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Main question:

How do we take advantage of 
relational structure for better 

prediction?
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structure, which can be represented as a

relational graph

By explicitly modeling relationships we 
achieve better performance!
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What	have	we	seen?	

•  Inference	
– Belief	propagation	

– Graph	cuts	(to	be	completed)	

– Variational	inference	

– Simulation-based	inference	
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Outline 

The st-mincut problem 

What problems can we solve 
using st-mincut? 

st-mincut based Move algorithms 

Connection between st-mincut 
and energy minimization? 
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St-mincut and Energy Minimization 

T 

S st-mincut 

E: {0,1}n → R 

Minimizing a Qudratic 
Pseudoboolean 

function E(x)  

Functions of boolean 
variables 

Pseudoboolean? 

Polynomial time st-mincut algorithms 
require non-negative edge weights 

E(y) = ∑ ci yi + ∑ cij yi(1-yj)      cij≥0 
i,j i 
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So how does this work?  

Construct a graph such that: 
1. Any st-cut corresponds to an assignment of x  

2. The cost of the cut is equal to the energy of x : 
E(x) 

Solution 
T 

S st-mincut 

E(y) 

14 



Graph Construction 

Sink (1) 

Source (0)  

a1 a2 

E(a1,a2) = 2a1 

2
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Graph Construction 

a1 a2 

E(a1,a2) = 2a1 + 5ā1 

2

5 

Sink (1) 

Source (0)  
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Graph Construction 

a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 

2

5 

9 

4 
Sink (1) 

Source (0)  
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Graph Construction 

a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 

2

5 

9 

4 
2 

Sink (1) 

Source (0)  
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Graph Construction 

a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

2

5 

9 

4 
2 

1 

Sink (1) 

Source (0)  
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Graph Construction 

a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

5 4 
2 

1 a1 = 1  a2 = 1 

E (1,1) = 11 

Cost of cut = 11 

Sink (1) 

Source (0)  

2 9 
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Graph Construction 

a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

2

5 

9 

4 
2 

1 

Sink (1) 

Source (0)  

a1 = 1  a2 = 0 

E (1,0) = 8 

st-mincut cost = 8 
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Energy Function Reparameterization 

Two functions E1 and E2 are reparameterizations if 
 

E1 (x) = E2 (x)  for all x  

For instance: 
 
E1 (a1) = 1+ 2a1 + 3ā1 
 

E2 (a1) = 3 + ā1 

a1 ā1 1+ 2a1 + 3ā1 3 + ā1 

0 1 4 4 

1 0 3 3 
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Flow and Reparametrization 

a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

2

5 

9 

4 
2 

1 

Sink (1) 

Source (0)  

2a1 + 5ā1   

 = 2(a1+ā1) + 3ā1  

 = 2 + 3ā1  
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Flow and Reparametrization 

Sink (1) 

Source (0)  

a1 a2 

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

0

3 

9 

4 
2 

1 
2a1 + 5ā1   

 = 2(a1+ā1) + 3ā1  

 = 2 + 3ā1  
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Sink (1) 

Source (0)  

a1 a2 

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

0

3 

9 

4 
2 

1 

Flow and Reparametrization 

9a2 + 4ā2   

 = 4(a2+ā2) + 5ā2  

 = 4 + 5ā2  
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Sink (1) 

Source (0)  

a1 a2 

E(a1,a2) = 2 + 3ā1+ 5a2 + 4 + 2a1ā2 + ā1a2 

0

3 

5 

0 
2 

1 
9a2 + 4ā2   

 = 4(a2+ā2) + 5ā2  

 = 4 + 5ā2  

Flow and Reparametrization 
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Sink (1) 

Source (0)  

a1 a2 

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2 

0

3 

5 

0 
2 

1 

Flow and Reparametrization 

3ā1+ 5a2 + 2a1ā2  

= 2(ā1+a2+a1ā2) +ā1+3a2 

= 2(1+ā1a2) +ā1+3a2 

a1 a2 F1 F2 
0 0 1 1 
0 1 2 2 
1 0 1 1 
1 1 1 1 

F1 = ā1+a2+a1ā2 
 
F2 = 1+ā1a2 
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Sink (1) 

