 3a,+ 9a, + 4a, + 2a,a, + a,a,

Source (0)

0
2a, + 53,

31 O__’O =2 |=2(a,+a,) + 34,

2
\ / = 2 + 33,
3 4 -

B sink (1)
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Flow and Reparametrization

E(a,,a,) =2+ 3a,+ 9a, + 4a, + 2a,a, + a,a,

Source (0)

0
9a, + 4a,

* O_' ()% | =4(ay+a,) + 54,

2
\ / sl
3 4 -

B sink (1)
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Flow and Reparametrization

E(a,,a,) =2+ 3a,+ 5a,+ 4+ 2a,a,+a,a,

Source (0)

0
9a, + 4a,

* O_' ()% | =4(ay+a,) + 54,

2
\ / =4 + 53,
3 0 .

B sink (1)
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Flow and Reparametrization

E(a,,a,) =6+ 3a,+ 5a, + 2a,a, +a,a,

Source (0)

0

« 0~
P

N/o

B sink (1)

3a,+ 5a,+ 2a,a,

= 2(a,+a,*a,a,) +a,+3a,

= 2(1+a,a,) +a,+3a,

F1=a,+a,+a,a,




Flow and Reparametrization

E(a,,a,) =8+ a,+ 3a, + 3a,a,

Source (0)

0

« =0~
P

\"/o

B sink (1)

3a,+ 5a,+ 2a,a,

= 2(a,+a,*a,a,) +a,+3a,

= 2(1+a,a,) +a,+3a,

F1=a,+a,+a,a,




Flow and Reparametrization

E(a,,a,) =8+ a,+ 3a, + 3a,a,

Source (0)

0

No more
a > a
1 O—O ? augmenting paths

0 possible
1 0

B sink (1)
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Flow and Reparametrization

E(a,,a,) =8 */a,+ 3a, + 3a,a, =3P Residual Graph
(positive coefficients)

Source (0)

Total Flow - \

bound on the st-mincut cost = 8
optimal solution

a,;=1 a,=0

E(1,0) =8

Inference of the optimal solution becomes
trivial because the bound is tight 30



Example: Image Segmentation

E: {0,1}» > R

1 — bg

E(y) = Z Ciy; t Z C;; ¥i(1-y;) 0—1g
i T

y* = arg miy E(y)

How to minimize
E(x)?
Global Minimum (y*)

31



How does the code look like?

Graph *g;

For all pixels p

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

. Source (0)



How does the code look like?

Graph *g;

For all pixels p

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
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How does the code look like?

Graph *g;

For all pixels p

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end
for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost(p,q));
end
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// is the label of pixel p (0 or 1)
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How does the code look like?

Graph *g;

For all pixels p

end

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

for all adjacent pixels p,q

end

add_weights(nodelD(p), nodelD(q), cost(p,q));

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

Source (0)

bgCost(a,)




Outline

The st-mincut problem

Connection between st-mincut
and energy minimization?

What problems can we solve
using st-mincut?

st-mincut based Move algorithms

36



Minimizing Energy Functions

NP-hard to minimize

Only approximate minimization

possible

Solvable in polynomial time
Submodular ~ O(n®)

* MAXCUT  NP-Hard

Submodular
Functions

Functions defined on trees

Space of Function
Minimization Problems




Minimizing Submodular Functions

* Minimizing general submodular functions
— O(n°Q + n%) where Q is function evaluation time
[Orlin, IPCO 2007]

« Symmetric submodular functions

- E(y)=E(1-y)
— O(n3) [Queyranne 1998]

« Quadratic pseudoboolean
— Can be transformed to st-mincut
— One node per variable (O(n3) complexity)
— Very low empirical running time



Submodular Pseudoboolean Functions

Function defined over boolean vectors y = {y,y,, .... Y.}

Definition

* All functions for one boolean variable (f: {0,1} - R) are submodular

* A function of two boolean variables (f: {0,1}2 =2 R) is submodular if
f(0,1) + f(1,0) = f(0,0) + f(1,1)

* A general pseudoboolean function f: 2"— R is submodular if all its
projections f° are submodular i.e.

(0,1) + f2(1,0) = (0,0) + (1,1)




Quadratic Submodular Pseudoboolean
Functions

E(y) = Z 0;(y:) + Z 0; (viy))
| ij

Forallij | 6;0,1)+8;(1,0) =8,(0,0)+8;(1,1)

I Equivalent (transformable)

E(y) =2 cvi+ ) c;Vi(1-y))
1)

i.e. all submodular QPBFs are st-mincut solvable

40



How are they equivalent?

