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At a glance

• Last lecture:

Tree-reweighted Message Passing (TRW)

LP relaxation and its dual.

• This lecture:

More on duality theory: primal-dual schema, 
dual decomposition.



Part I
Recap: MRFs and Convex Relaxations



Discrete MRF optimization

• Given:

– Objects     from a graph

– Discrete label set 

• Assign labels (to objects) that minimize MRF energy:

edgesobjects

pairwise potentialunary potential



Discrete MRF optimization

• MRF optimization ubiquitous in computer vision

• segmentation stereo matching
optical flow image restoration
image completion object detection/localization
...

• and beyond

• medical imaging, computer graphics, digital 
communications, physics…

• Extensive research for more than 20 years

• Really powerful formulation



How to handle MRF optimization?

 Unfortunately, discrete MRF optimization is extremely 
hard (a.k.a. NP-hard)

 E.g., highly non-convex energies

MRF pairwise potential

MRF hardness

linear

exact global 
optimum

arbitrary

local optimum

metric

global optimum 
approximation 



How to handle MRF optimization?

 Unfortunately, discrete MRF optimization is extremely 
hard (a.k.a. NP-hard)

 E.g., highly non-convex energies

 So what do we do?

 Is there a principled way of dealing with this problem?

 Well, first of all, we don’t need to panic.
Instead, we have to stay calm and RELAX!

 Actually, this idea of relaxing may not be such a bad 
idea after all…



The relaxation technique

 Very successful technique for dealing with difficult 
optimization problems 

 Practical assumptions:

 Relaxed problem must always be easier to solve

 Relaxed problem must be related to the original one

 It is based on the following simple idea:

 try to approximate your original difficult problem with 
another one (the so called relaxed problem) which is easier 
to solve



The relaxation technique 

true optimal 
solution

optimal solution to 
relaxed problem

feasible set

relaxed 
problem



How do we find easy problems?

 Convex optimization to the rescue

"…in fact, the great watershed in optimization isn't 
between linearity and nonlinearity, but convexity and 
nonconvexity" - R. Tyrrell Rockafellar, in SIAM Review, 1993 

 Two conditions for an optimization problem to 
be convex:

 convex objective function

 convex feasible set



Why is convex optimization easy?

convex 
objective 
function

 Because we can simply let gravity do all the hard 
work for us

 More formally, we can let gradient descent do all 
the hard work for us

gravity 
force



How do we get a convex relaxation?

 By dropping some constraints 
(so that the enlarged feasible set is convex)

 By modifying the objective function 
(so that the new function is convex)

 By combining both of the above



Linear programming (LP) relaxations

• Optimize linear function subject to linear constraints, 
i.e.:

• Very common form of a convex relaxation, because:

• Typically leads to very efficient algorithms
(important due to large scale nature of problems in 
computer vision) 

• Also often leads to combinatorial algorithms 

• Surprisingly good approximation for many problems



MRFs and Linear Programming

• Tight connection between MRF optimization and 
Linear Programming (LP) recently emerged

• Active research topic with a lot of interesting work:

– MRFs and LP-relaxations [Schlesinger] [Boros] 
[Wainwright et al. 05] [Kolmogorov 05] [Weiss et al. 07] 
[Werner 07] [Globerson et al. 07] [Kohli et al. 08]…

– Tighter relaxations/alternative relaxations 
[Sontag et al. 07, 08] [Werner 08] [Kumar et al. 07, 08] 



MRFs and Linear Programming

• E.g., state of the art MRF algorithms are now known 
to be directly related to LP:

– Graph-cut based techniques such as a-expansion:

generalized by primal-dual schema algorithms 
(Komodakis et al. 05, 07)

generalized by TRW methods (Wainwright 03, Kolmogorov 05)
further generalized by Dual-Decomposition (Komodakis 07) 

– Message-passing techniques:

• The above statement is more or less true for almost 
all state-of-the-art MRF techniques



What about MRFs and other 
relaxations?