Source (0)  

a1 a2 

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2 

0

1 

3 

0 
0 

3 

Flow and Reparametrization 

3ā1+ 5a2 + 2a1ā2  

= 2(ā1+a2+a1ā2) +ā1+3a2 

= 2(1+ā1a2) +ā1+3a2 

a1 a2 F1 F2 
0 0 1 1 
0 1 2 2 
1 0 1 1 
1 1 1 1 

F1 = ā1+a2+a1ā2 
 
F2 = 1+ā1a2 
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Sink (1) 

Source (0)  

a1 a2 

0

1 

3 

0 
0 

3 

Flow and Reparametrization 

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2 

No more 
augmenting paths 

possible 
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Sink (1) 

a1 a2 

0

1 

3 

0 
0 

3 

Flow and Reparametrization 

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2 

a1 = 1  a2 = 0 

E (1,0) = 8 

st-mincut cost = 8 

Total Flow 
bound on the 

optimal solution 

Inference of the optimal solution becomes 
trivial because the bound is tight   

Residual Graph 
(positive coefficients) 

Source (0)  
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Example: Image Segmentation 

E(y) = ∑ ci yi + ∑ cij yi(1-yj)  
E: {0,1}n → R 

0 → fg 
 1 → bg i i,j 

Global Minimum (y*) 

y* = arg min E(y)  
y

How to minimize 
E(x)? 

31 



How does the code look like? 

Sink (1) 

Graph	*g;	
 
For	all	pixels	p	 

	 
	/*	Add	a	node	to	the	graph	*/ 
	nodeID(p)	=	g->add_node();	

 
	/*	Set	cost	of	terminal	edges	*/ 
	set_weights(nodeID(p),	fgCost(p),	bgCost(p));	

 
end 
	
for	all	adjacent	pixels	p,q 

	add_weights(nodeID(p),	nodeID(q),		cost); 
end 
	
g->compute_maxflow(); 
	
label_p	=	g->is_connected_to_source(nodeID(p)); 		
//	is	the	label	of	pixel	p	(0	or	1) 

Source (0)  
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How does the code look like? 

Graph	*g;	
 
For	all	pixels	p	 

	 
	/*	Add	a	node	to	the	graph	*/ 
	nodeID(p)	=	g->add_node();	

 
	/*	Set	cost	of	terminal	edges	*/ 
	set_weights(nodeID(p),	fgCost(p),	bgCost(p));	

 
end 
	
for	all	adjacent	pixels	p,q 

	add_weights(nodeID(p),	nodeID(q),		cost); 
end 
	
g->compute_maxflow(); 
	
label_p	=	g->is_connected_to_source(nodeID(p)); 		
//	is	the	label	of	pixel	p	(0	or	1) 

a1 a2 

fgCost(a1) 

Sink (1) 

Source (0)  

fgCost(a2) 

bgCost(a1) bgCost(a2) 
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Graph	*g;	
 
For	all	pixels	p	 

	 
	/*	Add	a	node	to	the	graph	*/ 
	nodeID(p)	=	g->add_node();	

 
	/*	Set	cost	of	terminal	edges	*/ 
	set_weights(nodeID(p),	fgCost(p),	bgCost(p));	

 
end 
	
for	all	adjacent	pixels	p,q 

	add_weights(nodeID(p),	nodeID(q),		cost(p,q)); 
end 
	
g->compute_maxflow(); 
	
label_p	=	g->is_connected_to_source(nodeID(p)); 		
//	is	the	label	of	pixel	p	(0	or	1) 

How does the code look like? 

a1 a2 

fgCost(a1) 

Sink (1) 

Source (0)  

fgCost(a2) 

bgCost(a1) bgCost(a2) 

cost(p,q) 
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Graph	*g;	
 
For	all	pixels	p	 

	 
	/*	Add	a	node	to	the	graph	*/ 
	nodeID(p)	=	g->add_node();	

