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Abstract

Audio-visual automatic speech recognition (AV-ASR) is an
extension of ASR that incorporates visual cues, often from the
movements of a speaker’s mouth. Unlike works that simply focus on
the lip motion, we investigate the contribution of entire visual frames
(visual actions, objects, background etc.). This is particularly useful
for unconstrained videos, where the speaker is not necessarily visible.
To solve this task, we propose a new sequence-to-sequence Audio-
Visual ASR TrAnsformeR (AVATAR) which is trained end-to-end
from spectrograms and full-frame RGB. To prevent the audio stream
from dominating training, we propose different word-masking
strategies, thereby encouraging our model to pay attention to the
visual stream. We demonstrate the contribution of the visual modal-
ity on the How2 AV-ASR benchmark, especially in the presence of
simulated noise, and show that our model outperforms all other prior
work by a large margin. Finally, we also create a new, real-world
test bed for AV-ASR called VisSpeech, which demonstrates the con-
tribution of the visual modality under challenging audio conditions.
Index Terms: speech recognition, video, audiovisual

1. Introduction

Automatic Speech Recognition (ASR) is often applied to edited or
streamed media (for example, TV, online videos, video conferenc-
ing), where the input signal consists of both an audio and a visual
stream. For these applications, the visual stream can provide strong
cues for improving ASR, particularly in cases where the audio is
degraded or corrupted. This has been largely exploited by AV-ASR
works which focus on lip motion [[1-8] (using video crops centered
around the speaker’s mouth). While lip motion is a strong signal in
videos centered on the speaker, it may be less useful in some online
videos (those with egocentric viewpoints, face coverings, poor video
quality, speaker at a distance etc.). A more recent and less-explored
direction is the contribution of additional visual context, for example,
the hand movements of a speaker, the presence of certain objects
that are being described or even the background location [9].

In this paper, we focus on the latter case. The main existing
benchmark for this task is the How?2 dataset, which consists of
instructional videos where the ground truth is obtained from user up-
loaded transcripts [[10]. While extremely valuable, the How?2 dataset
was created by keeping the audio samples that were most aligned to
user-uploaded transcripts. This was done using an automatic align-
ment tool, and biases the dataset towards ‘clean’ audio samples. We
posit that in this case, a model trained on clean audio would never be
incentivised to learn from the visual modality, as all the information
for ASR is present in the audio stream. This has led to a number of
AV-ASR works to doubt whether the visual modality is useful at all in
a clean audio context, or if it is simply used as a regularizer |1 1H13].
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To resolve this issue, we explore masking strategies that
degrade the audio samples during training, and then evaluate our
model under noisy audio conditions. By dropping out key words
in the audio signal, we incentivise our model to pay attention to the
visual stream. Our model is based on a Seq2Seq encoder-decoder
architecture. Unlike previous works that use full-frame pre-extracted
visual features [9H11}/13H18]], our encoder performs audio-visual
fusion early, and is trained directly from pixels and spectrograms.
We show that large performance gains can also be achieved by
pretraining our model on the large HowTol100M [[19] dataset (not
to be confused with How?2).

Given the clean audio on the How2 test set, we also simulate
noise at test time [[13]. Unlike [13]] which explicitly drops ‘visual
words’, we simulate noise in a more objective way, by randomly
dropping audio segments, or adding external environmental
sounds from the AudioSet dataset [20]. We show that under
these conditions, our model with audio-visual inputs consistently
outperforms an audio only model for the task of AV-ASR. In
addition, we also create a small, real-world test set with naturally
occurring noisy audio. This dataset is created by filtering out
samples where automatic ASR gets perfect results, and hence is
a challenging test bed. On this dataset, we show that the visual
modality makes a significant contribution to performance.

In this work we make the following contributions: (i) We
propose a new encoder-decoder AudioVisual ASR TrAnsformeR
(AVATAR) which is trained end-to-end from spectrograms and
full-frame RGB. Our encoder fuses audio and visual inputs and is
trained jointly with the decoder; (ii) To prevent the audio stream
from dominating training, we propose and compare a number of
masking strategies during training, thereby encouraging our model
to pay attention to the visual stream; (iii) Our model achieves
state-of-the-art performance on the How2 AV-ASR benchmark, with
visual information improving performance under various simulated
noise conditions; and finally (iv) we create a new, challenging
real-world test bed for AV-ASR called VisSpeech. The dataset is
created using a combination of automatic techniques and manual
annotation and unlike other works, allows us to demonstrate the
performance of our method under realistic noise conditions. We
have released this dataset publicly to the research community at
https://gabeur.github.io/avatar-visspeech.

