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Figure 1. Images generated with models trained on COCO-Stuff. We compare our approach to state-of-the-art methods OASIS, SDM, and
PITI, along with inference times to generate a single image. Our approach combines high-quality samples with low-latency sampling.

Abstract
Semantic image synthesis, i.e., generating images from

user-provided semantic label maps, is an important condi-

tional image generation task as it allows to control both the

content as well as the spatial layout of generated images.

Although diffusion models have pushed the state of the art

in generative image modeling, the iterative nature of their

inference process makes them computationally demanding.

Other approaches such as GANs are more efficient as they

only need a single feed-forward pass for generation, but the

image quality tends to suffer when modeling large and di-

verse datasets. In this work, we propose a new class of GAN

discriminators for semantic image synthesis that generates

highly realistic images by exploiting feature backbones pre-

trained for tasks such as image classification. We also intro-

duce a new generator architecture with better context mod-

eling and using cross-attention to inject noise into latent

variables, leading to more diverse generated images. Our

model, which we dub DP-SIMS, achieves state-of-the-art re-

sults in terms of image quality and consistency with the in-

put label maps on ADE-20K, COCO-Stuff, and Cityscapes,

surpassing recent diffusion models while requiring two or-

ders of magnitude less compute for inference.

1. Introduction

Conditional image synthesis aims to generate images based
on information such as text, categories, sketches, label
maps, etc. While text-based generation has seen impressive
advances in recent years with diffusion models [40, 48], it
lacks precise control over the location and the boundaries of
objects, which are important properties for creative content
generation tasks like photo editing, inpainting, and for data
augmentation in discriminative learning [1, 4, 18, 67]. Con-
sequently, in this work we focus on semantic image syn-
thesis [24, 43, 52, 58–60], where the goal is to produce
an image, given a segmentation map, with every pixel as-
signed to a category, as input. Due to the one-to-many na-
ture of the mapping, prior works have tackled this problem
in a conditional GAN [17] framework by exploring different
conditioning mechanisms in GANs to do stochastic gener-
ations that correspond to the input label map [24, 43, 59].
Others developed conditional discriminator models, which
avoid image-to-image reconstruction losses that compro-
mise diversity in generated images [52]. Diffusion mod-
els [58, 60] have also been investigated for this problem.
SDM [60] adds spatially adaptive normalization layers for
conditioning, while PITI [58] replaces the text encoder of



a pre-trained text-to-image diffusion model. In compari-
son to GANs, diffusion models often result in improved im-
age quality, but suffer from lower consistency with the input
segmentation maps, and are slower during inference due to
the iterative sampling process [7].

To improve the image quality and consistency of GAN-
based approaches, we explore the use of pre-trained image
backbones in discriminators for semantic image synthesis.
Although leveraging pre-trained image models is common
in many other vision tasks, such as classification, segmen-
tation, or detection, and more recently for class-conditional
GANs [51], to our knowledge this has not been explored
for semantic image synthesis. To this end, we develop a
UNet-like encoder-decoder architecture where the encoder
is a fixed pre-trained image backbone, which leverages the
multi-scale feature representations embedded therein, and
the decoder is a convolutional residual network. We also
propose a novel generator architecture, building on the dual-
pyramid modulation approach [33] with an improved label
map encoding through attention mechanisms for better di-
versity and global coherence among the images generated.
Finally, we add contrastive and diversity losses to further
improve the quality and diversity of generated images.

We validate our contributions with experiments on the
ADE-20K, COCO-Stuff, and Cityscapes datasets. Our
model, termed DP-SIMS for “Discriminator Pre-training for
Semantic IMage Synthesis”, achieves state-of-the-art per-
formance in terms of image quality (measured by FID) and
consistency with the input segmentation masks (measured
by mIoU) across all three datasets. Our results not only sur-
pass recent diffusion models on both metrics, but also come
with two orders of magnitude faster inference.
In summary, our main contributions are the following:
• We develop an encoder-decoder discriminator that lever-

ages feature representations from pre-trained networks.
• We propose a generator architecture using attention

mechanisms for noise injection and context modeling.
• We outperform state-of-the-art GAN and diffusion-based

methods in image quality, input consistency, and speed.

2. Related work

Generative image modeling. Several frameworks have
been explored in deep generative modeling, including
GANs [17, 22, 24, 25, 28, 43, 52], VAEs [30, 46, 57],
flow-based models [14, 15, 29] and diffusion-based mod-
els [13, 21, 48, 58, 60]. GANs consist of generator and
discriminator networks which partake in a mini-max game
that results in the generator learning to model the target
data distribution. GANs realized a leap in sample qual-
ity, due to the mode-seeking rather than mode-covering na-
ture of their objective function [37, 41]. More recently,
breakthrough results in image quality have been obtained

using text-conditioned diffusion models trained on large-
scale text-image datasets [2, 16, 40, 45, 48]. The relatively
low sampling speed of diffusion models has triggered re-
search on scaling GANs to training on large-scale datasets
to achieve competitive image quality while being orders of
magnitude faster to sample [25].
Semantic image synthesis. Early approaches for semantic
image synthesis leveraged cycle-consistency between gen-
erated images and conditioning masks [24, 59] and spatially
adaptive normalization (SPADE) layers [43]. These ap-
proaches combined adversarial losses with image-to-image
feature-space reconstruction losses to enforce image qual-
ity as well as consistency with the input mask [66]. OA-
SIS [52] uses a UNet discriminator model which labels pix-
els in real and generated images with semantic classes and
an additional “fake” class, which overcomes the need for
feature-space losses that inherently limit sample diversity,
while also improving consistency with the input segmen-
tation maps. Further improvements have been made by
adopting losses to learn image details at varying scales [33],
by exploiting intermediate representations such as edges to
guide the generation process [56], or through multi-modal
approaches which leverage data from different modalities
like text, sketches and segmentations [22].

Several works have explored diffusion models for se-
mantic image synthesis. SPADE layers were incorporated
in the denoising network of a diffusion model in SDM [60]
to align the generated images with semantic input maps.
PITI [58] replaced the text-encoder of pre-trained text-to-
image diffusion models, with a label map encoder, and fine-
tuned the resulting model. FLIS [62] propose a rectified
cross-attention module which integrates unseen semantic
masks into the diffusion process of large-scale text-to-image
pre-trained diffusion models. In our work, rather than re-
lying on generative pre-training as in PITI and FLIS, we
leverage discriminative pre-training.