 
	/*	Set	cost	of	terminal	edges	*/ 
	set_weights(nodeID(p),	fgCost(p),	bgCost(p));	

 
end 
	
for	all	adjacent	pixels	p,q 

	add_weights(nodeID(p),	nodeID(q),		cost(p,q)); 
end 
	
g->compute_maxflow(); 
	
label_p	=	g->is_connected_to_source(nodeID(p)); 		
//	is	the	label	of	pixel	p	(0	or	1) 

How does the code look like? 

a1 a2 

fgCost(a1) 

Sink (1) 

fgCost(a2) 

bgCost(a1) bgCost(a2) 

cost(p,q) 

a1 = bg  a2 = fg 

Source (0)  
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Outline 

The st-mincut problem 

What problems can we solve 
using st-mincut? 

st-mincut based Move algorithms 

Connection between st-mincut 
and energy minimization? 

36 



Minimizing Energy Functions 

Space of Function 
Minimization Problems 

Submodular 
Functions 

NP-Hard 

•  General Energy Functions 
–  NP-hard to minimize 
–  Only approximate minimization 

possible 

•  Easy energy functions  
–  Solvable in polynomial time 
–  Submodular ~ O(n6)  
 

MAXCUT 

Functions defined on trees 
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Minimizing Submodular Functions 

•  Minimizing general submodular functions 
–  O(n5 Q + n6) where Q is function evaluation time 

 [Orlin, IPCO 2007] 
 
 

•  Symmetric submodular functions 
–  E (y) = E (1 - y) 
–  O(n3) [Queyranne 1998] 

•  Quadratic pseudoboolean 
–  Can be transformed to st-mincut 
–  One node per variable  (O(n3) complexity) 
–  Very low empirical running time 
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Submodular Pseudoboolean Functions 

•  All functions for one boolean variable (f: {0,1} à ℝ) are submodular 

•  A function of two boolean variables (f: {0,1}2 à ℝ) is submodular if 
 

f(0,1) + f(1,0)  ≥  f(0,0) + f(1,1) 

•  A general pseudoboolean function  f : 2n → ℝ  is submodular if all its 
projections fp are submodular i.e. 

fp(0,1) + fp(1,0)  ≥  fp(0,0) + fp(1,1) 

Function defined over boolean vectors y = {y1,y2, .... yn} 

Definition 

39 



E(y) =  ∑ θi (yi) + ∑ θij (yi,yj) 
i,j i 

Quadratic Submodular Pseudoboolean 
Functions 

θij(0,1) + θij
 (1,0)  ≥ θij

 (0,0) + θij
 (1,1) For all ij 

E(y) = ∑ ci yi + ∑ cij yi(1-yj)     cij≥0 
i,j i 

Equivalent (transformable) 

i.e. all submodular QPBFs are st-mincut solvable 
40 



A B 

C D 

0     1 

0 

1 
yi 

yj 

=  A  + 
0 0 

C-A C-A 

0     1 

0 

1 

0 D-C 

0 D-C 

0     1 

0 

1 

0 B+C-
A-D 

0 0 

0     1 

0 

1 
+ + 

if yi=1 add C-A if yj  = 1 add D-C 

B+C-A-D ≥ 0 is true from the submodularity of θij
  

How are they equivalent? 

A = θij
 (0,0)        B = θij(0,1)           C = θij

 (1,0)          D = θij
 (1,1) 

θij (yi,yj)  = θij(0,0)  
 

    + (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj  
 

    + (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj 
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yi 
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θij (yi,yj)  = θij(0,0)  
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E(y) =  ∑ θi (yi) + ∑ θij (yi,yj) 
i,j i 

Quadratic Submodular Pseudoboolean 
Functions 

θij(0,1) + θij
 (1,0)  ≥ θij

 (0,0) + θij
 (1,1) For all ij 

Equivalent (transformable) 

T 

S 
st-mincut 

y in {0,1}n 
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Recap 

•  Exact minimization of Submodular QBFs 
using graph cuts 

•  Obtaining partially optimal solutions of non-
submodular QBFs using graph cuts 
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Outline 

The st-mincut problem 

What problems can we solve 
using st-mincut? 

st-mincut based Move algorithms 

Connection between st-mincut 
and energy minimization? 
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St-mincut based Move algorithms 