2. Related Work

Audio-visual speech recognition. CTC [21] and Seq2Seq [22}23]
are the two most popular losses for performing ASR. In the context
of AV-ASR focused on lip motion, they have been compared [4]]
and combined [7]. While early approaches [[1,|2] use pre-extracted
lip visual features, recent works [3H8] adopt an end-to-end approach
by directly processing the pixels of the speaker’s lips. In contrast,
the contribution of full frames for AV-ASR beyond the speaker’s
mouth movements has only been studied through pre-extracted
visual context features: either action features [[10l/11}/13}/17], place
features [9}(111/14}/16|[18] or object features [9}/11}14H16l[18]]. Unlike


https://gabeur.github.io/avatar-visspeech

these works, we train directly from full frame pixels for AV-ASR.

Full-frame AV-ASR datasets. The How?2 dataset [10], built from
instructional videos, is the main benchmark for the full-frame AV-
ASR task. Prior to this benchmark, full-frame AV-ASR works [9}
14}/16]] have also evaluated on instructional videos datasets but those
have not been released. Audio-captioned image datasets [[12}|18]]
have also been used for AV-ASR. User-uploaded transcripts are the
main source of ground truth for large scale AV-ASR video datasets [6]
8l{10]. As these are often misaligned or inaccurate, transcripts are
typically first audio-aligned and then automatically filtered [24].

Audio signal degradation for AV-ASR evaluation. In the case
of lip motion for AV-ASR, several works have experimented with
adding ‘babble noise’ [4}/6] or extra speech tracks [6}[3]. Additive
Gaussian noise has also been used in [8]. In the case of full-frame
AV-ASR, it is common to completely mask some segments of the
audio signal that correspond to visual words. Srinivasan et al. [[18]]
mask the audio segments corresponding to nouns and places. Ghor-
bani et al. [[13]] compute the similarity between words and visual
frames and mask only the visual words. We instead attempt to mimic
more realistic settings by simulating audio degradations on How2
and releasing our ‘in the wild’ benchmark VisSpeech. In order to pre-
vent audio from dominating the task, we extend audio degradation to
the training phase by randomly masking input words at training time.

3. Method
3.1. Model Architecture

In this section we provide an overview of our audiovisual ASR
model called AVATAR (Figure [T). Our model consists of a
multimodal encoder to encode both RGB frames and audio
spectrograms, and a transformer decoder which produces the natural
language speech recognition output. Unlike previous AV-ASR
works, we do not use frozen visual features, but have a single
multimodal encoder that allows early multimodal fusion [25].
Audio Inputs. Our model operates on 25 second audio inputs. We
follow common practice and extract 80-dimensional filter bank fea-
tures from the 16kHz raw speech signal using a Hamming window
of 25ms and a stride of 10ms, giving us 80 x 2500 size spectrograms
for 25 seconds of audio. We then extract 16 x 16 non overlapping
patches, giving us a total of 5 x 156 =780 input tokens for audio.
RGB Inputs. We randomly extract 2 frames at 2.5 fps from each
input video clip, which are then converted into tokens by extracting
16 X 16 x 2 tubelets resulting in a total of 14 X 14 = 146 input
tokens (the image resolution is 224 x 224). This is based on our
observations that visual signals are highly redundant for most videos
and can therefore be efficiently captured from few frame samples.
Audiovisual Encoder. We adopt the recently proposed MBT
architecture [25]], which is a transformer based multimodal encoder.
Given both sets of audio and RGB tokens, MBT first adds positional
encodings to each token, and append a CLS token to each set. The
sets are then fed to the MBT encoder. MBT relies on bottleneck
tokens to model the cross-modal interactions. Here we use the
best parameters from [25] (4 bottleneck tokens and bottleneck
fusion starting at layer 8). We use public ViT-Base [26] weights
(VIT-B, dynodet =768 L=12, Ny =12, d= 3072ﬂ pretrained on
ImageNet-21K [27] for initialization.

Decoder. All hidden units from the encoder are then passed to an
auto-regressive transformer decoder [28]] consisting of 8 layers and
4 attention heads.

Yd,n0der is the embedding dimension, L is the number of transformer
layers, Nz is the number of self-attention heads with hidden dimension d.
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Figure 1: AVATAR: We propose a Seq2Seq architecture for
audio-visual speech recognition. Our model is trained end-to-end
from RGB pixels and spectrograms.