Another line of work considers generating images from
segmentation maps with free-text annotations [3, 12, 62].
These diffusion approaches, however, exhibit relatively
poor consistency with the input label maps while also be-
ing slower to sample from than GAN-based models.
Pre-trained backbones in GANs. Pre-trained feature rep-
resentations have been explored in various ways in GAN
training. When the model is conditioned on detailed inputs,
such as sketches or segmentation maps, pre-trained back-
bones are used to define a reconstruction loss between the
generated and training images [66]. Another line of work
leverages these backbones as fixed encoders in adversar-
ial discriminators [47, 51]. Naively using a pre-trained en-
coder with a fixed decoder yields suboptimal results, thus
the projected GANs model [51] uses a feature conditioning
strategy based on random projections to make the adversar-
ial game more balanced. While this approach is successful
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Figure 2. Architecture of our discriminator model. The encoder consists of a pre-trained feature backbone F✓ (left), residual blocks at
full-image resolution (top), and trained feature decoder that aggregates the multi-scale features from the frozen backbone (right).

with some backbones, the method worked best with small
pre-trained models such as EfficientNets [55], while larger
models resulted in lower performance. A related line of
work [31] uses an ensemble of multiple pre-trained back-
bones to obtain a set of discriminators from which a subset
is selected at every step for computing the most informa-
tive gradients. This produced impressive results but has the
following significant overheads which make it inefficient:
(i) all the discriminators and their associated optimizers are
stored in memory, (ii) there is a pre-inference step to quan-
tify the suitability of each discriminator for any given batch,
and (iii) the main discriminator is trained from scratch. Our
work is closely related to projected GANs, but to our knowl-
edge the first one to leverage pre-trained discriminative fea-
ture networks for semantic image synthesis.
Attention in GANs. While most of the popular GAN
frameworks, such as the StyleGAN family, relied exclu-
sively on convolutions [26–28], some other works explored
the use of attention in GANs to introduce a non-local
parametrization that operates beyond the receptive field of
the convolutions in the form of self-attention [5, 23, 25, 32,
65], as well as cross-attention to incorporate information
from different modalities (text-to-image). To the best of our
knowledge, our work is the first to explore cross-attention
layers in semantic image synthesis models.

3. Method
Semantic image synthesis aims to produce realistic RGB
images g 2 RW⇥H⇥3 that are consistent with an input la-
bel map t 2 RW⇥H⇥C , where C is the number of semantic
classes and W ⇥H is the spatial resolution. A one-to-many
mapping is ensured by conditioning on a random noise vec-
tor z ⇠ N (0, I) of dimension dz .

In this section, we present our GAN-based approach,
starting with our method to leverage pre-trained feature
backbones in the discriminator (Sec. 3.1). We then describe

our noise injection and label map modulation mechanisms
for the generator (Sec. 3.2), and detail the losses we use to
train our models (Sec. 3.3).

3.1. Pre-trained discriminator backbones

Our discriminator is an encoder-decoder model where the
decoder is made of residual blocks with skip connections
similar to [49, 52], while the encoder is a fixed and pre-
trained feature backbone network followed by a feature con-
ditioning module. The discriminator is trained to classify
pixels as belonging to their semantic category or an addi-
tional “fake” class for synthetic images.

Let F✓ be a pre-trained feature backbone with parame-
ters ✓. We use this backbone, frozen, as part of the “en-
coder” in the UNet discriminator. Let Fl 2 RCl⇥Wl⇥Hl

denote the features extracted by the backbone at levels
l = 1, . . . , L, which generally have different spatial reso-
lutions Wl ⇥ Hl and number of channels Cl. These fea-
tures are then processed by the UNet “decoder”, which is
used to predict per-pixel labels spanning the semantic cate-
gories present in the input label map, as well as the “fake”
label. Additionally, to exploit high-frequency details in the
image, we add a fully trainable path at the full-image reso-
lution with two relatively shallow residual blocks. The full
discriminator architecture is illustrated in Fig. 2.

Feature conditioning. An important problem with us-
ing pre-trained backbones is feature conditioning. Typical
backbones are ill-conditioned, meaning that some features
are much more prominent than others. This makes it diffi-
cult to fully exploit the learned feature representation of the
backbone as strong features overwhelm the discriminator’s
decoder and result in exploring only certain regions in the
feature representation of the encoder. Previously, [51] tried
to alleviate this problem by applying cross-channel mix-
ing (CCM) and cross-scale mixing (CSM) to the features,
while [31] average the signals from multiple discriminators
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Figure 3. Our generator architecture consist of two compo-
nents. (i) A conditional image generation network (top) that
takes a low-resolution label map as input and produces the full-
resolution output image. (ii) A semantic map encoding network
(bottom) that takes the full resolution label map as input and pro-
duces multi-scale features that are used to modulate the interme-
diate features of the image generation network.

to obtain a more diluted signal. Empirically, the first ap-
proach underperforms in many of our experiments, as the
strong features still tend to mask out their weaker, yet po-
tentially relevant, counterparts. On the other hand, the sec-
ond introduces a large overhead from the multiple models
being incorporated in training. In our work, we develop a
method that better exploits the feature representation from
the encoder. We achieve this by aiming to make all features
have a comparable contribution to the downstream task.

Consider a feature map Fl 2 RCl⇥Wl⇥Hl at scale l from
the pre-trained backbone. First, we apply a contractive non-
linearity (CNL) such as sigmoid to obtain F

0
l
= �(Fl).

Next, we normalize the features to ensure they have a sim-
ilar contribution in the following layers. We choose batch
normalization, yielding F̃l = (F0

l
� µl)/�l, where µl and

�l are the batch statistics. In this manner, all features are in
a similar range and therefore the decoder does not prioritize
features with a high variance or amplitude.

3.2. Generator architecture
Our generator architecture is based on DP-GAN [33], but
offers two main novelties: a revisited noise injection mech-
anism and improved modeling of long-range dependencies
through self-attention. Following DP-GAN, we use a mask
encoding network to condition the SPADE blocks, rather
than conditioning the SPADE blocks on the label maps
via a single convolution layer, which cannot take into ac-
count longer-range dependencies encoded in the label map.

Each block of the label map encoding pyramid is made of
a single convolution layer with downsampling followed by
batch norm, GELU activation [19], attention modules, and
a pointwise convolution layer. For every scale, we obtain
a modulation map hi, i 2 {1, . . . , L} which, concatenated
with a resized version of the ultimate map hL, will serve as
conditioning for the SPADE block at the same resolution.

While [52] argued that concatenating a spatial noise map
to the label map was enough to induce variety in the gener-
ated images, since the noise is present in all SPADE blocks,
and therefore hard to ignore, the same cannot be said for
the architecture of DP-GAN [33]. The noise is injected
only at the first layer of the label map encoding network,
hence it is much easier to ignore. Consequently, we propose
a different mechanism for noise injection, making use of
cross-attention between the learned representations at dif-
ferent scales and the mapping noise obtained by feeding
z to a three-layer MLP, w = MLP(z) 2 Rnk⇥dw . Let
hi 2 RCi⇥Hi⇥Wi be the downsampled feature represen-
tation from the previous scale. This feature hi first goes
through a convolution to provide an embedding of the label
map, then the spatial dimensions are flattened and projected
via a linear layer to obtain the queries Q 2 RHiWi⇥dq . The
transformed noise vector w is projected via two linear lay-
ers to obtain the keys and the values K,V 2 Rnk⇥dq , then
the cross-attention is computed as:

A = SoftMax
⇣
QK

>
/

p
dq

⌘
V. (1)

The noise injection blocks at spatial resolutions 64⇥ 64
and lower use residual cross-attention block

a(hi,w) = hi + ⌘i ·A(hi,w), (2)

where ⌘i 2 R is a trainable gating parameter initialized at
0. Noise injection is followed by a residual self-attention
block, before having a convolution output the conditioning
at scale i. For higher resolutions where attention modules
are too expensive, we use convolutional blocks only. The
generator architecture is illustrated in Fig. 3.