• Many alternative types of convex relaxations 
(quadratic, SOCP, SDP, etc..)

• But:
– Efficiency for large scale problems?

– Moreover, many of them less powerful than LP
[Kumar et al. 07]

• Beyond convex relaxations: what about non-
convex relaxations? May be covered in the last lecture 
('recent advances').



the fastest
Primal-dual schema

(Komodakis et al. 05, 07)

LP-based methods for MAP 
estimation can be…

extremely general
Dual decomposition

(Komodakis et al. 07)

very accurate
Cycle-repairing 

(beyond loose LPs)

NOTE: each green box may be linked to many

Outline
Key ingredient: duality 
theory



Part II
Primal-dual schema

FastPD algorithm



The primal-dual schema
 Highly successful technique for exact algorithms. Yielded 

exact algorithms for cornerstone combinatorial problems:

matching network flow

minimum spanning tree minimum branching

shortest path ...

 Soon realized that it’s also an extremely powerful tool for 
deriving approximation algorithms [Vazirani]:

set cover steiner tree

steiner network feedback vertex set

scheduling ...



The primal-dual schema

 Conjecture: 

Any approximation algorithm can be 
derived using the primal-dual schema

(has not been disproved yet)



The primal-dual schema

▪ Say we seek an optimal solution x* to the following 
integer program (this is our primal problem): 

(NP-hard problem)

▪ To find an approximate solution, we first relax the 
integrality constraints to get a primal & a dual linear 
program: 

primal LP: dual LP:



The primal-dual schema
 Goal: find integral-primal solution x, feasible dual solution y 

such that their primal-dual costs are “close enough”, e.g., 

T
b y

T
c x

primal cost of 
solution x

dual cost of 
solution y

*T
c x

cost of optimal 
integral solution x*

*f
T

T

c x

b y

*

*f
T

T

c x

c x

Then x is an f*-approximation to optimal solution x*



The primal-dual schema

1T
b y

1T
c x

sequence of dual costs sequence of primal costs

2T
b y

… kT
b y

*T
c x unknown optimum

2T
c x

…kT
c x

k
*

k
f

T

T

c x

b y

 The primal-dual schema works iteratively

 Global effects, through local improvements!

 Instead of working directly with costs (usually not easy), 
use RELAXED complementary slackness conditions (easier)

 Different relaxations of complementary slackness
Different approximation algorithms!!!



Complementary slackness

Complementary slackness conditions:

Theorem. If x and y are primal and dual feasible and 
satisfy the complementary slackness condition then
they are both optimal.

primal LP: dual LP:



Relaxed complementary slackness

Exact CS:

Relaxed CS:

implies 'exact' complemetary slackness (why?)

Theorem. If x, y primal/dual feasible and satisfy the 
relaxed CS condition then x is an f-approximation of the 
optimal integral solution, where f = max_j f_j.

primal LP: dual LP:



Complementary slackness and 
the primal-dual schema
Theorem (previous slide). If x, y primal/dual feasible
and satisfy the relaxed CS condition then x is an f-
approximation of the optimal integral solution, where f = 
max_j f_j.

Goal of the primal dual schema: find a pair (x,y) that
satisfies:

- Primal feasibility

- Dual feasibility

- (Relaxed) complementary slackness conditions.



(only one label assigned per vertex)

enforce consistency between     
variables xp,a, xq,b and variable xpq,ab

Relaxed complementary slackness for 
MRFs: example

Binary
variables

xp,a=1 label a is assigned to node p

xpq,ab=1 labels a, b are assigned to nodes p, q

(Reminder) LP relaxation for MRFs:



Relaxed complementary slackness for 
MRFs: example
Special case:

Primal (integer) LP Dual LP

Complementary slackness conditions

Homework: check this
slide yourself



 Regarding the PD schema for MRFs, it turns out that:

each update of 
primal and dual 

variables

solving max-flow in 
appropriately 

constructed graph

 Max-flow graph defined from current primal-dual pair (xk,yk) 
 (xk,yk) defines connectivity of max-flow graph
 (xk,yk) defines capacities of max-flow graph

 Max-flow graph is thus continuously updated

 Resulting flows tell us how to update both:
 the dual variables, as well as
 the primal variables

for each iteration of 
primal-dual schema

FastPD: primal-dual schema for MRFs



 Very general framework. Different PD-algorithms by 
RELAXING complementary slackness conditions differently.