•  Commonly used for solving non-submodular 
multi-label problems 

•  Extremely efficient and produce good 
solutions 

•  Not Exact: Produce local optima 
 

E(y) =  ∑ θi (yi) + ∑ θij (yi,yj) 
 i,j i 

y ϵ Labels L = {l1, l2, … , lk} 
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Move Making Algorithms 

Search 
Neighbourhood 

Current Solution 

Optimal Move 

Solution Space 

E
ne

rg
y 
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Move Making Algorithms 

Search 
Neighbourhood 

Current Solution 

Optimal Move 

Solution Space 

E
ne

rg
y 
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Move Making Algorithms 

Search 
Neighbourhood 

Current Solution 

Optimal Move 

Solution Space 

E
ne

rg
y 
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Move Making Algorithms 

Search 
Neighbourhood 

Current Solution 

Optimal Move 

Solution Space 

E
ne

rg
y 
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Move Making Algorithms 

Search 
Neighbourhood 

Current Solution 

Optimal Move 

Solution Space 

E
ne

rg
y 
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Computing the Optimal Move 

Search 
Neighbourhood 

Current Solution 

Optimal Move 

yc 
(t) Key Property  

Move Space 

Bigger move 
space  

Solution Space 

E
ne

rg
y 

•  Better solutions  
•  Finding the optimal move hard 
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Moves using Graph Cuts  

Expansion and Swap move algorithms 
[Boykov Veksler and Zabih, PAMI 2001] 
 

•  Makes a series of changes to the solution (moves) 
•  Each move results in a solution with smaller energy 
 
 

Space of Solutions (y) : LN  

Move Space (t) : 2N  

Search 
Neighbourhood 

Current Solution 

N Number of 
Variables 

L Number of  
Labels 
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Moves using Graph Cuts  

Expansion and Swap move algorithms 
[Boykov Veksler and Zabih, PAMI 2001] 
 

•  Makes a series of changes to the solution (moves) 
•  Each move results in a solution with smaller energy 
 
 

Current Solution 

Construct a move 
function 

Minimize move function 
to get optimal move 

Move to new 
solution 

How to 
minimize 

move 
functions? 
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General Binary Moves 

Minimize over move variables t to get the 
optimal move  

y =  t y1 + (1- t) y2 
New 

solution 
Current 
Solution 

Second 
solution 

Em(t) = E(t y1 + (1- t) y2) 

Boykov, Veksler and Zabih, PAMI 2001 

Move energy is a submodular QPBF 
(Exact Minimization Possible) 
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Expansion Move 

Sky 
House 

Tree 
Ground 

Initialize with Tree Status: 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

•  Variables take label α or retain current label 
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Expansion Move 

Sky 
House 

Tree 
Ground 

Status: Expand Ground 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

•  Variables take label α or retain current label 
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Expansion Move 

Sky 
House 

Tree 
Ground 

Status: Expand House 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

•  Variables take label α or retain current label 
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Expansion Move 

Sky 
House 

Tree 
Ground 

Status: Expand Sky 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

•  Variables take label α or retain current label 
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Expansion Move 

•  Move energy is submodular if: 
–  Unary Potentials: Arbitrary 
–  Pairwise potentials: Metric 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

Semi metric 

•  Variables take label α or retain current label 

Examples: Potts model, Truncated linear 
Cannot solve truncated quadratic  

θij (la,lb)  ≥ 0 
 

θij (la,lb)  = 0   iff   a = b 
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Expansion Move 

•  Move energy is submodular if: 
–  Unary Potentials: Arbitrary 
–  Pairwise potentials: Metric 

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih] 

θij (la,lb) + θij (lb,lc) ≥ θij (la,lc) 
Triangle 

Inequality 

•  Variables take label α or retain current label 

Examples: Potts model, Truncated linear 
Cannot solve truncated quadratic  
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Exact 
Transformation 

(global optimum) 
 

Or Relaxed 
transformation 

(partially optimal) 

Summary 

T 

S 
st-mincut 

Labelling 
Problem 

Submodular Quadratic 
Pseudoboolean Function  

Move making algorithms 

Sub-problem 
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Where do we stand ? 

