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Graphical Models and 
Simulation-Based Inference

Graphical Models: Discrete Inference and Learning



Introduction to DAG and their relationship with 
Probability Functions (Pearl)

[Pearl 1987]

[Kong et al 2019]2



Graphical Models and Simulation Systems
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Prior Variables
θ

Status 
Machine 

Parameterised 
by Latent 

Variables Z

Simulated 
Observations 

X

Z ∼ P(Z |θ)

θ ∼ P(θ)

X ∼ P(X |Z, θ)

P(X, Z, θ) = P(X |Z, θ)P(Z |θ)P(θ) = P(X |Z)P(Z |θ)P(Z)



General Inference Notation
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P(θ |X) =
P(X |θ)P(θ)

P(X)Posterior

Likelihood Prior

Evidence

: parametersθ X: observations

P(θ |X) =
𝔼Z[P(X |Z, θ)]P(θ)

P(X)

Z: latent random variables

P(θ |X) =
𝔼η[P(X |θ, η)]P(θ)

P(X)

: nuisance random variablesη

Intractable in general: 
full likelihood impossible to evaluated or computation cost is extremely high



Likelihood computation is hard: 
Enter Mechanistic, Example Models Galton Board
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P(θ |X) =
P(X |θ)P(θ)

P(X)Posterior

Likelihood Prior

Evidence

: parametersθ X: observations

P(θ |X) =
𝔼Z[P(X |Z, θ)]P(θ)

P(X)

Z: latent random variables

P(θ |X) =
𝔼η[P(X |θ, η)]P(θ)

P(X)

: nuisance random variablesη



Simulation-Based Inference
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Prior Variables
θ

Status 
Machine 

Parameterised 
by Latent 

Variables Z

Simulated 
Observations 

X

Z ∼ P(Z |θ)

θ ∼ P(θ)

X ∼ P(X |Z, θ)

• Inference is defined as finding the  that could be at 
the origin of an observation . Specifically 
computing 


• For this, we use Bayes 

, nonetheless the 

likelihood  is often unknown or intractable.


• Hence simulation-based inference either 
approximates or eliminates the need for an explicit 
likelihood by simulating observations.

θ
X

P(θ |X) = 𝔼Z[P(θ, Z |X)]

P(θ, Z |X) =
P(X |Z, θ)P(Z, θ)

P(X)
P(X |Z, θ)



Simulation-Based Inference: 
Neural Network Approximations
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Prior Variables
θ

Status 
Machine 

Parameterised 
by Latent 

Variables Z

Simulated 
Observations 

X

Z ∼ P(Z |θ)

θ ∼ P(θ)

X ∼ P(X |Z, θ)

P(θ |X) =
P(X |θ)P(θ)

P(X)Posterior

Likelihood Prior

Evidence

: parametersθ X: observations

•  approximated through “Neural Posterior” 
estimators


•  approximated through “Neural Likelihood” 
estimators


•  approximated through the “Neural ratio” 

estimators

P(θ |X)

P(X |θ)

P(X |θ)
P(X)



Simulation-Based Inference: 
Why now it works (Cranmer et al 2019)
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Prior Variables
θ

Status 
Machine 

Parameterised 
by Latent 

Variables Z

Simulated 
Observations 

X

Z ∼ P(Z |θ)

θ ∼ P(θ)

X ∼ P(X |Z, θ)

P(θ |X) =
P(X |θ)P(θ)

P(X)Posterior

Likelihood Prior

Evidence

: parametersθ X: observations

• Novel ML-based approaches allow us to massively 
generate simulated observations


• Autodifferentiation and neural network approaches 
are great non-linear function estimators


• Active learning can help improving sampling 
efficiency much better than Markov Chains



Simulation-Based Inference:  
Approximate Bayesian MC
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Prior Variables
θ

Status 
Machine 

Parameterised 
by Latent 

Variables Z

Simulated 
Observations 

X

Z ∼ P(Z |θ)

θ ∼ P(θ)

X ∼ P(X |Z, θ)

(Cranmer et al 2019)



Simulation-Based Inference:  
Approximate Bayesian MC
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Prior Variables
θ

Status 
Machine 
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by Latent 

Variables Z
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Observations 

X

Z ∼ P(Z |θ)

θ ∼ P(θ)

X ∼ P(X |Z, θ)

(Cranmer et al 2019)



Simulation-Based Inference:  
Approximate Bayesian MC
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Prior Variables
θ

Status 
Machine 

Parameterised 
by Latent 

Variables Z

Simulated 
Observations 

X

Z ∼ P(Z |θ)

θ ∼ P(θ)

X ∼ P(X |Z, θ)

(Cranmer et al 2019)



Simulation-Based Inference:  
Approximate Bayesian MC
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(Cranmer et al 2019)



Simulation-Based Inference:  
Amortization
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(Gershman et al 2014)

ObservationSamplePopulation



Simulation-Based Inference:  
Amortisation Techniques
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(Cranmer et al 2019)



Simulation-Based Inference: 
Neural Network Approximations
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Prior Variables
θ

Status 
Machine 

Parameterised 
by Latent 

Variables Z

Simulated 
Observations 

X

Z ∼ P(Z |θ)

θ ∼ P(θ)

X ∼ P(X |Z, θ)

P(θ |X) =
P(X |θ)P(θ)

P(X)Posterior

Likelihood Prior

Evidence

: parametersθ X: observations

•  approximated through “Neural Posterior” 
estimators


•  approximated through “Neural Likelihood” 
estimators


•  approximated through the “Neural ratio” 

estimators

P(θ |X)

P(X |θ)

P(X |θ)
P(X)



Simulation-Based Inference: 
Neural Network Approximations Through Stochastic Flows
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P(θ |X) =
P(X |θ)P(θ)

P(X)Posterior

Likelihood Prior

Evidence

: parametersθ X: observations

•  approximated through “Neural Posterior” 
estimators


•  approximated through “Neural Likelihood” 
estimators


•  approximated through the “Neural ratio” 

estimators

P(θ |X)

P(X |θ)

P(X |θ)
P(X)

f(X, θ) = Nμ,Σ(ϕ(X, θ)) |Jϕ(X, θ) |
 the Neural estimator and  the stochastic flowf ϕ



Simulation-Based Inference: 
Automatic Posterior Transformation (Greenberg et al 2019)
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P(θ |X) =
P(X |θ)P(θ)

P(X)Posterior

Likelihood Prior

Evidence

: parametersθ X: observations

•  approximated through 
“Neural posterior” by a flow 
P(θ |X)

QF(x0,ϕ)(θ)

• Loss function:

• Where a proposal posterior is



Simulation-Based Inference: 
Sequential Neural Likelihood (Papamakarios et al 2019)
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P(θ |X) =
P(X |θ)P(θ)

P(X)Posterior

Likelihood Prior

Evidence

: parametersθ X: observations

•  approximated through 
“Neural likelihood” by a flow 
P(X |θ)

Qϕ(X |θ)



Simulation-Based Inference: 
Neural Ratio (Hermans et al 2020)
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P(θ |X) =
P(X |θ)P(θ)

P(X)Posterior

Likelihood Prior

Evidence

: parametersθ X: observations

•  approximated through 
“Neural ratio” by a flow 
P(X |θ)/P(X)

dϕ(X |θ)