0”iy 0 1 0 1 0 1
B+C-
ol A| B ol 0| O ol 0 |IDC| o] O ATD
Y; = A + + +
11 C | D 1|C-A|{CA| 1| O |DC| 1| O 0

if y=1 add C-A ify; =1 add D-C

0; (v:y;) |= 6;(0,0)
+ (6;(1,0)-6;(0,0)) y; + (6;(1,0)-6,(0,0)) y;
+(6;(1,0) + 6;(0,1) - 6;(0,0) - 8;(1,1)) (1-y)) y;

B+C-A-D = 0 is true from the submodularity of 8;
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How are they equivalent?

0”iy 0 1 0 1 0 1
ol A| B 0/ 0| 0| o/l O |DC| 0| O /Eifg _
Y; = A + + +
11 C | D 1|C-A|CA| 1| O |DC| n| O 0

if y=1 add C-A ify; =1 add D-C

9; (yiy;) =6;(0,0)
+ (6;(1,0)-6;(0,0)) y; + (6;(1,0)-6,(0,0)) y;
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B+C-A-D = 0 is true from the submodularity of 8;



Quadratic Submodular Pseudoboolean

Functions

E(y) = Z 0;(y:) + Z 0; (viy))
| i,j

Forallij | 6;0,1)+8;(1,0) =8,(0,0)+8;(1,1)

I Equivalent (transformable)

4 N\
st-mincut

46



Recap

 Exact minimization of Submodular QBFs
using graph cuts

* Obtaining partially optimal solutions of non-
submodular QBFs using graph cuts



Outline

The st-mincut problem

Connection between st-mincut
and energy minimization?

What problems can we solve
using st-mincut?

st-mincut based Move algorithms

48



St-mincut based Move algorithms

E(y) = Z 0;(y;) + Z 0; (Yi,Y))
| ij

yelabelsL={l, 1, ..., 1}

 Commonly used for solving non-submodular
multi-label problems

« Extremely efficient and produce good
solutions

* Not Exact: Produce local optima

49



Energy

Move Making Algorithms

Current Solution

| .......... Search
Neighbourhood

........ » Optimal Move

Solution Space
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Current Solution
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........ » Optimal Move
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Move Making Algorithms

Current Solution

| .......... Search
Neighbourhood

........ » Optimal Move

Solution Space



Energy

Move Making Algorithms

7\
/\ﬂ

i ....... \ .........

Current Solution

| .......... Search
Neighbourhood

........ » Optimal Move

Solution Space



Energy

Move Making Algorithms

Current Solution

| .......... Search
Neighbourhood

/ \ /\ ........ » Optimal Move

Solution Space



Computing the Optimal Move

Energy

Current Solution

| .......... Search
Neighbourhood

........ » Optimal Move

Key Property
Move Space

Solution Space

Bigger move
space

* Better solutions

* Finding the optimal move hard




Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

 Makes a series of changes to the solution (moves)
« Each move results in a solution with smaller energy

Move Space (t) : 2N

Space of Solutions (y) : LN

Current Solution

Search
Neighbourhood

Number of
Variables

Number of
Labels

56



Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

 Makes a series of changes to the solution (moves)
« Each move results in a solution with smaller energy

Current Solution

Move to new Construct a move How to
move
Minimize move function functions?

to get optimal move

57



General Binary Moves

J, y=t¥1+(1-t)y2\l

New Current Second
solution Solution solution

E.(t) =E(ty'+(1-t) y?)

Minimize over move variables t to get the
optimal move

Move energy is a submodular QPBF
(Exact Minimization Possible)

Boykov, Veksler and Zabih, PAMI 2001



Expansion Move

« Variables take label a or retain current label
— [ Tree

Ground

House
Status: Initialize with Tree B Sky

[Boykov, Veksler, Zabih]



Expansion Move

« Variables take label a or retain current label

B Tree

— Ground

House
Status: Expand Ground B Sky

[Boykov, Veksler, Zabih]



Expansion Move

« Variables take label a or retain current label

B Tree

Ground

—p House
Status: Expand House B Sky

[Boykov, Veksler, Zabih]



Expansion Move

« Variables take label a or retain current label

B Tree

Ground
House
Status:  Expand Sky —p [ Sky

[Boykov, Veksler, Zabih]