Chain/Tree, 2/multi-label: Use BP 

Grid graph - 
   “submodular”:   Use graph cuts 
   “metric”:            Use expansion 
 
    otherwise:   Use TRW, 
                       dual decomposition, 
                       relaxation 

66 



What have we seen? 

•  Inference 
–  Belief propagation 

–  Graph cuts 

–  Variational inference 

–  Simulation-based inference 

•  Learning 

67 



•  Supervised	Learning	

•  Probabilistic	Methods	

•  Loss-based	Methods	

Outline	
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Image	Classification	

Which	city	is	this?	

Input:	d	 Output:	x	∈	{1,2,…,h}	
69	



CRF	training	
•  Stereo	matching:	

•  Z:	left,	right	image	
•  X:	disparity	map	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
estimate	proper	

w	

70	



CRF	training	
•  Denoising:	

•  Z:	noisy	input	image	
•  X:	denoised	output	image	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
estimate	proper	

w	
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CRF	training	(some	further	notation)	

vector	valued	feature	
functions	
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Learning	formulations	



Risk	minimization	

K	training	samples		
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Regularized	Risk	minimization	
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Regularized	Risk	minimization	

Replace	Δ(.)	with	easier	to	handle	upper	bound	LG	
(e.g.,	convex	w.r.t.	w)	

76	



Choice	1:	Hinge	loss	

§  Upper	bounds	Δ(.)	

§  Leads	to	max-margin	learning	

77	



Max-margin	learning	

subject	to	the	constraints:	

energy	of	
ground	truth	

any	other	
energy		

desired	
margin	

slack	
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Max-margin	learning	

subject	to	the	constraints:	

or	equivalently	

CONSTRAINED	

UNCONSTRAINED	
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Choice	2:	logistic	loss		

§  Can	be	shown	to	lead	to	maximum	likelihood	learning	
	

partition	function		
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Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	
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Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	

soft-max	

82	



Solving	the	learning	
formulations	



Maximum-likelihood	learning	

§  Differentiable	&	convex	
	

partition	function		

§  Global	optimum	via	gradient	descent,	for	example	
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Maximum-likelihood	learning	

gradient	

Recall	that:	

85	



Maximum-likelihood	learning	

gradient	

§  Requires	MRF	probabilistic	inference		
	
§  NP-hard	(exponentially	many	x):	approximation	via	loopy-BP	?	
	 86	



Max-margin	learning	(UNCONSTRAINED)	

§  Convex	but	non-differentiable	
	
§  Global	optimum	via	subgradient	method	

87	



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	

linear	in	w 

•  Quadratic	program	(great!)	
•  But	exponentially	many	constraints	(not	so	great)	

88	



•  What	if	we	use	only	a	small	number	of	constraints?	

•  Resulting	QP	can	be	solved	
•  But	solution	may	be	infeasible	

Max-margin	learning	(CONSTRAINED)	

•  only	few	constraints	active	at	optimal	
solution	!!	
(variables	much	fewer	than	constraints)	

•  Constraint	generation	to	the	rescue	

•  Given	the	active	constraints,	rest	can	be	ignored	
•  Then	let	us	try	to	find	them!	

89	



What	have	we	seen?	
•  Inference	

–  Belief	propagation	

– Graph	cuts	

–  Variational	inference	

–  Simulation-based	inference	

•  Learning	

90	
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Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids

1/11/2023



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

Modern 
deep learning toolbox 

is designed for 
sequences & grids

1/11/2023
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Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

Not everything 
can be represented as 
a sequence or a grid

How can we develop neural 
networks that are much more 

broadly applicable?

New frontiers beyond classic neural 
networks that only learn on images 

and sequences
1/11/2023

93	
Slide	courtesy:	http://cs224w.Stanford.edu		



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13
1/11/2023

IC
LR

 2
02

2 
ke

yw
or

ds

94	
Slide	courtesy:	http://cs224w.Stanford.edu		



95	
Slide	courtesy:	http://cs224w.Stanford.edu		

Networks are complex.
� Arbitrary size and complex topological 

structure (i.e., no spatial locality like grids)

� No fixed node ordering or reference point
� Often dynamic and have multimodal features

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 14

vs.

