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Hubert Leterme1 Kévin Polisano2 Valérie Perrier2 Karteek Alahari1

1Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France
2Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

Abstract

We propose a novel antialiasing method to increase shift
invariance in convolutional neural networks (CNNs). More
precisely, we replace the conventional combination “real-
valued convolutions + max pooling” (RMax) by “complex-
valued convolutions + modulus” (CMod), which produce
stable feature representations for band-pass filters with
well-defined orientations. In our recent work [21], we
proved that, for such filters, the two operators yield simi-
lar outputs. Therefore, CMod can be viewed as a stable
alternative to RMax. To separate band-pass filters from
other freely-trained kernels, in this paper, we designed a
“twin” architecture based on the dual-tree complex wavelet
packet transform, which generates similar outputs as stan-
dard CNNs with fewer trainable parameters. In addition
to improving stability to small shifts, our experiments on
AlexNet and ResNet showed increased prediction accuracy
on natural image datasets such as ImageNet and CIFAR10.
Furthermore, our approach outperformed recent antialias-
ing methods based on low-pass filtering by preserving high-
frequency information, while reducing memory usage.

1. Introduction
It has been more than a decade since convolutional

neural networks (CNNs) overtook other machine learning
methods in large visual recognition tasks, when Krizhevsky
et al. [20] won the 2012 edition of the ILSVRC challenge
on image classification [29]. Since then, some progress has
been made on understanding their strengths and limitations.
In particular, in order to produce high classification accu-
racy, we should be able to draw linear boundaries between
classes in the feature space. The capability of CNNs to gen-
erate such a feature space is therefore of utmost importance.
A key property to reach linear separability is the ability to
discard or minimize non-discriminative image components.
In particular, one could expect feature vectors to be stable
with respect to small image deformations such as scaling,
rotation or translation. In this paper, we focus on the latter.

A typical CNN architecture contains subsampled convo-
lutions, which are known to be unstable to translations, due
to a phenomenon called aliasing [2]. Max pooling, which
also comes with subsampling, suffers from the same limi-
tation. Therefore, feature vectors in standard CNNs are not
shift invariant, which could penalize the network’s accuracy
and generalization capability. To overcome this, Zhang [40]
proposed an antialiased version of CNNs based on low-pass
filtering, called blur pooling. This operator is used in two
situations. (i) Max pooling operators (MaxPool), which can
be decomposed into “Max + Subsampling”, are replaced by
“Max + BlurPool”. (ii) Subsampled convolutions followed
by ReLU (“Conv + Subsampling + ReLU”) are replaced
by “Conv + ReLU + BlurPool”. Their approach increased
shift invariance and improved accuracy of various networks
including AlexNet [20], ResNet [12], DenseNet [15] and
MobileNet [14]. Positive results were also obtained on cor-
rupted datasets such as ImageNet-C [13], as well as tiny
image datasets such as CIFAR10. However, this is achieved
with a significant loss of information.

A question then arises: is it possible to design a non-
destructive antialiasing method, and if so, does it further
improve accuracy? In a more recent work, Zou et al. [42]
addressed this question and proposed an adaptive antialias-
ing approach, called adaptive blur pooling, which predicts
separate filter weights for each spatial location and output
channel. This allows to preserve—to some extent—high-
frequency information.

However, the above antialiasing methods come at the
cost of increased memory consumption and, for the latter,
higher number of trainable parameters. In this paper, we
propose an alternative antialiasing method based on com-
plex convolutions, preserving high-frequency information
everywhere, without increasing the number of parameters
or memory consumption. Furthermore, we demonstrate the
ability of our approach to improve accuracy.

The proposed method consists in replacing the combi-
nations “real-valued convolution + max pooling” (referred
to as RMax) by “complex-valued convolution + modulus”
(referred to as CMod). The complex filters are designed
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such that their real and imaginary parts approximately form
a 2D Hilbert transform pair [11]. We only do this for high-
frequency filters with well-defined orientations, which are
naturally present in CNNs when trained on natural image
datasets [38]. Unfortunately, the repartition between low-
and high-frequency channels is unpredictable, and the for-
mer cannot be isolated in a systematic way. To solve this
limitation, we consider a mathematical twin mimicking the
behavior of standard CNNs with a higher degree of con-
trol. In such a model, some freely-trained convolutions are
replaced by the real part of a dual-tree complex wavelet
packet transform (DT-CWPT) [3], a redundant type of dis-
crete wavelet transform characterized by nearly-analytic fil-
ters with various frequencies and orientations. DT-CWPT
performs subsampled convolutions, which grants it proper-
ties comparable to standard convolution layers with deter-
ministic filters. In this context, replacing RMax by CMod
is straightforward since the complex-valued filters are di-
rectly provided by the dual-tree transform.