Expansion Move

« Variables take label a or retain current label

 Move energy is submodular if:
— Unary Potentials: Arbitrary
— Pairwise potentials: Metric

i) 20 " Semi meric

0, (I,l,) =0 iff a=b

Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

[Boykov, Veksler, Zabih]



Expansion Move

« Variables take label a or retain current label

 Move energy is submodular if:
— Unary Potentials: Arbitrary
— Pairwise potentials: Metric

Triangle
0; (I;1p) + 6, (1p,1¢) 2 6;(1,,1;)

Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

[Boykov, Veksler, Zabih]



Summary

Exact
Transformation

Labelling _{globa! optimum) Submodular Quadratic
Pseudoboolean Function

Problem Or Relaxed
(partially optimal) I

transformation
st-mincut

Sub-problem

Move making algorithms
65



Where do we stand ?

Grid graph -
“submodular”. Use graph cuts
“metric”: Use expansion

otherwise: Use TRW,
dual decomposition,
relaxation

Chain/Tree, 2/multi-label: Use BP

66



What have we seen?

 Inference
— Belief propagation

— Graph cuts
— Variational inference

— Simulation-based inference

* Learning



Outline

e Supervised Learning

 Probabilistic Methods

 Loss-based Methods



Input: d

Image Classification

Which city is this?

Output: x € {1,2,...,h}

69



CRF training

e Stereo matching: Goal of training:
e Z:left, right image estimate proper
* X: disparity map w

/= argmmMRFg(x,ull }ll)

parameterized
by w 70

>




CRF training

* Denoising: Goal of training:
* Z:noisy input image estimate proper
* X: denoised output image w

X
/= argiin MRFg(x,Lll }ll)

parameterized
by w 71

>




CRF training (some further notation)

MRF g (x;u®, h*) = Zu Tp) +th Xec)

T

U’Z(xp> - W gp(xp7zk)7 hlcc<Xc) — WTgC(X07 Zk)

/

vector valued feature
functions

/

BIRFC(X W Z (Z gp /Bp, ) + ZQC(XC7ZR)) — WTg(X7ZA)

72



Learning formulations



Risk minimization

X

K /

min E A (Xk,fck
W

k=1

¥ = arg min MRF ¢ (x; w, z")

K training samples { (x", Zk)}le



Regularized Risk minimization

<k
min R(w) + Z A (xF, &%)

W

— arg m}i{n MRF¢(x; w,z")

v

R(w) = [[w]|*, [[w][1, etc.



Regularized Risk minimization

76



Choice 1: Hinge loss

min R(w +ZLG xF zk W)

w
k=1

La (xk, z": W) — MRFg(x": w, zk) — min (MRFG(X: w,z")

— A(x, xk'))

= Upper bounds A(.)

= |Leads to max-margin learning

77




Max-margin learning

mm R(w) + Z £k

subject to the constraints:

MRF¢(x*; w,z") < MRFq(x; w,z") — A(x,x*) + &

energy of any other desired  slack
ground truth energy margin



Max-margin learning

CONSTRAINED

mlnR -I-ka;

subject to the constraints:

MRF¢(x"; w,z") < MRFq(x;w,z") — A(x,x") + &

Ior equivalently

UNCONSTRAINED

£ = MRFg<Xk; W, zk) — min (MRFg(x; W, zk) — A(x,xk))

79




Choice 2: logistic loss

min R(w +ZLG xF zk W)

w
k=1

Lq (x’»’zk:w) — MRFG(x’”:W,z"') 4 10gZe MRF ¢ (x;w,z")
\ X

}

Y
partition function

= Can be shown to lead to maximum likelihood learning




Max-margin vs Maximum-likelihood

max-margin

A
( \

La (xk,zk;w) [MRFG (x":w, z" %lllill]()IRFg(XZW,Zk) — A(x, x"))

|

LG (Xk7zk;W) [BIRFG X s W, z [logz ]»l\IRFG(XW Z )
| |

|
maximum likelihood

81



Max-margin vs Maximum-likelihood

max-margin

\
( \

Lo (x*,2" w) :[)IRFG(xk: W, zk)J+[1113X](—1\IRFG(x; w,z") + A(x,x"))

X

o

Le (x*, 2% w) :[MRFG(xki w, zk)]+[10§-’;z % MRF ¢ (x;w,2")