Networks Images

Text

1/11/2023
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…
z

Input: Network

Predictions: Node labels, 
New links, Generated 
graphs and subgraphs

1/11/2023
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17Jure Leskovec, Stanford University

Each node defines a computation graph
▪ Each edge in this graph is a 

transformation/aggregation function 

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 97	

Slide	courtesy:	http://cs224w.Stanford.edu		



18Jure Leskovec, Stanford University

Intuition: Nodes aggregate information from their 
neighbors using neural networks

Neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.
98	Slide	courtesy:	http://cs224w.Stanford.edu		



(Supervised) Machine Learning Lifecycle: 
This feature, that feature. Every single time!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20

Raw 
Data

Graph 
Data

Learning 
Algorithm Model

Downstream 
prediction task

Feature 
Engineering

Representation 
Learning --

Automatically 
learn the features

1/11/2023
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Map nodes to d-dimensional 
embeddings such that similar nodes in 

the network are embedded close 
together

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

representationnode

𝒇: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation, 
embedding

u
Learn a neural network

1/11/2023
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ML	for	Graph	data	

•  Traditional	methods	

•  Node	embeddings	

•  Graph	neural	networks	

•  Applications	

101	
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Node level

Edge-level

Community 
(subgraph)
level

Graph-level 
prediction,
Graph 
generation



� Node classification: Predict a property of a node
▪ Example: Categorize online users / items

� Link prediction: Predict whether there are missing 
links between two nodes
▪ Example: Knowledge graph completion

� Graph classification: Categorize different graphs
▪ Example: Molecule property prediction

� Clustering: Detect if nodes form a community
▪ Example: Social circle detection

� Other tasks:
▪ Graph generation: Drug discovery
▪ Graph evolution: Physical simulation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 261/11/2023
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� Design features for nodes/links/graphs
� Obtain features for all training data

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

C

A

B

D E

H

F

G

Node features

Graph featuresLink features

∈ ℝ𝐷
∈ ℝ𝐷

∈ ℝ𝐷

104	
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� Train an ML model:
▪ Logistic Regression
▪ Random forest
▪ Neural network, etc.

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

𝒙𝑵 𝑦𝑁

� Apply the model:
▪ Given a new 

node/link/graph, obtain 
its features and make a 
prediction

𝒙 𝑦

105	
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Goal: Make predictions for a set of objects

Design choices:
� Features: d-dimensional vectors 𝒙
� Objects: Nodes, edges, sets of nodes, 

entire graphs
� Objective function:

▪ What task are we aiming to solve?

101/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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? ?

?
?

?
Machine 
Learning

Node classification

ML needs features.

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Goal: Characterize the structure and position of 
a node in the network:

▪ Node degree
▪ Node centrality
▪ Clustering coefficient
▪ Graphlets

1/12/2023 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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A

B

D E

H

F

G

Node feature
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� The task is to predict new links based on the 
existing links.

� At test time, node pairs (with no existing links) 
are ranked, and top 𝐾 node pairs are predicted.

� The key is to design features for a pair of nodes.

1/12/2023 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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?

?
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Two formulations of the link prediction task:
� 1) Links missing at random:

▪ Remove a random set of links and then 
aim to predict them

� 2) Links over time:
▪ Given 𝐺[𝑡0, 𝑡0′ ] a graph defined by edges 

up to time 𝑡0′ , output a ranked list L
of edges (not in 𝐺[𝑡0, 𝑡0′ ]) that are 
predicted to appear in time 𝐺[𝑡1, 𝑡1′ ]

▪ Evaluation:
▪ n = |Enew|: # new edges that appear during 

the test period [𝑡1, 𝑡1′]
▪ Take top n elements of L and count correct edges

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

𝐺[𝑡0, 𝑡0′ ]
𝐺[𝑡1, 𝑡1′ ]

110	
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� Methodology:
▪ For each pair of nodes (x,y) compute score c(x,y)

▪ For example, c(x,y) could be the # of common neighbors 
of x and y

▪ Sort pairs (x,y) by the decreasing score c(x,y)
▪ Predict top n pairs as new links
▪ See which of these links actually

appear in 𝐺[𝑡1, 𝑡1′ ]

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35
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� Distance-based feature
� Local neighborhood overlap
� Global neighborhood overlap

1/12/2023 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Distance-based features:
▪ Uses the shortest path length between two nodes 

but does not capture how neighborhood overlaps.
� Local neighborhood overlap:

▪ Captures how many neighboring nodes are shared 
by two nodes.