3.3. Training
We train our models by minimizing a weighted average of
three loss functions which we detail below.
Pixel-wise focal loss. Our main loss is based on a pixel-
wise GAN loss [52], where the discriminator aims to assign
pixels in real images to the corresponding class in the con-
ditioning label map, and those in generated images to an ad-
ditional “fake” class. To improve the performance on rare
classes, we replace the weighted cross-entropy of [52] with
a weighted focal loss [34], while keeping the same weight-
ing scheme as in [52]. Let p(x) 2 [0, 1]H⇥W⇥(C+1) denote
the output class probability map of the discriminator for a
real RGB image x, and p(g) 2 [0, 1]H⇥W⇥(C+1) be the



probability map for a generated image g = G(z, t), where
the label index C +1 is used for the “fake” class. Then, the
discriminator loss is:

LD = �E(x,t)

CX

c=1

↵c

H⇥WX

i=1

ti,c (1� p(x)i,c)
� log p(x)i,c

�E(g,t)

H⇥WX

i=1

(1� p(g)i,C+1)
� log p(g)i,C+1, (3)

where ↵c’s are the class weighting terms and � is a hyper-
parameter of the focal loss. The standard cross-entropy is
recovered for � = 0, and for � > 0 the loss puts more
weight on poorly predicted labels.
The pixel-wise loss for the generator then takes the form:

LG = �E(g,t)

CX

c=1

↵c

H⇥WX

i=1

ti,c (1� p(g)i,c)
� log p(g)i,c.

(4)
Using the focal loss, both the generator and discriminator
put more emphasis on pixels that are incorrectly classified.
These often belong to rare classes which helps to improve
performance for these under-represented classes. To pre-
vent the discriminator output probabilities from saturating
and thus leading to vanishing gradients, we apply one-sided
label smoothing [50] by setting the cross-entropy targets to
1�✏ for the discriminator loss, where ✏ is a hyper-parameter.
Contrastive loss. We define a patch-wise contrastive loss
that encourages the generated images to be globally coher-
ent. Our contrastive framework is based on InfoNCE [42],
which aims to bring matching patch features closer together,
and push them further from non-matching features. Given
a pair (x, t) of image and label map, we generate a corre-
sponding image g = G(z, t), and use Hx and Hg the cor-
responding multi-scale features obtained from a pre-trained
VGG network [53]. For every scale, we sample matching
features z, z+ from the same spatial coordinates in Hg and
Hx respectively. Additionally, we sample N non-matching
features z�

n
at randomly selected coordinates from Hx.

The features are then projected into an embedding space
using a convolution followed by a two-layer MLP to obtain
v,v

+
,v

�
n
2 Rdv before computing the InfoNCE loss as

LNCE(v,v
+
,v

�) = � log

 
e
v>v+

/⌧

ev
>v+/⌧ +

P
N

n=1 e
v>v�

n /⌧

!
,

(5)
where ⌧ is a temperature parameter controlling the sharp-
ness in the response of the loss. We apply the loss at feature
scales 1/4, 1/8, 1/16, and take their sum. This is similar
to the contrastive losses used for image-to-image transla-
tion [44], with the main difference being the feature rep-
resentation from which the loss is calculated. While other
methods reuse the encoder features from their translation

network, we obtain the feature pyramid from a VGG net-
work [53] and process it by a simple module made of a con-
volution block followed by a projection MLP.
Diversity loss. To promote diversity among the generated
images we introduce a loss, similar to [38, 63], that encour-
ages two images generated with the same mask, but differ-
ent latents z, to be sufficiently distinct from each other:

LDiv = max

"
0, ⌧div �

��Gf (z1, t)�G
f (z2, t)

��
1

kz1 � z2k1

#
, (6)

where G
f is the feature output of the generator before the

final convolution. We adopt a cutoff threshold ⌧div on the
loss in order to not overly constrain the generator, and apply
this loss only for similar samples given the same label map.

4. Experiments
We present our experimental setup in Sec. 4.1, followed by
our main results in Sec. 4.2, and ablations in Sec. 4.3.

4.1. Experimental setup

Datasets. We consider three popular datasets to
benchmark semantic image synthesis: COCO-Stuff [6],
Cityscapes [11], ADE-20K [68]. COCO-Stuff provides
118k training images and 5k validation images, labeled
with 183 classes. Cityscapes contains 2,975 training im-
ages along with a validation set of 500 images, and uses 35
labels. ADE-20K holds 26k images with object segmen-
tations across 151 classes. Similar to [43, 59, 60], we use
instance-level annotations when available. For COCO-Stuff
and Cityscapes, we use instance segmentations as in [9], by
creating vertical and horizontal offset maps of every fore-
ground pixel w.r.t. its object center of mass, and concatenate
these to the semantic label maps as input for the model. For
ADE-20K, there are no instance segmentations available.
We generate images at a resolution of 256 ⇥ 256 for ADE-
20K and COCO-Stuff, and 256 ⇥ 512 for Cityscapes. We
blurred faces of people in the datasets before use; see the
supplementary material for more details.
Metrics. We compute FID [20] to assess image quality,
and report the mean intersection-over-union score (mIoU)
to measure the consistency with the input segmentation
maps. For a fair comparison with previous work [33, 43,
52], we used the segmentation models from these works
for inferring label maps of the generated images: Uper-
Net101 [61] for ADE-20K, multi-scale DRN-D-105 [64]
for Cityscapes, and DeepLabV2 [8] for COCO-Stuff. We
refer to the scores obtained with these models as mIoU. In
addition, we infer label masks using Mask2Former [10],
which is more accurate than other segmentation models,
thus yielding a more meaningful comparison to the ground-
truth masks. We denote the resulting scores as mIoUMF. See
the supplementary material for more detail.