\ J
f

maximum likelihood

82



Solving the learning

formulations




Maximum-likelihood learning

K
min EHWH2 + Z L¢ (x*,2"; w)
w2 k=1

X

\ }
|

partition function

= Differentiable & convex

" Global optimum via gradient descent, for example



Maximum-likelihood learning

K
min EHWH2 + Z L¢ (x*,2"; w)
w2 k=1

LG (Xk’ Zk: W) — BIRFG(X}” W, ZA) + log Z e_l\"IRFG(X;W,Zk)
X

gradient —>V,, = w + Z (g(xk',zk') — Zp(x[w, z")g(x, zk')>
k X /
Recall that: MRF¢(x;w,z") = wlg(x,z")

85



Maximum-likelihood learning

K
min EHWH2 + Z L¢ (x*,2"; w)
w2 k=1

La ( k. z"":w) — MRF g (xF: w, z") + logz e~ MRFc (x;iw,z")
X

X

gradient —>Vy = w + Z (g(xk, z") — ZP(X!UJ, 2")g(x, Zk))
2

\ J
|

I —

= Requires MRF probabilistic inference

= NP-hard (exponentially many x): approximation via loopy-BP ?



Max-margin learning (UNCONSTRAINED)

min R(w +ZLG xF zk W)

w
k=1

= Convex but non-differentiable

" Global optimum via subgradient method



Max-margin learning (CONSTRAINED)
min EHWH2 — Z Ex
w2 -

subject to the constraints:

MRF¢(x"; w,z") < MRFq(x; w,z") — A(x,x*) + &

linear in w

* Quadratic program (great!)

e But exponentially many constraints (not so great)



Max-margin learning (CONSTRAINED)

 What if we use only a small number of constraints?

Resulting QP can be solved

But solution may be infeasible

* Constraint generation to the rescue

only few constraints active at optimal
solution !l
(variables much fewer than constraints)

Given the active constraints, rest can be ignored

Then let us try to find them!



What have we seen?

* Inference
— Belief propagation

— Graph cuts
— Variational inference

— Simulation-based inference

* Learning



Today: Modern ML Toolbox

Images

Text/Speech

Patterns of Local [SShieit )
Contrast B ! ]

e
o%o
@

25
%i?béw
N b‘/‘
RK A A
7i-:uz~‘\\1
ﬁvﬁggi
KO
$%a§l

&
) ¢
X

3
X

AN
ofe
R

.,ii

f
i

Face
Features

Modern deep learning toolbox is designed

for simple sequences & grids



bDoubt thou the stars are fire,
Doubt that the sun doth move,
Doubt truth to be a liar,
But never doubt I love...

Text

""NWWWMW Modern

Audio signals deep learning toolbox

IS designed for
sequences & grids

Images 92
Slide courtesy: http://cs224w.Stanford.edu



Not everything
can be represented as
a sequence or a grid

How can we develop neural
networks that are much more
broadly applicable?

New frontiers beyond classic neural
networks that only learn on images
and sequences

Slide courtesy: http://cs224w.Stanford.edu




ICLR 2022 keywords

subfield in ML

50 MOST APPEARED KEYWORDS

reinforcement learning
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generalization
transformer
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computer vision
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Why is Graph Deep Learning Hard?

Networks are complex.
Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

Text

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features



Graph Regularization, Graph
convolutions e.g., dropout convolutions
& &
& &
Activation Q Q
function &
/ >

— ¢

/ /
/
Predictions: Node labels,

New links, Generated
Input: Network graphs and subgraphs




Graph Neural Networks

TARGET NODE ’. ® A‘: ..................... ®

A
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A 4" 4‘ """"""""" : ............... ‘

' =
INPUTGRAPH Ty A

Each node defines a computation graph

Each edge in this graph is a
transformation/aggregation function

Scarselliet al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.




Graph Neural Networks

TARGET NODE

|

A
‘/ B «

INPUT GRAPH

Neural networks

Intuition: Nodes aggregate information from their
neighbors using neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.




Representation Learning

(Supervised) Machine Learning Lifecycle:
This feature, that feature. Every single time!