3.2. Training Strategies

In this section we describe our training loss and strategy for
AVATAR. Our model is first pretrained on a large dataset with
transcripts obtained using an audio-only ASR API [19]. To entice
the model to pay attention to the visual modality, we introduce a
word masking strategy, which is described below.

End to end training. The model is trained end-to-end using a
cross-entropy loss on each decoded token.

Word Masking. To prevent our model from ignoring the visual
modality, we introduce word masking techniques during training.
We randomly sample target words and mask out the input audio
signals that correspond to those words using pre-extracted align-
ments between words and the input signal. We obtain the alignment
either from ASR results for pretraining or by using an off-the-shelf
forced-alignment tool for finetuning. For selecting target words
to mask, we experiment with two strategies: random and content
word masking. The former strategy selects target words randomly
whereas the latter chooses the targets among non-stop (henceforth
known as content) words. For random word masking, we randomly
mask out 10% of the words. For content word masking, there are
fewer candidate words to be masked so content words are masked at
a higher rate to match the 10% overall masking on the entire dataset.

4. VisSpeech Dataset

In this section we describe our new AV-ASR benchmark called
VisSpeech. Our dataset is a subset of the publicly released
HowTol00M dataset [19], and is curated using a combination of
automatic filtering stages and manual verification.

Dataset creation pipeline:

Our dataset creation pipeline is driven by two objectives: (1) We
want to find challenging audio conditions in which regular
audio-based ASR fails. For this we seek videos where there is a
large word error rate between automatic ASR and user-generated
transcripts. (2) We are also interested in video segments where
there is high audio-visual correspondence, in order to create a
suitable multimodal test set for AV-ASR. Our pipeline consists of
the following steps:

Step 1: Obtain videos with user uploaded transcripts. We first
search for HowTo100M videos that have both manually uploaded
transcripts and automatic ASR. We then align the transcripts using
the Levenshtein algorithm in order to compute the global word error
rate (WER) between the two. Videos with a global WER greater
than 100% are removed, as we find this helps filter out completely
wrong user uploaded transcripts or ASR. This gives us 85K videos.
Step 2: ASR vs user transcripts. Videos are split into segments,



at silences detected using an open-source VAD model [29]. Using
the user transcripts and the ASR from each segment, we filter out
segments with WER greater than 50% between the two transcripts
to remove samples with significantly low quality user transcripts
or ASR. This is similar to the rationale for the filtering in Step
1, which is performed at a video level, but now we perform it at
a segment level. Next and most importantly we remove ‘“easy”
samples, namely those with low WER of less than 20% for non-stop
words (too clean) and samples with less than 9 words (too short).
This leaves us with 773K sentences from 7.5K videos.
Step 3: Visual-Text similarity. To measure visual-text similarity,
we run a video-text similarity model [30] trained on the Howto100M
dataset to get similarity scores between each video and sentence
pair. This helps highlight challenging samples where the visual
modality can compensate for corrupted audio.
Step 4: Manual annotation. Finally, we manually check the highest
similarity segments and correct the user-uploaded ASR if necessary.
VisSpeech consists of 508 segments from 495 unique videos.
The average transcript length is 12.2 words and average segment
duration is 4.3 seconds. By filtering for segments where ASR fails,
we find that our dataset is truly a challenging test bed ‘in the wild’,
with the audio containing background chatter, laughter, music and
other environmental sounds. During the manual verification phase,
we also noticed that many examples contain speech spoken with
challenging English accents from various regions all over the world.

5. Experiments

In this section we first describe the datasets, metrics and imple-
mentation details for training (Section[5.I). We then describe the
simulated noise we use for evaluating our models on the How?2
dataset (Section[5.2). Finally we discuss the results of our model
under different training strategies on both the How2 and our newly
introduced VisSpeech dataset (Section[5.3).

5.1. Datasets, Metrics, Implementation Details

HowTo100M [19] consists of more than 1 million instructional
videos associated with their automatically-extracted speech transcrip-
tions. We only use this dataset for pre-training our model. Note that
here we are not training with perfect ground truth, but using the ASR
outputs of an existing model. We remove videos present in the valida-
tion and test sets of VisSpeech and How?2 datasets (described next).
How?2 [10] is an instructional video dataset created for multi-modal
language understanding. We use the 300 hour version. The videos
are segmented into short clips (avg 5.8s), each accompanied by
their user-uploaded transcript (avg 20 words). The dataset is split
between a training (184,949 clips), validation (2,022 clips) and test
(2,305 clips).

