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Final Exam: “Discrete Inference and Learning”
22 décembre 2017

durée : 3h00

Documents autorisés: transparents / notes / slides du cours.
Authorized documents: Notes / slides from the course.

Ordinateur non-connecté autorisé pour accéder les transparents du cours déjà téléchargés.
Laptops / Computers not connected to the network are allowed to access the course slides
already downloaded.

Calculatrice et téléphone portable non autorisés.
Calculators and mobile phones are not allowed.

Conseil: Veuillez lire toutes les 5 questions avant de répondre.
Tip: Read all the 5 questions before you begin to answer.

Part 1

[Question 1.] (6 points) Inference algorithms
Consider an inference problem, where the goal is to minimize an energy function of the following
form. It is defined on N discrete variables Xi taking corresponding labels xi, and with pairwise
neighborhoods denoted by the set of edges E .

E(x) =
N∑
i=1

Ei(xi) +
∑

(i,j)∈E

Eij(xi, xj).

(1 points) List the inference algorithms applicable for solving this generic energy function.

Let us now restrict this energy function to further study relevant inference algorithms.

(1.5 points) Consider a binary labelling problem, where xi can take one of two labels, for
example, xi ∈ {0, 1}. In this scenario, briefly describe the graph cut inference algorithm. Are
there any conditions on the energy function for using graph cut? Explain if your answer is yes
or no.

(1.5 points) Now, let xi take one of multiple labels, i.e., xi ∈ {0, 1, . . . , n−1}. Can the two-label
graph cut algorithm be adapted to this multi-label case? Explain if your answer is yes or no.

(1 points) For the multi-label case, describe two message-passing inference algorithms briefly.

(1 point) Compare the two message-passing algorithms and explain which one is better.

[Question 2.] (5 points) Parameter learning
Let us assume that an energy function E(x) is parameterized with w. We can learn these
parameters by minimizing a regularized risk function given by:

min
w

R(w) +

K∑
k=1

LG(xk, zk; w),
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where R is a regularization function, such as the `2 norm of w, and LG is a loss function
minimizing the “difference” between the estimated labels xk and the ground truth labels zk for
every training sample k.

(2 points) Changing the loss function determines the type of learning. Define the loss function
LG for max-margin and maximum-likelihood learning methods.

(2 points) Discuss the advantages and disadvantages of max-margin and maximum-likelihood
learning methods by comparing them.

(1 point) Solving the parameter learning problem requires efficient inference. Discuss if this
statement is true or false.

Part 2

[Question 3.] (6 points) Dual decomposition

This question will help you to understand dual decomposition so that you can implement it by
yourself.

Recall that the MRF energy over a graph G = (V, E) is given by

E(x, θθθ) =
∑
i∈V

∑
l∈L

θi(l)xi(l) +
∑
ij∈E

∑
l∈L

∑
l′∈L

θij(l, l
′)xij(l, l

′), (1)

where L is the set of labels, {θi(·)}i∈V and {θij(·, ·)}ij∈E are respectively the unary and pairwise

potential functions, xi(l) and xij(l, l
′) are binary indicator functions defined by:

xi(l) = 1⇔ label l is assigned to node i, (2)

xij(l, l
′) = 1⇔ labels (l, l′) are assigned to edge ij. (3)

The vectors x and θθθ are the concatenation of all individual values of indicator functions and
potential functions, respectively.

It is straightforward to see that the energy (1) can be written as θθθ ·x, the dot product between θθθ
and x (in this question we use the dot product notation instead of the transpose θθθ>x for clarity
purpose). The MRF optimization problem can then be reformulated as:

min θθθ · x s.t. x ∈ X̄G , (4)

where X̄G is called the marginal polytope, defined by

X̄G =


x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
l∈L

xi(l) = 1, ∀i ∈ V,∑
l′∈L

xij(l, l
′) = xi(l), ∀ij ∈ E , l ∈ L,∑

l∈L
xij(l, l

′) = xj(l
′), ∀ij ∈ E , l′ ∈ L,

xi(l) ∈ {0, 1}, xij(l, l′) ∈ {0, 1} ∀ij ∈ E , l ∈ L, l′ ∈ L.


. (5)

If we replace the constraints xi(l) ∈ {0, 1}, xij(l, l′) ∈ {0, 1} in the above by xi(l) ≥ 0, xij(l, l
′) ≥

0, we obtain a new set XG , called the local polytope. Minimizing the MRF energy over XG is
known as the standard LP relaxation:

min θθθ · x s.t. x ∈ XG . (6)
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Now let us consider the graph G in Figure 1a and derive a dual decomposition solution based
on the the graphs G1 and G2 in Figures 1b and 1c.

(a) G = (V, E) (b) G1 = (V1, E1) (c) G2 = (V2, E2)

Figure 1: We consider the decomposition of G = (V, E) into G1 = (V1, E1) and G2 = (V2, E2).