COCO ADE20k Cityscapes

FID (#) mIoUMF (") mIoU (") FID (#) mIoUMF (") mIoU (") FID (#) mIoUMF (") mIoU (")

Pix2pixHD [59] 111.5 — 14.6 73.3 — 22.4 104.7 — 52.4
SPADE [43] 22.6 — 37.4 33.9 — 38.5 71.8 — 62.3
OASIS [52] 17.0 52.1 44.1 28.3 53.5 48.8 47.7 72.0 69.3
DP-GAN [33] — — — 26.1 — 52.7 44.1 — 73.6
PoE-GAN [22] 15.8 — — — — — — — —
ECGAN++ [56] 14.9 — 47.9 24.7 — 52.7 42.2 — 73.3

SDM [60] 15.9 40.3 36.8 27.5 51.9 44.0 42.1 72.8 69.1
PITI [58] 15.5 31.2 29.5 — — — — — —
FLIS [62] 14.4 — 40.7 25.0 — 41.9 — — —

DP-SIMS (ours) 13.6 65.2 57.7 22.7 67.8 54.3 38.2 78.5 76.3

Table 1. Comparison of DP-SIMS to state-of-the-art GAN-based (first block) and diffusion-based methods (second block). Results taken
from the original papers. We computed the mIoUMF metric for methods where pre-trained checkpoints or generated images are available.

Backbone Prms. FLOPS Acc@1 FID (#) mIoUMF (")

Swin-B 107 M 15.4G 86.4 29.5 55.4
ResNet-50 44 M 4.1G 76.2 24.6 60.5
EfficientNet-Lite1 3 M 631M 83.4 24.5 63.1
ConvNeXt-B [36] 89 M 15.4G 85.1 23.5 63.5
ConvNeXt-L [36] 198 M 34.4G 85.5 22.7 67.8

Table 2. Comparison of backbone architectures on ADE-20K. We
report the ImageNet-1k top-1 accuracy (Acc@1) for reference.

Implementation details. We counter the strong class im-
balance in the datasets used in our experiments with a sam-
pling scheme favoring rare classes. Let fc be the fraction of
training images where class c appears, then each image is
sampled with a probability proportional to f

�1/2
k

with k the
sparsest class present in the image.

Each of our models is trained on one or two machines
with eight V100 GPUs. We set the total batch size at 64 and
use ADAM optimizer in all our experiments with a learning
rate of 10�3 and momentums �1 = 0,�2 = 0.99. For pre-
trained Swin backbones, we found it necessary to use gra-
dient clipping to stabilize training. Following prior work,
we track an exponential moving average of the generator
weight and set the decay rate to ↵ = 0.9999. For the con-
trastive loss, we set the weighting factor �C = 100, the
temperature ⌧ = 0.3 and select N = 128 negative samples.
We set �GAN = 1 for the GAN loss and �D = 10 for the
diversity loss. For the focal loss, we set � = 2.

4.2. Main results

Comparison to the state of the art. In Tab. 1, we report
the results obtained with our model in comparison to the
state of the art. Our DP-SIMS method (with ConvNext-L
backbone) achieves the best performance across metrics and
datasets. On COCO-Stuff, we improve the FID of 14.4 from
FLIS [62] to 13.6, while improving the mIoUMF of 52.1
from OASIS to 65.2, and mIoU of 47.9 from ECGAN++ to
57.7. For ADE-20K, we observe a similar trend with an im-
provement of 2.0 FID points w.r.t. ECGAN++, an improve-

Pre-training Acc@1 FID (#) mIoUMF (")

Random Init. — 52.9 40.7
IN-1k@224 84.3 22.7 62.8
IN-21k@224 86.6 23.6 64.1
IN-21k@384 87.5 22.7 67.8

Table 3. Influence of discriminator pre-training on the overall per-
formance for ADE-20K using a ConvNext-L backbone.

ment of 14.5 points in mIoUMF w.r.t. OASIS, and improv-
ing mIoU by 1.6 points w.r.t. ECGAN++ and DP-GAN. For
Cityscapes, we obtain improvements of 3.9 FID points w.r.t.
Semantic Diffusion, 5.5 points in mIoUMF, and 3.0 points in
mIoU. See Fig. 1 and Fig. 4 for qualitative comparisons of
model trained on COCO-Stuff and Cityscapes. Please re-
fer to the supplementary material for additional examples,
including ones for ADE-20K.

Encoder architecture. We experiment with different
pre-trained backbone architectures for the discriminator in
Tab. 2. All the encoders were trained for ImageNet-1k clas-
sification. We find that the attention-based Swin architec-
ture [35] has the best ImageNet accuracy, but compared
to convolutional models performs worse as a discrimina-
tor backbone for semantic image synthesis, and tends to
be more unstable, often requiring gradient clipping to con-
verge. For the convolutional models, better classification
accuracy translates to better FID and mIoUMF.

Pre-training dataset. In Tab. 3, we analyze the impact of
pre-training the ConvNext-L architecture in different ways
and training our models on top of these, with everything else
being equal. We consider pre-training on ImageNet-1k (IN-
1k@224) and ImageNet-21k (IN-21k@224) at 224⇥ 224
resolution, and also on ImageNet-21k at 384⇥384 resolu-
tion (IN-21k@384). In terms of mIoUMF, the results are in
line with those observed for different architectures: discrim-
inators trained with larger datasets (IN-21k) and on higher
resolutions perform the best. On the other hand, we find that
for FID, using the standard ImageNet (IN-1k@224) results
in better performance than its bigger IN-21k@224 coun-



Label map OASIS SDM Ours

Figure 4. Qualitative comparison with prior work on the Cityscapes dataset. We show the results of OASIS [52], SDM [60], and our
approach along with the corresponding label map used for generating each image. Note that our method generates more coherent objects
with realistic textures in comparison.

Model Gen. steps Ups. steps �tgen �tups �ttot

PITI 250 27 14.3 3.1 17.4
PITI 27 27 1.5 3.1 4.6
SDM 1000 — 260.0 — 260.0

DP-SIMS — — — — 0.04

Table 4. Comparison of inference time (in seconds) of PITI, SDM
and our GAN-based model. We show the time taken by the gener-
ative (�tgen) and the upsampling (�tups) models in addition to the
total time (�ttot) for these steps.

terpart, and performs as well as IN-21k@384 pre-training.
This is likely due to the use of the same dataset in the In-
ception model [54], which is the base for calculating FID,
thus introducing a bias in the metric.

Inference speed. An important advantage of GAN mod-
els over their diffusion counterparts is their fast inference.
While a GAN only needs one forward pass to generate an
image, a diffusion model requires several iterative denois-
ing steps, resulting in slower inference, which can hamper
the practical usability of the model. In Tab. 4 we report the
inference speed for generating a single 256⇥256 image, av-
eraged over 50 different runs. PITI uses 250 denoising steps
for the generative model at 64⇥ 64 resolution and 27 steps
for the upsampling model by default, while SDM uses 1000
steps at full resolution. We also benchmark using 27 steps
for the PITI generative model. Our generator is two to three

EfficientNet-Lite1 ConvNeXt-L

FID mIoUMF FID mIoUMF

Baseline - no normalization 27.8 58.6 24.4 63.6
CCM + CSM (PG) 28.9 59.1 25.4 66.0
BatchNorm + CCM + CSM 29.4 56.4 24.6 66.4
DP-SIMS w/o sigmoid 24.9 62.7 23.3 65.7
DP-SIMS w/o BatchNorm 26.0 61.6 23.6 64.0
DP-SIMS (ours) 24.5 63.1 22.7 67.8

Table 5. Abla-
tion on feature con-
ditioning shown on
ADE-20K with two
backbones.

orders of magnitude faster than its diffusion counterparts.