▪ Becomes zero when no neighbor nodes are shared.
� Global neighborhood overlap:

▪ Uses global graph structure to score two nodes.
▪ Katz index counts #walks of all lengths between two 

nodes.
1/12/2023 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Goal: We want features that characterize the 
structure of an entire graph.

� For example:

1/12/2023 47Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Kernel methods are widely-used for traditional 
ML for graph-level prediction.

� Idea: Design kernels instead of feature vectors.
� A quick introduction to Kernels:

▪ Kernel 𝐾 𝐺,𝐺′ ∈ ℝ measures similarity b/w data
▪ Kernel matrix 𝑲 = 𝐾 𝐺,𝐺′

𝐺,𝐺′
must always be 

positive semidefinite (i.e., has positive eigenvalues)
▪ There exists a feature representation 𝜙(∙) such that
𝐾 𝐺, 𝐺′ = 𝜙 G T𝜙 𝐺′

▪ Once the kernel is defined, off-the-shelf ML model, 
such as kernel SVM, can be used to make predictions.

1/12/2023 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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� Graph Kernels: Measure similarity between 
two graphs:
▪ Graphlet Kernel [1]
▪ Weisfeiler-Lehman Kernel [2]
▪ Other kernels are also proposed in the literature 

(beyond the scope of this lecture)
▪ Random-walk kernel
▪ Shortest-path graph kernel
▪ And many more…

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

116	
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� Graphlet Kernel
▪ Graph is represented as Bag-of-graphlets
▪ Computationally expensive

� Weisfeiler-Lehman Kernel
▪ Apply 𝐾-step color refinement algorithm to enrich 

node colors
▪ Different colors capture different 𝐾-hop neighborhood 

structures
▪ Graph is represented as Bag-of-colors
▪ Computationally efficient
▪ Closely related to Graph Neural Networks (as we 

will see!)
1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

117	
Slide	courtesy:	http://cs224w.Stanford.edu		



118	
Slide	courtesy:	http://cs224w.Stanford.edu		 3

Input 
Graph

Structured 
Features

Learning 
Algorithm  Prediction

Downstream 
prediction task

Feature 
Engineering

Representation Learning --
Automatically

learn the features

Graph Representation Learning alleviates 
the need to do feature engineering every 
single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu1/17/2023
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Goal: Efficient task-independent feature 
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

vectornode

𝑓: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation, 
embedding

𝑢

1/17/2023



� Task: Map nodes into an embedding space
▪ Similarity of embeddings between nodes indicates 

their similarity in the network. For example:
▪ Both nodes are close to each other (connected by an edge)

▪ Encode network information
▪ Potentially used for many downstream predictions

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

ℝ𝑑embeddings

• Node classification
• Link prediction
• Graph classification
• Anomalous node detection
• Clustering
• ….

Tasks

120	
Slide	courtesy:	http://cs224w.Stanford.edu		



� 2D embedding of nodes of the Zachary’s 
Karate Club network:

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Example

• Zachary’s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014. 121	
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� Assume we have a graph G:
▪ V is the vertex set.
▪ A is the adjacency matrix (assume binary).
▪ For simplicity: No node features or extra 

information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 81/17/2023
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� Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 91/17/2023
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Goal:

Need to define!