Raw Graph Learning
—> —>

. —> Model
Data Data Algorithm
at Representation Downstream
Eng Ing Learning - prediction task

Automatically
learn the features



Representation Learning

Map nodes to d-dimensional
embeddings such that similar nodes in
the network are embedded close

together
nLj)deLearn a neural network> representatlon
: d
fru—-R N - Y,
]Rd

Feature representation,
embedding



ML for Graph data

Traditional methods
Node embeddings
Graph neural networks

Applications



Different Types of Tasks

Node level

Graph-level «— » Community

giea(:)I;tlon, (subgraph)
generation evel

——» Edge-level




Classic Graph ML Tasks

Node classification: Predict a property of a node

Example: Categorize online users / items
Link prediction: Predict whether there are missing

links between two nodes

Example: Knowledge graph completion
Graph classification: Categorize different graphs

Example: Molecule property prediction
Clustering: Detect if nodes form a community

Example: Social circle detection
Other tasks:

Graph generation: Drug discovery
Graph evolution: Physical simulation



Traditional ML Pipeline

Design features for nodes/links/graphs
Obtain features for all training data

e RP

."°-.g3raph features




Traditional ML Pipeline

Train an ML model: = Apply the model:

Logistic Regression Given a new
node/link/graph, obtain
its features and make a

Random forest
Neural network, etc.

prediction
y
Class label - Error
/ Weight & bi
a
o@D
|
Netinput  Activation function i____ Threshold g;igilcgﬁgl

f i (here: sigmoid
unction g ) 1 function 0or 1

____________________________



Machine Learning in Graphs

Goal: Make predictions for a set of objects

Design choices:
Features: d-dimensional vectors x
Objects: Nodes, edges, sets of nodes,
entire graphs
Objective function:

What task are we aiming to solve?



Node-Level Tasks

? ?
O g O
? : s >
Machi
o Leaa(r:'n:gg ‘
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Node classification

ML needs features.



Node-Level Features: Overview

Goal: Characterize the structure and position of
a node in the network:
Node degree
Node centrality
Clustering coefficient Node feature
Graphlets

ol
s
.
.
“““
.
s
.
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Link-Level Prediction Task: Recap

The task is to predict new links based on the
existing links.

At test time, node pairs (with no existing links)
are ranked, and top K node pairs are predicted.




Link Prediction as a Task

1) Links missing at random:

Remove a random set of links and then
aim to predict them

2) Links over time:

Given G[t,, t,] a graph defined by edges
up to time t},
of edges (not in G[t,, t}]) that are

predicted to appear in time G[tq, t{] G[to, to]

G[t1,t]
n=|E,.|:#new edgesthat appear during
the test period [t, t{]

Take top n elements of L and count correct edges



Link Prediction via Proximity

Methodology:

For each pair of nodes (x,y) compute score c(x,y)

For example, c(x,y) could be the # of common neighbors
of xand y

Sort pairs (x,y) by the decreasing score c(x,y)
Predict top n pairs as new links

See which of these links actually
appear in G[t, t{]



Link-Level Features: Overview

Distance-based feature
Local neighborhood overlap
Global neighborhood overlap




Link-Level Features: Summary

Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Captures how many neighboring nodes are shared
by two nodes.

Becomes zero when no neighbor nodes are shared.

Uses global graph structure to score two nodes.

Katz index counts #walks of all lengths between two
nodes.



Graph-Level Features

We want features that characterize the
structure of an entire graph.

For example:




Background: Kernel Methods

are widely-used for traditional

ML for graph-level prediction.
Idea: Design kernels instead of feature vectors.

Kernel K(G,G') € R measures similarity b/w data

Kernel matrix K = (K(G, G’))G - Must always be
positive semidefinite (i.e., has po,sitive eigenvalues)
There exists a feature representation ¢(-) such that
K(G,G") =¢(G)'¢(G")

Once the kernel is defined, off-the-shelf ML model,
such as kernel SVM, can be used to make predictions.



Graph-Level Features: Overview

Measure similarity between
two graphs:

Other kernels are also proposed in the literature
(beyond the scope of this lecture)

Random-walk kernel
Shortest-path graph kernel

And many more...

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).



Graph-Level Features: Summary

Graphlet Kernel
Graph is represented as Bag-of-graphlets
Computationally expensive
Weisfeiler-Lehman Kernel

Apply K-step color refinement algorithm to enrich
node colors

Different colors capture different K-hop neighborhood
structures

Graph is represented as Bag-of-colors
Computationally efficient

Closely related to Graph Neural Networks (as we
will seel)



Graph Representation Learning

Graph Representation Learning alleviates
the need to do feature engineering every
single time.