4.3. Ablations

Feature Conditioning. We perform an ablation to vali-
date our feature conditioning mechanisms on ADE-20K in
Tab. 5. We compare to: (i) a baseline that does not nor-
malize the backbone features, (ii) the cross-channel and
scale mixing approach of Projected GAN (PG) [51], (iii)
using our BatchNorm layer with cross-channel and scale
mixing, (iv) DP-SIMS without the sigmoid normlization,
(v) DP-SIMS without the BatchNorm layers. For a fair
comparison with [51], these experiments are conducted on
their best reported backbone, EfficientNet-Lite1 [55]. We
also conducted this experiment with a ConvNeXt-L back-
bone. Compared to the baseline, Projected GAN improves
mIoUMF but degrades FID, while our feature conditioning
(last line) improves both metrics for both backbones. More-
over, the ablations show that both the sigmoid and Batch-
Norm contribute, and that adding BatchNorm for Project-
edGAN leads to inferior performance.



FID (#) mIoUMF (")

DP-SIMS 22.7 67.8

Generator architecture

OASIS disc + our gen 29.3 49.0
OASIS gen + our disc 25.6 63.6
Ours w/o self-attention 23.7 65.4
Ours w/o cross-attention 23.6 64.5

Training

Ours w/o label smoothing 23.0 66.3
Ours w/o contrastive loss 25.1 66.0

Table 6. Ab-
lations on the
architectural
design and
training losses,
shown on
ADE-20K with
ConvNext-L
backbone.

⌧ 0.07 0.3 0.7 2.0

FID 25.7 22.7 24.1 26.4
mIoUMF 62.6 67.8 66.3 61.4

Table 7. Influence of
the contrastive loss eval-
uated on ADE-20K.

Cityscapes ADE-20K
FID (#) mIoUMF(") FID (#) mIoUMF(")

Weighted CE 39.8 75.9 23.2 65.5
Focal 39.3 75.0 22.8 64.7
Weighted focal 38.2 78.5 22.7 67.8

Table 8. Comparison of pixel-wise losses on Cityscapes and ADE-
20K with ConvNext-L backbone.

Architectural modifications. In Tab. 6, we perform an ab-
lation on our proposed architectural modifications. Swap-
ping out our generator or discriminator with the ones from
OASIS, suggests that most of the gains are due to our dis-
criminator design. Using the OASIS discriminator instead
of ours deteriorates mIoUMF by 18.8 points and FID by
6.6 points. We also experiment with removing the cross-
attention noise injection mechanism and replacing it with
the usual concatenation instead, as well as leaving out the
self-attention layers. Both of these contribute to the final
performance in a notable manner. Finally, we present an
ablation on label smoothing, which deteriorates FID by 0.3
and mIoUMFby 1.4 points when left out.
Contrastive loss. To assess the importance of the con-
trastive loss, we perform an ablation in the last row of Tab. 6
where we remove it during training. This substantially im-
pacts the results: worsening FID by 2.4 and mIoUMF by
1.8 points. In Tab. 7, we evaluate different values for the
temperature parameter ⌧ , and find an optimal temperature
parameter ⌧C = 0.3, using �c = 100.
Focal loss. In Tab. 8, we consider the impact of the focal
loss by comparing it to the weighted cross-entropy loss, as
used in OASIS, and the effect of class weighting in the focal
loss. We find that for both datasets switching from weighted
cross-entropy to the focal loss improves FID but worsens
mIoUMF. The weighted focal loss, however, improves both
metrics on both datasets.
Diversity. We study the effect of the diversity loss on the
variability of generated images. Following [52], we report
the mean LPIPS distance across 20 synthetic images from

Model 3D noise LPIPS (")

SPADE+ 3 0.16
SPADE+ 7 0.50
OASIS 3 0.35

DP-SIMS 7 0.47

Table 9. Evaluation of the
diversity of images gener-
ated. Results on ADE-20K
for SPADE+ and OASIS are
taken from [52].

Figure 5. Images generated by varying the noise vector with DP-
SIMS trained on COCO-Stuff and using a ConvNext-L backbone.

the same label map, averaged across the validation set, in
Tab. 9. A qualitative example is provided in Fig. 5 showing
a clear variety in the images generated. In comparison with
OASIS, we generate more diverse images, with an LPIPS
score similar to that of SPADE, but with a much higher
quality, as reported in Tab. 1, in terms of FID and mIoUMF.

5. Conclusion

We introduced DP-SIMS that harnesses pre-trained back-
bones in GAN-based semantic image synthesis models. We
achieve this by using them as an encoder in UNet-type dis-
criminators, and introduce a feature conditioning approach
to maximize the effectiveness of pre-trained features. More-
over, we propose a novel generator architecture which uses
cross-attention to inject noise in the image generation pro-
cess, and introduce new loss terms to boost sample diversity
and input consistency. We experimentally validate our ap-
proach and compare it to state-of-the-art prior work based
on GANs as well as diffusion models on three standard
benchmark datasets. Compared to these, we find improved
performance in terms of image quality, sample diversity,
and consistency with the input segmentation maps. Impor-
tantly, with our approach inference is two orders of magni-
tude faster than diffusion-based methods.

In our experiments we found that transformer-based
models, such as Swin, can lead to instability when used as
discriminator backbones. Given their strong performance
for dense prediction tasks, it would be worthwhile to fur-
ther study and mitigate this issue in future work, hopefully
bringing additional improvements.
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Unlocking Pre-trained Image Backbones for Semantic Image Synthesis

Supplementary Material

In Appendix A, we present more details on our exper-
imental setup to ease reproduction of our work. In Ap-
pendix B, we provide additional experimental results to
evaluate our model and compare to prior work.

A. More details on the experimental setup
In Table S1 we provide the links to the datasets and models
used in our work and their licensing.

A.1. Architecture details

Generator. As can be seen in Figure 3 of the main pa-
per, our generator consists of a UNet-like architecture with
two pyramidal paths. The label map encoding takes the in-
put segmentation map, and progressively downsamples it to
produce label-conditioned multi-scale features. These fea-
tures are then used in the image generation path, which pro-
gressively upsamples the signal to eventually produce an
RGB image. The stochasticity of the images generated is
based on conditioning on the noise vector z. We provide a
schematic overview of the noise injection operation in Fig-
ure S1. Notably, we follow [27] and normalize every noise
vector to the unit sphere before feeding it to the generator
z̃ = z

kzk2
. In Table S2, we provide additional information

on the label map encoding and the image generation paths.
In the label map encoding branch, each block is made of

the elements listed in Table S2. Cross-attention and self-
attention are only applied at lower resolutions (64⇥64, and
lower) where we use an embedding dimension that is half
of the original feature dimension. We downscale the feature
maps by using convolution layers with a stride of 2.