Our method is motivated by the following theoretical
claim. In a recent work [21], we showed that, under specific
conditions on the filter’s frequency vector and Fourier reso-
lution, RMax and CMod can produce similar outputs. Fur-
thermore, we proved that the latter operator is stable with
respect to small shifts, and deduced a measure of shift in-
variance for RMax output (i.e., the output of the first max
pooling layer in CNNs). This work was essentially theoret-
ical, with limited experiments conducted on a deterministic
model solely based on DT-CWPT. However, it lacked ap-
plications to tasks such as image classification.

In this paper, we build on this theoretical study, and
propose architectures for image classification, considering
the CMod operator as a stable alternative to RMax. We
then compare accuracy and shift invariance of RMax- and
CMod-based models. We benchmark our approach against
the two antialiasing methods based on blur pooling [40,42].
To do so, we consider models containing “blur-pooled”
RMax operators on the one hand, and standalone CMod
operators on the other hand. The code accompanying this
work will be made available on GitHub.

2. Related Work
Improving Shift Invariance in CNNs. Following the
ideas developed for antialiasing, Chaman and Dokmanic [6]
reached perfect shift invariance by using an adaptive, input-
dependent subsampling grid, whereas the previous models
based on blur pooling rely on fixed grids. This idea was har-
nessed by Xu et al. [37] to get shift equivariance in genera-
tive models. However, it is worth noting that, as evidenced
by Singla et al. [32], shift invariance may alter robustness
to other types of adversarial attacks.

Another aspect of shift invariance in CNNs is related
to boundary effects. The fact that CNNs can encode the

absolute position of an object in the image by exploiting
boundary effects was discovered independently by Islam et
al. [17], and Kayhan and Gemert [18]. This phenomenon is
left outside the scope of our paper.

CNNs Meet Wavelet Theory. Several approaches com-
bining CNNs and wavelet transforms have been proposed
in the past. Wavelet scattering networks (ScatterNets), by
Bruna and Mallat [5], perform cascading wavelet convolu-
tions and nonlinear operations. They produce shift-invariant
image representations that are stable to deformation and
preserve high-frequency information. Further extensions
include roto-translation invariant ScatterNets [28], hybrid
ScatterNets combined with fully-trained layers [27] or dic-
tionary learning [39], dual-tree complex wavelet Scatter-
Nets [31], graph ScatterNets [41], learnable ScatterNets via
feature map mixing [8] or parametric wavelet filters [10].

These hand-crafted networks are specifically designed to
meet some desired properties. As such, they do not intend
to reproduce the behavior of standard CNNs. By contrast,
in our approach the CMod operator acts like a proxy for
RMax, extracting comparable features with higher stabil-
ity. Similar to the work discussed earlier in this section,
our models are enhanced versions of existing architectures,
rather than ad hoc constructions.

Other work improved standard models by augmenting
CNNs with wavelet-like filters [7,9,23–25,35,36]. In a sim-
ilar spirit, Sarwar et al. [30] and Ulicny et al. [34] built mod-
els based on Gabor filters and discrete cosine transforms,
respectively. All these approaches aim at either improving
the model’s predictive power, or reducing its complexity.
However, this is achieved with significant modifications to
the structure of the networks, and these approaches do not
primarily focus on improving stability.

3. Proposed Models
We first explain how the DT-CWPT-based twin models

are built. We then describe our antialiasing approach and
how it has been compared to related work.

3.1. Notations

We represent CNN feature maps as 2D sequences, de-
noted by straight capital letters: X ∈ S. Indexing is
made between square brackets: for any 2D index n ∈ Z2,
X[n] ∈ R or C. The cross-correlation between X and
V ∈ S is defined by (X ⋆V)[n] :=

∑
k∈Z2 X[n+ k] V[k].

The down arrow refers to subsampling: for any m ∈ N∗,
(X ↓ m)[n] := X[mn].

Multidimensional stacks of 2D sequences are repre-
sented as bold straight capital letters. A convolution layer
with K input channels, L output channels and subsam-
pling m ∈ N∗ is parameterized by a weight tensor V =
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(Vlk)lk ∈ SL×K and a bias vector b = (bl)l ∈ RL.
Then, for any multichannel input X ∈ SK , the correspond-
ing output Y ∈ SL is such that, for any output channel
l ∈ {1 . . L},

Yl :=

K∑
k=1

(Xk ⋆Vlk) ↓ m+ bl, (1)

where bl is a bias added to each element of the feature map.

3.2. Wavelet-Based Twin Models (WCNNs)

We describe the general structure of DT-CWPT-based
twin CNNs, which we call WCNNs in short. These net-
works are intended to mimic the behavior of standard archi-
tectures after training with natural image datasets.

We consider the first convolution layer of a CNN, as de-
scribed in (1), after training with ImageNet. For instance,
in AlexNet and ResNet architectures, K = 3 (RGB input
images), L = 64, and m = 4 and 2, respectively. As
widely discussed in the literature [38], a certain number of
trained convolution kernels Vlk exhibit oscillating patterns
with well-defined frequency and orientation. Visual repre-
sentations of such kernels are provided in Figs. 7a and 9a
for AlexNet and ResNet, respectively. We refer to the cor-
responding output channels as Gabor channels. We now
build a twin version of this convolution layer as follows.