Note that by definition (5), the dimensions of the vectors in XG and XG1 (or XG2) are different
because G and G1 (or G2) do not have the same number of edges. For ease of presentation, we
can assume that the dimensions are the same (by adding variables to the missing edges without
adding constraints on them).

(a) (0.5 points) Show that XG = XG1 ∩ XG2 .

(b) (1 point) Show that the corresponding MRF standard LP relaxation can be rewritten as

min θθθ1 · x + θθθ2 · x
s.t. x ∈ XG1 , x ∈ XG2 ,

(7)

with suitably chosen θθθ1 and θθθ2, which can be seen as potentials corresponding to G1 and G2

(give explicit relations of the node/edge potentials between θθθ1, θθθ2 and θθθ).

(c) (1.5 points) Using two auxiliary variables x1 and x2, prove that a dual function for (7) is

g(λλλ1,λλλ2) = min
x1∈XG1

(θθθ1 + λλλ1) · x1 + min
x2∈XG2

(θθθ2 + λλλ2) · x2 + min
x
−(λλλ1 + λλλ2) · x. (8)

Explain in a few lines how to solve each of the above three minimization subproblems.

(d) (0.5 points) Show that the corresponding dual problem is equivalent to minλλλ∈Λ f(λλλ) where
f(λλλ) = −g(λλλ1,λλλ2) and Λ =

{
λλλ = (λλλ1,λλλ2) | λλλ1 + λλλ2 = 0

}
.

(e) (1 point) Denote g1(λλλ1) = minx1∈XG1
(θθθ1 +λλλ1) ·x1 and let x1(λλλ1) denote the optimal solution

of this minimization subproblem. Prove that −x1(λλλ1) is a subgradient of −g1 at λλλ1. Deduce
a subgradient of f at λλλ. Reminder: s is a subgradient of h at u if and only if h(v) ≥
h(u) + s · (v − u) ∀v.

(f) (Bonus, 0.5 points) The projection of a vector λλλ onto the set Λ is the closest point of
Λ to λλλ, defined by ProjΛ(λλλ) := argminλλλ′∈Λ ‖λλλ′ − λλλ‖. Prove that ProjΛ(λλλ) = λλλ∗ where

λλλ1
∗ = λλλ1 − λλλ1+λλλ2

2 and λλλ2
∗ = λλλ2 − λλλ1+λλλ2

2 .

(g) (1.5 points) For minimizing the non-differentiable convex function f(λλλ) over the closed con-
vex set Λ, the projected subgradient method uses the iteration λλλ(k+1) = ProjΛ

(
λλλ(k) − α(k)s(k)

)
,

where s(k) is a subgradient of f at λλλ(k), and α(k) > 0 is the kth step-size (that must follow
some rules to guarantee the convergence). Based on the above elements, describe the dual
decomposition algorithm for solving the standard LP relaxation of the MRF corresponding
to the graph G in Figure 1.
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Part 3

[Question 4.] (4 points) Network Optimization
The Texago Corporation has four oil fields, four refineries, and four distribution centers. A major
strike involving the transportation industries now has sharply curtailed Texago’s capacity to
ship oil from the oil fields to the refineries and to ship petroleum products from the refineries to
the distribution centers. Using units of thousands of barrels of crude oil (and its equivalent in
refined products), the following tables show the maximum number of units that can be shipped
per day from each oil field to each refinery, and from each refinery to each distribution center.

The Texago management now wants to determine a plan for how many units to ship from each
oil field to each refinery and from each refinery to each distribution center that will maximize
the total number of units reaching the distribution centers.

(2 points.) Draw the distribution network, formulate and solve maximum-flow problem to
determine a plan for the Texago management.

(2 points.) Is the algorithm you use guaranteed or not to terminate in a finite number of
iterations when it is applied to a max-flow graph whose edge capacities are all non-negative
integers? Prove your statement.

[Question 5.] (5 points) Learning
You are given a dataset of 360 aerial RGB images of spatial dimensions 5000 × 5000, acquired
over cities and villages in different parts of the world. Half of these images are labeled in
two ways: (1) A label is given for the whole image to indicate if it is urban or rural area.
(2) A pixelwise labeling of each image assigns every pixel to one of two classes: building or
non-building. Examples of images and labelings are given below.

First, we consider categorization problem, i.e. we want to learn assigning urban/rural labels for
new images.

(a) (1.5 points) Which classification method you would use for this task? Propose a classification
scheme. Explain what would be the discriminative features and which optimizer would be used
for the proposed classification algorithm.
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urban urban rural rural

Now we consider dense labeling problem, where we want to classify every pixel of new images
to building/non-building class.

(b) (1 point) Explain advantages and disadvantages of using random forest or convolutional
neural network-based classifier for this task.

(c) (1 point) Propose a feature selection strategy for random forest classifier.

(d) (1.5 points) Propose a CNN architecture for this dense labeling task. Explain which loss
function and optimization algorithm can be well suited for this network.
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