In the image synthesis branch, we follow the same ar-
chitecture as OASIS [52] with the only difference being the
SPADE conditioning maps which are given by the label map
encoding path instead of a resized version of the label maps.
We also remove the hyperbolic tangent at the output of the
network as we found it leads to a more stable generator.

For the contrastive learning branch, features obtained
from VGG19 go through three convolutional blocks and
two linear layers for projection. We sample 128 different
patches to obtain negative samples from the image.
Discriminator. We provide additional details of our dis-
criminator architecture in Table S3. The residual blocks
are made of one convolution with kernel size 3 followed
by leaky ReLU, then a pointwise convolution with leaky
ReLU. For the full resolution channel, we set the dimen-
sionality to 128. For the lower resolution channels, we stick
to the same dimensionality as the corresponding encoder

feature. The dimensionality of the final convolution before
predicting the segmentations is set to 256.

We use spectral norm on all convolutional and linear lay-
ers in both the generator and the discriminator.

Feature conditioning. In [51] the authors observe that
when using a fixed feature encoder in the GAN discrimi-
nator, only a subset of features is covered by the projec-
tor. They therefore propose propose to dilute prominent fea-
tures, encouraging the discriminator to utilize all available
information equally across the different scales. We believe
that the reason behind this is that feature encoders trained
for a discriminative task will have different structures than
those trained on generative tasks. For the former, models
tend to capture a subset of key features useful for discrim-
ination, while disregarding other less relevant features. On
the latter however, the model needs an extensive representa-
tion of the different objects it should generate. In practice,
this translates to feature encoders having poor conditioning.
The range of activations differs greatly from one feature to
the other, which leads to bias towards a minority features
that have a high amplitude of activations. A simple way
to resolve this issue is by applying normalization these fea-
tures to have a distribution with zero mean and a unit stan-
dard deviation across the batch.

In some situations, linear scaling of the features might
not be enough to have proper conditioning of the features.
Accordingly, we reduce the dynamic range of the feature
maps before the normalization by using a sigmoid activation
at the feature outputs of the pretrained encoder.

A.2. Computation of the mIoU evaluation metrics

To compute the mIoU metric, we infer segmentation
maps for generated images. We infer segmentation
maps for the generated images using the same net-
works as in OASIS [52]: UperNet101 [61] for ADE-
20K, multi-scale DRN-D-105 [64] for Cityscapes, and
DeepLabV2 [8] for COCO-Stuff. We also measure mIoU
using Mask2Former [10] with Swin-L backbone [35]
(mIoUMF), which yields more accurate segmentations, and
thus a more accurate comparison to the ground-truth masks.

In Table S4 we compare the segmentation accuracy on
the three datasets we used in our experiments. The re-
sults confirm that Mask2Former is more accurate for all
three datasets, in particular on COCO-Stuff, where it boosts
mIoU by more than 19 points w.r.t. DeepLab-v2.



Name Link

ImageNet https://www.image-net.org
COCO-Stuff https://cocodataset.org
Cityscapes https://www.cityscapes-dataset.com
ADE-20K https://groups.csail.mit.edu/vision/datasets/ADE20K/
Detectron2 https://github.com/facebookresearch/detectron2
ConvNext https://github.com/facebookresearch/ConvNeXt
Swin https://github.com/microsoft/Swin-Transformer
EfficientNet https://github.com/lukemelas/EfficientNet-PyTorch
VGG19 https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py
Deeplab-v2 https://github.com/kazuto1011/deeplab-pytorch/
UperNet101 https://github.com/CSAILVision/sceneparsing
MS DRN-D-105 https://github.com/fyu/drn
Mask2Former https://github.com/facebookresearch/Mask2Former
Self-supervised FID [39] https://github.com/stanis-morozov/self-supervised-gan-eval

Name License

ImageNet Terms of access: https://www.image-net.org/download.php
COCO-Stuff https://www.flickr.com/creativecommons
Cityscapes https://www.cityscapes-dataset.com/license
ADE-20K https://groups.csail.mit.edu/vision/datasets/ADE20K/terms/
Detectron2 Apache-2.0 license
R50 BSD
ConvNext MIT License
Swin MIT License
EfficientNet Apache-2.0 license
VGG19 BSD-3-Clause license
UperNet101 BSD-3-Clause license
MS DRN-D-105 BSD-3-Clause license
Deeplab-v2 MIT License
Mask2Former MIT License

Table S1. Links to the assets used in our work and the corresponding licensing information.
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Figure S1. Schematic overview of our noise injection mechanism using cross-attention.

A.3. Influence of face blurring

For Cityscapes we use the release of the dataset with blurred
faces and licence plates, which is available publicly on the
website listed in Table S1. We blurred faces in ADE-20K
and COCO-Stuff.

To assess the impact of blurring, we train OASIS on
blurred images using the original source code from the
authors and compare to their reported results on the non-
blurred data. We report our results in Table S5. Here, and
elsewhere in the paper, we also use the blurred data to com-
pute FID w.r.t. the generated images. We see that blurring
has a negative impact on FID, most notably for COCO-

Stuff (+1.8), and to a lesser extent for ADE-20K (+0.8) and
Cityscapes (+0.3). The mIoUMF scores also degrade on
all the datasets when using blurred data: on COCO-Stuff,
ADE-20K and Cityscapes by 5.0, 3.9, and 0.4 points respec-
tively. Note that in all comparisons to the state of the art,
we report metrics obtained using models trained on blurred
data for our approach, and models trained on non-blurred
data for other approaches. Therefore, the real gains of our
method over OASIS (and probably other methods as well)
are even larger than what is shown in our comparisons in
Table 1 in the main paper.

https://www.image-net.org
https://cocodataset.org
https://www.cityscapes-dataset.com
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/ConvNeXt
https://github.com/microsoft/Swin-Transformer
https://github.com/lukemelas/EfficientNet-PyTorch
https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py
https://github.com/kazuto1011/deeplab-pytorch/
https://github.com/CSAILVision/sceneparsing
https://github.com/fyu/drn
https://github.com/facebookresearch/Mask2Former
https://github.com/stanis-morozov/self-supervised-gan-eval
https://www.image-net.org/download.php
https://www.flickr.com/creativecommons
https://www.cityscapes-dataset.com/license
https://groups.csail.mit.edu/vision/datasets/ADE20K/terms/


Parameter Description

Hyperparameters

z dimension 64
w dimension 256
Batch size 64
Learning rate 10�3

�1 for Adam 0
�2 for Adam 0.99
EMA beta 0.9999

Label map encoding

Pyramid block Conv2d(kernel size=3), BN, GELU, CrossAttention, BN,
GELU, SelfAttention, GELU, BN, Conv2d(kernel size=1)

Self Attention channel divider 2
Cross Attention channel divider 2
Conv block Conv2d(kernel size=3), BN, GELU, Conv2d(kernel size=1)
Block type [Conv, Conv, Conv, Linear, Linear]

Image synthesis branch

Channel base 64
Number of residual blocks 6
Channel depths [1024, 1024, 1024, 512, 256, 128, 64]
Residual block SPADE, Leaky RELU, Conv2d(3)
Pyramid dimensionality 64
Hyperbolic tangent on output No

Contrastive learning branch

Perceptual network VGG19
Contrastive encoding channels [64, 128, 256, 512, 512]
Contrastive embedding dimension 256
Number of patches 128

Table S2. Architecture details of the generator.