 Theorem: All derived PD-algorithms shown to satisfy 
certain relaxed complementary slackness conditions

 Worst-case optimality properties are thus guaranteed

 E.g., simply by using a particular relaxation of complementary 
slackness conditions (and assuming Vpq(·,·) is a metric) 
THEN resulting algorithm shown equivalent to a-expansion!
[Boykov,Veksler,Zabih] 

 PD-algorithms for non-metric potentials Vpq(·,·) as well

FastPD: primal-dual schema for MRFs



Per-instance optimality guarantees
 Primal-dual algorithms can always tell you (for free) how 

well they performed for a particular instance

2T
b y

*T
c x

unknown optimum

2T
c x1T
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c x… kT
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per-instance approx. factor

per-instance lower bound 
(per-instance certificate)

per-instance upper bound 



Computational efficiency (static MRFs)

 MRF algorithm only in the primal domain (e.g., a-expansion)

primalk primalk-1 primal1
…

primal costs

dual1

fixed dual cost
gapk

STILL BIG Many augmenting paths per max-flow

Theorem: primal-dual gap = upper-bound on #augmenting paths
(i.e., primal-dual gap indicative of time per max-flow)

dualkdual1 dualk-1
…

dual costs
gapk

primalk primalk-1 primal1
…

primal costs

SMALL Few augmenting paths per max-flow

 MRF algorithm in the primal-dual domain (Fast-PD)



Computational efficiency (static MRFs)

dramatic decrease

always very high

 Incremental construction of max-flow graphs
(recall that max-flow graph changes per iteration)

Possible because we keep both primal and dual information

 Principled way for doing this construction via the primal-dual 
framework



noisy image denoised image



Computational efficiency (static MRFs)
penguin Tsukuba SRI-tree

almost constant

dramatic decrease



Computational efficiency (dynamic MRFs)
 Fast-PD can speed up dynamic MRFs [Kohli,Torr] as well 

(demonstrates the power and generality of this framework)

gap

primalxdualy

SMALL

primalx

gap

dualy

SMALL
few path augmentations

primalx

SMALL

gap

dual1

fixed dual cost

primalx

gap LARGE
many path augmentations

 Principled (and simple) way to update dual variables when 
switching between different MRFs

Fast-PD algorithm

primal-based
algorithm



Computational efficiency (dynamic MRFs)
 Essentially, Fast-PD works 

along 2 different “axes”

 reduces augmentations 
across different iterations
of the same MRF

 reduces augmentations 
across different MRFs

 Handles general 
(multi-label) 
dynamic MRFs

 Time per frame 
for SRI-tree 
stereo sequence



Drop: Deformable Registration using 
Discrete Optimization [Glocker et al. 07, 08]

 Easy to use GUI

 Main focus on medical imaging

 2D-2D registration

 3D-3D registration

 Publicly available:
http://campar.in.tum.de/Main/Drop



primal-dual 
framework

Handles wide 
class of MRFs

Approximately
optimal 

solutions

Theoretical 
guarantees AND 

tight certificates
per instance

Significant speed-up
for static MRFs

Significant speed-up
for dynamic MRFs

- New theorems
- New insights into

existing techniques
- New view on MRFs



Part III
Dual Decomposition



MRF optimization via dual-decomposition

 Very general framework to address discrete MRF-based 
optimization [Komodakis et al. 07]

 Reduces MRF optimization to a simple projected subgradient
method 

 Combines solutions from sub-problems in a principled and 
optimal manner

 theoretical setting rests on the very powerful technique of 
Dual Decomposition

 Applies to a wide variety of cases



 Decomposition into subproblems (slaves)

 Coordination of slaves by a master process

original 
problem

master

slave 1 slave N…

decomposition
coordinating 

messages

 Proceeds in the dual domain

Dual-decomposition



Dual-decomposition

Let's get the idea from a toy example
(Derivation on blackboard, no slides yet, sorry. 