Metrics. We evaluate our models using Word Error Rate (WER).
For each sentence, dynamic programming is used to align the
predicted words to the ground truth. The number of word errors
(deletions, substitutions and insertions) is then computed across the
whole test dataset and divided by the number of ground truth words
to obtain the WER.

Training Implementation details. All models are trained
end-to-end unless otherwise specified. We use a batch size of 1,536
and 256 for pretraining and finetuning respectively. We adopt a
wordpiece tokenizer [31] pretrained for BERT and decode using a
beam search with a beam size of 4 and a brevity penalty of 0.6. We
use SpecAugment with parameters adopted from [32]. We augment
the visual frames using random cropping and color jittering. We use
a momentum optimizer. We pretrain our model for 1M iterations
with an initial learning rate of 2. The learning rate is warmed

up for 1K iterations and then linearly decayed to 0. We initialize
both visual and audio streams of the MBT encoder with the public
VIiT [26] weights pretrained on ImageNet. For finetuning, we train
for 40K iterations without warmup.

5.2. Simulated Noise for Evaluation

The ground-truth transcripts in How2 are collected by performing
forced-alignment on the user uploaded transcripts, and filtering
out examples with a low confidence score. Due to such a filtering
process, the audio signals in How2 are inherently clean, and
consequently the task is largely audio dominant. To overcome this
limitation, we evaluate our models with three types of simulated
audio noise: burst packet loss, environment noise and mixed noise.
For the burst packet loss, we randomly drop two chunks of the input
audio signal where the length of each chunk is uniformly sampled
from (0,0.1] times the video duration. To simulate environment
noise, we add audio noise randomly sampled from the ‘noise’ and
‘environmental’ classes in the AudioSet dataset [20]. Finally, we also
evaluate a combination of the two (‘mixed noise’). Note that we train
a single model and evaluate it under different noise configurations.

5.3. Results

Effects of Training Strategies. Table [I] compares audio-only
(A) and audiovisual (A+V) models trained with different training
strategies and evaluation noise settings on How2. In addition to
clean audio, we report results in three degraded audio scenarios,
burst loss, environment noise and mixed noise. We first note that
without pretraining, our model performs well on the clean eval, but
performance degrades significantly under simulated noise conditions.
Adding the visual modality under these noise conditions helps
performance across the board. Vanilla pretraining then improves
performance significantly, however we note the gap between A and
A+V also shrinks, signifying the improvement is largely from better
audio encoding. In this case, the A+V model has no incentive to
look at visual inputs, as the task under clean conditions is dominated
by audio. In addition, the pretraining is performed on HowTol100M
where the transcripts are automatically generated from the audio
alone, and so our model is able to solve the task without any visual
information. We find the word masking strategies to be extremely
effective to mitigate this. The overall performance of both A and
A+V are improved and notably, the improvements of A+V are
larger. We show that with these masking schemes, adding visual
inputs helps even for clean audio, with the performance improving
under environment and mixed noise. Note that across the board,
adding the visual modality improves performance.

Comparison to the state-of-the-art. Table [2|compares AVATAR
with existing state-of-the-art methods on How2. Our model trained
from scratch already outperforms all existing methods and serves
as a strong baseline. Our best model, which is pretrained on
HowTo100M, with the random word masking technique, brings
a further boost reducing the error rate by over 45% relatively
compared to the existing state-of-the-art method.

Evaluation on VisSpeech. We evaluate our AVATAR model
trained with different strategies on VisSpeech with real-world noise
(Table[3). We finetune the pretrained models for 5K iterations on
How?2. Our dataset effectively highlights the contribution of the
visual modality without introducing any artificial noise. Once again,
both masking strategies help the audiovisual (A+V) model learn to
utilize the visual modality better. Content word masking improves
the performance only when the visual modality is provided; provid-
ing some evidence that the A+V model uses visual inputs to correct
errors on content words. To further tease apart the input of the
visual modality, we compute the word error rate on content words



Table 1: Audiovisual ASR vs Audio only models under various evaluation noise conditions (Clean, Burst, Environment and Mixed) and
with different training masking strategies (Random and Content). Percentage Word Error Rate (%WER) is reported on the How?2 test set. A:
Audio-only. A+V: Audiovisual. Rel. A: Relative improvement of A+V over A.