1/17/2023

in the original network Similarity of the embedding
similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢
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1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a 

measure of similarity in the original network)
3. Decoder𝐃𝐄𝐂 maps from embeddings to the 

similarity score
4. Optimize the parameters of the encoder so 

that:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 111/17/2023

in the original network Similarity of the embedding

similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢
𝐃𝐄𝐂(𝐳𝑣Τ𝐳𝑢)



� Encoder: maps each node to a low-dimensional 
vector

� Similarity function: specifies how the 
relationships in vector space map to the 
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of 𝑢 and 𝑣 in 
the original network

dot product between node 
embeddings

1/17/2023

Decoder

ENC 𝑣 = 𝐳𝑣

similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢

node in the input graph

d-dimensional 
embedding

126	
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Simplest encoding approach: Encoder is just an 
embedding-lookup

Each node is assigned a unique 
embedding vector

(i.e., we directly optimize 
the embedding of each node)

Many methods: DeepWalk, node2vec

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15
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� Encoder + Decoder Framework
▪ Shallow encoder: embedding lookup
▪ Parameters to optimize: 𝐙 which contains node 

embeddings 𝐳𝑢 for all nodes 𝑢 ∈ 𝑉
▪ We will cover deep encoders (GNNs) in Lecture 6

▪ Decoder: based on node similarity.
▪ Objective: maximize 𝐳𝑣Τ𝐳𝑢 for node pairs (𝑢, 𝑣)

that are similar

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16
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� Key choice of methods is how they define node 
similarity.

� Should two nodes have a similar embedding if 
they…
▪ are linked?
▪ share neighbors?
▪ have similar “structural roles”?

� We will now learn node similarity definition that uses 
random walks, and how to optimize embeddings for 
such a similarity measure.

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

There	are	also	random	walk	based	approaches	



� This is unsupervised/self-supervised way of 
learning node embeddings.
▪ We are not utilizing node labels
▪ We are not utilizing node features
▪ The goal is to directly estimate a set of coordinates 

(i.e., the embedding) of a node so that some aspect 
of the network structure (captured by DEC) is 
preserved.

� These embeddings are task independent
▪ They are not trained for a specific task but can be 

used for any task.
1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18
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probability that u
and v co-occur on a 
random walk over 

the graph

1/17/2023
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1. Estimate probability of visiting node 𝒗 on a 
random walk starting from node 𝒖 using 
some random walk strategy 𝑹

2. Optimize embeddings to encode these 
random walk statistics:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 231/17/2023

Similarity in embedding space (Here: 
dot product=cos(𝜃)) encodes random walk “similarity”

132	
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1. Expressivity: Flexible stochastic definition of 
node similarity that incorporates both local 
and higher-order neighborhood information
Idea: if random walk starting from node 𝑢
visits 𝑣 with high probability, 𝑢 and 𝑣 are 
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node 
pairs when training; only need to consider 
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 241/17/2023
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� Intuition: Find embedding of nodes in 
𝑑-dimensional space that preserves similarity

� Idea: Learn node embedding such that nearby
nodes are close together in the network

� Given a node 𝑢, how do we define nearby 
nodes?
▪ 𝑁𝑅 𝑢 … neighbourhood of 𝑢 obtained by some 

random walk strategy 𝑅

25Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu1/17/2023



� Given 𝐺 = (𝑉, 𝐸), 
� Our goal is to learn a mapping 𝑓: 𝑢 → ℝ𝑑:
𝑓 𝑢 = 𝐳𝑢

� Log-likelihood objective: 

▪ 𝑁𝑅(𝑢) is the neighborhood of node 𝑢 by strategy 𝑅

� Given node 𝑢, we want to learn feature 
representations that are predictive of the nodes 
in its random walk neighborhood 𝑁𝑅(𝑢).

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26
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1. Run short fixed-length random walks 
starting from each node 𝑢 in the graph using 
some random walk strategy R.

2. For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset*

of nodes visited on random walks starting 
from 𝑢.

3. Optimize embeddings according to: Given 
node 𝑢, predict its neighbors 𝑁R(𝑢).

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27
*𝑁𝑅(𝑢) can have repeat elements since nodes can be visited multiple times on random walks

1/17/2023

Maximum likelihood objective
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� Core idea: Embed nodes so that distances in 
embedding space reflect node similarities in 
the original network.

� Different notions of node similarity:
▪ Naïve: similar if two nodes are connected
▪ Neighborhood overlap (covered in Lecture 2)
▪ Random walk approaches (covered today)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 481/17/2023