Input Structured Learning Prediction

Graph Features Algorithm
t Representation Learning -- Downstream
Eng e Automatically prediction task

learn the features



Graph Representation Learning

Goal: Efficient task-independent feature
learning for machine learning with graphs!

node vector
u =)
. d
fru—->R N o Y
]Rd

Feature representation,
embedding



Why Embedding?

Similarity of embeddings between nodes indicates
their similarity in the network. For example:

Both nodes are close to each other (connected by an edge)
Encode network information
Potentially used for many downstream predictions

Vec Tasks
* Node classification
. . * Link prediction
~ » Graph classification

, « Anomalous node detection
embeddings R4 . Clustering



Example Node Embedding

2D embedding of nodes of the Zachary’s
Karate Club network:
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Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2074.
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Assume we have a graph G:
V is the vertex set.
A is the adjacency matrix (assume binary).

For simplicity: No node features or extra
information is used

(0 1 0 1)

A—l O O 1

V: {1, 2, 3, 4} 0 0 0 1
(1 1 1 0



Embedding Nodes

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph
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Embedding Nodes

Goal: similarity(u,v) = z;z,
in the original network Similarity of the embedding

Need to define!

original network embedding space



Learning Node Embeddings

Encoder maps from nodes to embeddings
Define a node similarity function (i.e., a
measure of similarity in the original network)
Decoder maps from embeddings to the

similarity score
Optimize the parameters of the encoder so

that: .

szu
similarity(u,v) ~ z)z,

in the original network Similarity of the embedding



Two Key Components

Encoder: maps each node to a low-dimensional

vector d-dimensional
ENC(v) =z, embedding

node In the input graph

specifies how the
relationshipsin vector space map to the
relationshipsin the original network

similarity(u, v) =~ z,z, Decoder
Similarity of u and v in dot product between node

the original network embeddings



“Shallow” Encoding

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assigned a unique
embedding vector
(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec



Framework Summary

Shallow encoder: embedding lookup

Parameters to optimize: Z which contains node
embeddings z,, for all nodes u € V

We will cover deep encoders (GNNSs) in Lecture 6

Decoder: based on node similarity.

Objective: maximize z, z,, for node pairs (u, v)
that are similar



How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

Should two nodes have a similar embedding if
they...

are linked?
share neighbors?

have similar “structural roles”?
There are also random walk based approaches



Note on Node Embeddings

This is way of
learning node embeddings.

We are not utilizing node labels

We are not utilizing node features

The goal is to directly estimate a set of coordinates
(i.e., the embedding) of a node so that some aspect
of the network structure (captured by DEC) is
preserved.

These embeddings are

They are not trained for a specific task but can be
used for any task.



Random-Walk Embeddings

probability that u
and v Cco-occuron a
random walk over

the graph

e

2y Zy




Random-Walk Embeddings

Estimate probability of visiting node v on a
random walk starting from node u using
some random walk strategy R

“
Pr(v|u)

Optimize embeddings to encode these
random walk statistics:

Similarity in embedding space (Here:
dot product=cos(6)) encodes random walk “similarity” Z



Why Random Walks?

Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node u
visits v with high probability, u and v are
similar (high-order multi-hop information)

Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks



Unsupervised Feature Learning

Intuition: Find embedding of nodes in
d-dimensional space that preserves similarity

ldea: Learn node embedding such that nearby
nodes are close together in the network

Given a node u, how do we define nearby
nodes?

Nr (u) ... neighbourhood of u obtained by some
random walk strategy R



Feature Learning as Optimization

Given ¢ = (V,E),
Our goal is to learn a mapping f:u — R%:

f(u) — Zy
Log-likelihood objective:

max z log P(Ng ()| z,)
uev
Ny (u) is the neighborhood of node u by strategy R

Given node u, we want to learn feature
representations that are predictive of the nodes
in its random walk neighborhood Ny (u).



Random Walk Optimization

Run short fixed-length random walks
starting from each node u in the graph using
some random walk strategy R.

For each node u collect Ny (u), the multiset’
of nodes visited on random walks starting
from wu.

Optimize embeddings according to: Given
node u, predict its neighbors Ny (u).

mfax z log P(Ngr(u)| Z,) = Maximum likelihood objective

uev

*Np (1) can have repeat elements since nodes can be visited multiple times on random walks



Summary so far

Core idea: Embed nodes so that distances in
embedding space reflect node similarities in
the original network.

Different notions of node similarity:

Naive: similar if two nodes are connected
Neighborhood overlap

Random walk approaches