Don't forget to take notes.)



So, who are the slaves?

 Slaves can be MRFs corresponding to subgraphs of the 
original MRF graph

 To each graph T from a set of subgraphs , we can associate a 
slave MRF with parameters (i.e., potentials)      

 subgraphs must cover the original graph

 sum of potentials of slave MRFs must reproduce original 
potentials:

(Here                         denote all trees in     containing 
respectively p and pq)      

 Note that if, e.g., slave MRFs are tree-structured, then these 
are easy problems (solvable via max-product)



And who is the master?

 Master can be shown to globally optimize a relaxation

 Dual relaxation

 E.g., if all slave MRFs are tree-structured then:

master optimizes LP relaxation described earlier



“What is it that you seek, Master?...” 

master talks to slaves slaves respond to master

master

…T1 T2 Tn

slave MRFs

1T 2T
nT

master

…T1 T2 Tn

slave MRFs

1T
x 2T

x
nT

x

 Based on all collected minimizers, master readjusts the parameters 
of each slave MRF:



“What is it that you seek, Master?...”

 Master updates the parameters of the slave-MRFs 
by “averaging” the solutions returned by the slaves.

 Essentially, he tries to achieve consensus among all 
slave-MRFs

 This means that minimizers should agree with each other, 
i.e., assign same labels to common nodes

 For instance, if a certain node is already assigned the same 
label by all minimizers, the master does not touch the MRF 
potentials of that node.



“What is it that you seek, Master?...” 

master talks to slaves slaves respond to master

 Think of               as amount of resources consumed by slave-MRFs

 Think of             as corresponding prices

 Master naturally adjusts prices as follows:

 prices for overutilized resources are increased

 prices for underutilized resources are decreased

Economic interpretation:

master

…T1 T2 Tn

slave MRFs

1T 2T
nT

master

…T1 T2 Tn

slave MRFs

1T
x 2T

x
nT

x

pricing stage resource allocation stage

 Repeated until the market clears



MRF optimization via dual-decomposition

 Extremely general and flexible framework

 Generalizes and extends many state of the art techniques

 E.g., if slaves MRFs are chosen to be trees then generalizes 
TRW methods [Wainwright et al. 03, Kolmogorov 05]

 Resulting algorithms have stronger theoretical properties

 But can be applied to many other cases

 Sub-problems need to satisfy very mild conditions

 Exactly same framework still applies

 E.g., algorithms for tighter relaxations



submodular 
edge

non-submodular 
edge

submodular  MRF

tree-structured  MRF

MRF optimization via dual-decomposition



submodular 
edge

non-submodular 
edge

loopy MRF
(with small 
tree width)

submodular  MRF

tree-structured  MRF

MRF optimization via dual-decomposition



More powerful
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MRF optimization via dual-decomposition



Results

lower bounds (dual costs) and 
MRF energies (primal costs) 

estimated disparity for 
Tsukuba stereo pair

lower bounds (dual costs) and 
MRF energies (primal costs) 

estimated disparity for 
Map stereo pair



Results

lower bounds (dual costs) and 
MRF energies (primal costs) 

estimated disparity for 
SRI stereo pair

lower bounds (dual costs) and 
MRF energies (primal costs) 

estimated optical flow 
for Yosemite sequence



Results

a simple synthetic example illustrating that TRW methods are not able
to maximize the dual lower bound, whereas DD-MRF can.

lower bounds (dual costs) and MRF energies 
(primal costs) for binary segmenation