Parameter Description

Hyperparameters

Number of multiscale backbone features 4
Full resolution embedding dimension 128
Number of residual blocks 5

Decoder

Residual block Conv2d(kernel size=3), Leaky RELU, Conv2d(kernel size=1), Leaky RELU
Leaky RELU slope 0.2
Penultimate channel dimension 256

Feature conditioning

Conditioning normalization Batch Norm w.o learned affine
Conditioning non-linearity Hyperbolic tangent

Table S3. Architecture details of the discriminator.

ADE-20K Cityscapes COCO-Stuff

UperNet101 42.7 — —
MS DRN-D-105 — 61.3 —
DeepLab-v2 — — 35.3

Mask2Former 45.3 69.9 54.5

Table S4. Segmentation performance in terms of mIoU on real
images using different segmentation models. To match the setting
used in our semantic image synthesis experiments, evaluation im-
ages are downsampled to 256 ⇥ 256 for ADE-20K and COCO,
and to 256⇥ 512 for Cityscapes.

Dataset Model Blurring FID (#) mIoUMF(")

OASIS 7 17.0 52.1
OASIS 3 18.8 47.1COCO-Stuff
DP-SIMS (ours) 3 13.6 65.2
OASIS 7 28.3 53.5
OASIS 3 29.1 49.6ADE-20K
DP-SIMS (ours) 3 22.7 67.8
OASIS 7 47.7 72.0
OASIS 3 48.0 71.6Cityscapes DP-SIMS (ours) 3 38.2 78.5

Table S5. Influence of face blurring on the performance of OASIS.



A.4. Carbon footprint estimation

On COCO-Stuff, it takes approximately 10 days to train our
model using 8 GPUs. On ADE-20K and Cityscapes the
training times are about 6 and 4 days respectively. Given a
thermal design power (TDP) of the V100-32G GPU equal to
250W, a power usage effectiveness (PUE) of 1.1, a carbon
intensity factor of 0.385 kg CO2 per KWh, a time of 240
hours ⇥ 8 GPUs = 1920 GPU hours. The 250⇥ 1.1⇥ 1920
= 528 kWh used to train the model is approximately equiv-
alent to a CO2 footprint of 528 ⇥ 0.385 = 208 kg of CO2

for COCO-Stuff. For ADE-20K this amounts to 124 kg of
CO2, and 83 kg of CO2 for Cityscapes.

B. Additional experimental results
B.1. Frozen vs. finetuned backbones

We experimented with training the feature backbone, rather
than fixing it as in our default setup, and initializing from
scratch or using a pre-trained model. We report the re-
sults on COCO-Stuff in Table S6. All tested alternatives
provide worse performance than our default setting (fixed
pre-trained backbone). When finetuning the backbone it is
better to start from the pre-trained model, and using a fixed
randomly initialized results in the worst performance.

Backbone Initialization FID mIoUMF

Fixed Random 43.3 42.9
Finetuned Random 18.9 52.6
Finetuned IN-21k pre-trained 17.8 60.1
Fixed IN-21k pre-trained 13.6 65.2

Table S6. Performance comparison between fixing and finetuning
the disrciminator encoder.

Moreover, we find that using a fixed pre-trained back-
bone also results in significantly faster convergence com-
pared to the alternatives. In Fig. S2, we report training
progress for models trained on COCO-Stuff with both a
frozen and trainable encoder. We additionally evaluate the
trainable encoder with random vs. ImageNet-21k initializa-
tions. The fixed encoder model converges much faster than
its trainable counterpart. For example, while the frozen
model requires approximately 12 hours to achieve an FID
below 25, the trainable models require more than a week of
training to achieve the same score.

B.2. Quantifying bias towards ImageNet classes

Our discriminator backbones are pre-trained for ImageNet
classification, as is the Inceptionv3 model [54] used in the
computation of the FID metric. Therefore, the question
arises whether our results are influenced by a bias of the
features towards the classes in the ImageNet dataset. To an-
alyze this, we report in Tab. S7 a quantitative comparison

5 55 105 155 205 255 305 355

Iteration (k)

10

20

40

80

160

320

F
ID

Freeze - IN1K

Freeze - Random Init.

Finetune - Random Init.

Finetune - IN-1k

Figure S2. Convergence speed comparison for COCO-Stuff train-
ing with learnable vs. frozen encoder

following the approach outlined in [39], where we com-
pute the Fréchet distance between two Gaussians fitted to
feature representations of the SwAV Resnet50 network that
was pre-trained in a self-supervised manner on ImageNet-
1k. Our models retain state-of-the-art performance with re-
spect to this metric on all the three datasets studied, further
corroborating our results.

Additionally, we further experiment with the influence of
the backbone pre-training in Table S8. Differently from the
main paper where FID with the Inceptionv3 features is stud-
ied, here we find than the IN-21k checkpoint brings about
better performance than its IN-1k counterpart. While the
fine-tuning at high resolution (384 vs 224) also improves
SwAV-FID.

OASIS SDM PITI DP-SIMS

COCO-Stuff 3.09 2.68 2.52 2.14
ADE-20K 4.35 3.85 — 2.84
Cityscapes 4.75 3.94 — 3.71

Table S7. Evaluation of SwAV Resnet50 FID on ADE-20K for
different methods. We use a ConvNext-L backbone for DP-SIMS.

Pre-training Acc@1 FIDSwAV (#)

IN-1k@224 84.3 3.03
IN-21k@224 86.6 2.97
IN-21k@384 87.5 2.84

Table S8. Evaluation of SwAV Resnet50 FID with different pre-
trainings evaluated on ADE-20K.

B.3. Influence of diversity loss
Our diversity loss is similar to prior works [38, 63] with
a few notable differences. Mainly, the hinge term and the
image distance space. In [38] it is shown that this loss for-
mulation is a lower bound for the averaged gradients over
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Figure S3. Noise vector interpolation. By interpolating the noise vector between two different values, we can identify the factors of
variation in the image which correspond to differences in colors, textures as well as object structures.

the noise vectors z1, z2, therefore our diversity loss with
the hinge term is akin to encouraging a minimal amplitude
⌧div of the gradients with respect to the noise conditioning.
Second, while prior work computed the distance between
images either in image space or the discriminator’s feature
space, we found that neither of these two choices was opti-
mal in our experiments. The discriminator’s feature space
works well for class-conditional synthesis because the dis-
criminator’s underlying feature representation is semanti-
cally richer than for semantic image synthesis where the
dense prediction task of the discriminator yields very lo-
calized embeddings.