Eval Noise Clean Burst Loss Environment Noise Mixed Noise
Training A A+V  Rel. A A A+V  Rel. A A A+V  Rel. A A A+V  Rel. A

No Pretraining 1572 1562 0.64% 2959 28.69 3.05% 50.79 47.70 6.08%  60.51 5749 5.0%

Vanilla 975 979 -033% 2197 2171 1.19% 2597 2555 1.61% 39.13 3896 042%
Random Word Masking 919 911 093% 1560 1528 2.05% 2339 2235 445% 3243 30.64  5.50%
Content Word Masking 958 925 348% 1726 1692 198% 23777 2267 4.65% 3383 3226 4.53%

GT: this dessert definitely deserves a happy dance GT: the thumb reaches for the coin GT: this is a globe eggplant it's a small one GT: and repeat the same fold for the opposite side
A: this deserves definitely deserves a happy dance A: the thumb reaches for the con A: this is a glow big plant it's a small one A: and repeat the simple for the opposite side
AV: this dessert definitely deserves a happy dance AV: the thumb reaches for the coin AV: this is a globe eggplant it's a small one AV: and repeat the same fold for the opposite side

Figure 2: Qualitative results on the VisSpeech dataset. We show the ground truth (GT), and predictions from our audio only (A) and audio-visual
model (A+V). Note how the visual context helps with objects (‘desert’, ‘coin’, ‘eggplant’), as well as actions ( ‘fold’) which may be ambiguous
from the audio stream alone. Errors in the predictions compared to the GT are highlighted in red.

Table 2: Comparison to the state-of-the-art on How2. Our model correcting ASR errors on objects as well as actions.
outperforms all previous works when trained from scratch, and
pretraining provides a significant boost. We report the best
audio-visual numbers for all works.

End-to-end training with early audiovisual fusion. Unlike
previous works on full-frame AV-ASR, AVATAR is trained (i)
entirely end-to-end, and (ii) with early audiovisual fusion in
the MBT encoder. To assess this effect, we test AVATAR with

Model % WER pre-extracted visual features as in [13]], using a model pretrained
BAS || 18.0 on HowTo100M with NCE loss [30]. We concatenate the audio
VAT || 18.0 features at the output of our MBT encoder with our pre-extracted
MultiRes || 20.5 visual features and provide them to the decoder. Note that in this
LLD 16.7 case the audio-visual fusion happens only through the decoder. We
AVATAR (scratch) 156 train this model with random masking strategy and find that the

end-to-end trained model outperforms the model with pre-extracted
features with 9% relative improvement in the mixed noise setting
and similar trends are observed in all the other noise settings.

AVATAR (pretrained) 9.1

Table 3: WERs of AVATAR on our newly introduced test set Contribution of Visual Modality. Some works show that the visual

VisSpeech consisting of real-world noise. The models are trained modality is simply a regularizer [TTHI3]. As done by [12], we

on automatic ASR from HowTo100M, and finetuned on How2. Note further investigate whether the contribution of the visual modality is

here we do not add any artificial audio degradation at all. simply a regularizer by replacing the visual frames of test examples

with those extracted from random validation videos. Unlike [12]],

Training Strategy A A+V  Rel. A we observe significant degradation of A+V models in all settings

— (e.g., 9.11%—9.53% with random word masking and clean audio)

No pretraining 4457 4341 261% as the models get distracted by the random visual inputs. Note that

Vanilla ) 1269 1191 = 6.11% this performance (9.53%) is worse than the audio-only model in

Random Word Mask'mg 1235 11.86 3.93% this setting (9.19%). This suggests vision in our model is not simply
Content Word Masking 1272 11.28 [711.30% a regularizer contrary to what was previously reported in [1T|[I3].

only and on stop words only. This is because we hypothesize that 6. Conclusion

visual modality should not be able to provide any useful information
about stop words, and so most of the improvement should be on the
content words. As expected, we find the errors on content words are
reduced substantially more than those on stop words when the visual
modality is incorporated with all training strategies (e.g., 1.18%
vs. 0.33% absolute error rate drops with content word masking).
This also confirms the contribution of the visual modality. Further
evidence can be found from the qualitative examples provided in Acknowledgements. This work was supported in part by the ANR
Figure 2} where it can be clearly seen that visual context helps with grant AVENUE (ANR-18-CE23-0011).

In this work, we propose a novel encoder-decoder transformer archi-
tecture and training strategies based on word masking for AV-ASR.
‘We show that our method helps the model learn to use visual inputs
better and outperform the state of the art. Finally we also release
VisSpeech, a new AV-ASR test benchmark, and demonstrate the
effectiveness of our method under naturally occurring noise.
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