We obtain the diversity cutoff threshold ⌧div by comput-
ing the mean distance between different generated images
in a batch and averaging across the training set:

⌧div =
1

|B|2
·
X

i,j2B

��Gf (xi, zi)�G
f (xj , zj)

��
1

kzi � zjk1
. (7)

The distance is computed in the feature space induced by
the penultimate layer of the generator. It is then normalized
by the distance between the noise vectors.
We conduct a more in-depth analysis on the impact of the
diversity loss on the image quality and diversity. We train
our model with a ConvNext-L backbone with different val-
ues for the diversity loss �div. These results are reported in
Table S9. Without the diversity loss, the generator ignores
the noise input, which translates to a low LPIPS score. Im-
proving diversity with a weight of �div = 10 results more
diversity (LPIPS), better image quality (FID), and in put
consistency (mIoUMF).

Additionally, we experiment with different distances for
the diversity loss: based either on the generator features, or
on the RGB image space directly as in [38, 63]. As reported
in Table S10, we find that the diversity loss in image space

�div 0 10 100

FID (#) 22.9 22.7 23.3
mIoUMF(") 67.7 67.8 67.7
LPIPS (") 1.5e-5 0.47 0.36

Table S9. Influence of diversity loss weight on model perfor-
mance. We evaluate image quality using FID and mIoUMF metrics
while diversity is evaluated using LPIPS.

Distance space FID (#) mIoUMF LPIPS (")

Feature 22.7 67.8 0.47
Image 23.2 64.2 0.09

Table S10. Comparing different distances for our diversity loss.

is less effective. It reaches an LPIPS score of 0.09 while
the feature space loss achieves an LPIPS of 0.47. Both FID
and mIoUMFmetrics are also improved by this choice. By
inspecting example generations, we find that using image
space distances results in variations in the overall contrast
and brightness of the image only, while using feature space
distances results in more high-level variations as illustrated
in Fig. S3 and Fig. S4.

B.4. Sampling strategy

We quantify the influence of the balanced sampling strat-
egy with respect to standard uniform sampling on COCO-
Stuff and Cityscapes datasets. We report these results in
Table S11, and find that balanced sampling yields perfor-
mance gains in both FID and mIoU for both the datasets. In
Figure S5, we present qualitative examples of images gen-
erated with the model trained on Cityscapes. Balanced sam-
pling clearly leads to improvements in the visual quality of
objects such as scooters, buses and trams.



Figure S4. Additional examples of diversity in generated images.

Dataset Sampling strategy FID (#) mIoUMF(")

Uniform 14.1 62.9
COCO-Stuff Balanced 13.6 65.2

Uniform 38.7 75.6
Cityscapes Balanced 38.3 78.3

Table S11. Influence of sampling strategy for models trained on
the COCO-Stuff and Cityscapes datasets.

B.5. Influence of pixel-wise loss function
In Figure S6, we compare the per-class mIoU values when
training using different loss functions: weighted cross-
entropy (as in OASIS), focal loss, and weighted focal loss.
This extends the class-aggregated results reported in Ta-
ble Table 8 in the main paper. These experiments were
conducted on the Cityscapes dataset using a pre-trained
ConvNext-L backbone for the discriminator. Our use of the
weighted focal loss to train the discriminator results in im-
proved IoU for most classes. The improvements tend to be
larger for rare classes. Class weighting is still important,
as can be seen from the deteriorated IoU for a number of
classes when using the un-weighted focal loss.

B.6. Influence of instance-level annotations
Since some works do not use the instance masks [33, 52,
58], we provide an additional ablation in Table S12 where
we train our models on COCO-Stuff and Cityscapes without

Dataset Instance masks FID (#) mIoUMF(")

7 13.9 65.0COCO-Stuff
3 13.6 65.2
7 40.1 76.3Cityscapes
3 38.2 78.5

Table S12. Influence of instance masks on model perofrmance.

FID mIoUMF

DP-SIMS (ConvNext-L) 13.6 65.2
DP-SIMS (ConvNext-XL) 13.3 68.0

Table S13. Models with different ConvNext backbones on COCO-
Stuff.

the instance masks to isolate the gains in performance they
may bring. For both these datasets, we observe deterioration
in the model’s performance when not using instance masks.
The difference is less noticeable on COCO-Stuff where the
labels are already partially separated, FID only increases
by 0.3 points. On the other hand, this difference is more
acute in Cityscapes where FID increases by 1.9 points while
mIoUMFreduces by 2.2 points. In Cityscapes, instances are
not separated in the semantic label maps, this adds more
ambiguity to the labels presented to the model which makes
it more difficult to interpret them in a plausible manner.

B.7. Larger discriminators
For larger datasets, scaling the backbone architecture could
prove beneficial in capturing the complexity of the dataset.
Accordingly, we train a model on COCO-Stuff using a
ConvNext-XL model. It is approximately 1.76 times bigger
than ConvNext-L used in our main experiments, with 350M
parameters. In Table S13, we report its performance as a
pre-trained feature encoder in our discriminator. The larger
ConvNext-XL encoder further improves results in terms of
both FID and mIOU.

B.8. Qualitative samples
We provide qualitative samples of the images generated
with our DP-SIMS model using different pre-trained back-
bones for the discriminator in Figure S7. In Figure S8,
Figure S9, and Figure S10 we provide examples of images
generated with our DP-SIMS model and compare to other
state-of-the-art models on the ADE-20K, COCO-Stuff, and
Cityscapes datasets, respectively.



Label map No class balancing Class balancing

Figure S5. Qualitative examples of images generated with and without balanced sampling to train models on Cityscapes.

Figure S6. Top: Per-class IOUMF on Cityscapes with models trained with different loss functions using ConvNext-L backbone. Labels are
sorted according to their frequency in the validation images, which is written below the class name. Bottom: Per-class difference in IOUMF

of models trained with weighted and non-weighted focal loss w.r.t. the model trained with weighted cross-entropy (CE) loss.



GT Label map R50Swin-B EfficientNet-34 ConvNext-L

Figure S7. Qualitative comparison of DP-SIMS on ADE-20K using Swin-B, Resnet50 (R50), EfficientNet-34, and ConvNext-L backbones.
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Figure S8. Qualitative comparison with prior work on ADE-20K, using a ConvNext-L backbone for DP-SIMS (Ours).
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Figure S9. Qualitative comparison with prior work on COCO-Stuff, using a ConvNext-L backbone for DP-SIMS (Ours).
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Figure S10. Qualitative comparison with prior work on Cityscapes, using a ConvNext-L backbone for DP-SIMS (Ours).
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