Let Llow and Lhigh ∈ N, such that Llow + Lhigh = L.
The Llow first channels remain, as in the standard model,
freely trained, and the corresponding output, denoted by
Ylow ∈ SLlow , satisfies (1). However, the convolutions
producing the remaining Lhigh output feature maps are re-
placed by a wavelet block. The main idea is to constrain the
Gabor channels to explicitly compute the real part of DT-
CWPT coefficients. Each input image X goes through the
following transformations.

Color Mixing. The RGB components are combined into
a single luminance channel. This is implemented by using a
1× 1 convolution layer parameterized by a trainable vector
µ ∈ RK

+ . The output, denoted by Xlum ∈ S, satisfies

Xlum := µ⊤X =

K∑
k=1

µkXk. (2)

Wavelet Packet Decomposition. Then, DT-CWPT with
J decomposition stages is performed on Xlum, where J ∈
N∗ is such that

m = 2J−1. (3)

To match the subsampling factor m of the standard model,
the last decomposition stage is performed without subsam-
pling. We then discard the imaginary part. We refer to

this transform as the dual-tree real wavelet packet transform
(DT-RWPT), which results in Kdt := 2× 4J feature maps:

Dk =
(
Xlum ⋆ ReW

(J)
k

)
↓ 2J−1, (4)

where W
(J)
k denotes the k-th dual-tree filter.1 The power

spectrum of this complex filter is concentrated around a spe-
cific location in the Fourier domain. Together, the dual-tree
filters and their complex conjugates cover the whole fre-
quency plane.

Feature Map Selection. The number of dual-tree feature
maps Kdt is much greater than the number of Gabor chan-
nels Lhigh in general. This stage aims to select filters that
contribute the most to the network’s predictive power.

First, the low-frequency feature maps D0 and D(4J+1)

are discarded. Then, a subset of K ′
dt < Kdt feature maps is

manually selected and permuted in order to form clusters in
the Fourier domain. Considering a (truncated) permutation
matrix Σ ∈ RK′

dt×Kdt , the output of this transformation,
denoted by D′ ∈ SK′

dt , is defined by:

D′ := ΣD. (5)

By design, the feature maps D′ can be sliced into Q groups
of channels D(q) ∈ SKq , each of them corresponding to a
cluster of band-pass dual-tree filters with neighboring fre-
quencies and orientations. On the other hand, the out-
put of the wavelet block, Yhigh ∈ SLhigh , is also sliced
into Q groups of channels Y(q) ∈ SLq . Then, for each
group q ∈ {1 . . Q}, an affine mapping between D(q) and
Y(q) is performed. It is characterized by a trainable matrix
A(q) ∈ RLq×Kq and bias vector b(q) ∈ RLq , such that

Y(q) := A(q) D(q) + b(q). (6)

As in the color mixing stage, this operation is implemented
as a 1× 1 convolution layer.

Sparse Regularization. For any group q ∈ {1 . . Q} and
output channel l ∈ {1 . . Lq}, we want the model to select
one and only one wavelet packet feature map within the q-th
group. That is, Y(q)

l = α
(q)
lk X

(q)
k for some k ∈ {1 . .Kq}—

each row vector α
(q)
l of A(q) contains no more than one

nonzero element. To enforce this during training, we add a
mixed-norm l1/l∞-regularizer [22] to the loss function to
penalize non-sparse feature map mixing as follows:

L := L0 +

Q∑
q=1

λq

Lq∑
l=1

( ∥∥α(q)
l

∥∥
1∥∥α(q)

l

∥∥
∞

− 1

)
, (7)

1For the sake of computational efficiency, DT-CWPT is performed
with successive separable convolutions and linear combinations of wavelet
packet feature maps.
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where L0 denotes the standard cross-entropy loss and λ ∈
RQ denotes a vector of regularization hyperparameters.
Note that the unit bias in (7) serves for interpretability of
the regularized loss (L = L0 in the desired configuration)
but has no impact on training.

Finally, Ylow and Yhigh are stacked depthwise, which
yields the output Y ∈ SL. A schematic representation
of the AlexNet-based WCNN architecture (WAlexNet), and
the wavelet block upon which it is built, are provided in
Figs. 2b and 2d, respectively.

WCNNs vs. Standard CNNs. We can show that all out-
put feature maps Yl satisfy (1). Therefore, WCNNs behave
like standard CNNs, with a reduced number of degrees of
freedom. For the Llow freely-trained output channels, this
is straightforward. The remaining Lhigh channels are the
outputs of the wavelet block, and are referred to as Ga-
bor channels, by analogy with standard CNNs. For any
l ∈ {(Llow + 1) . . L}, the resulting convolution kernels are
as follows:

Vlk = µk Re W̃l, (8)

with µ, the color mixing parameter vector in (2), and

W̃l :=

K′
dt∑

k=1

αlkW
(J)
σ(k), (9)

with αlk being the coefficients of the block-diagonal matrix
A ∈ RLhigh×K′

dt generated by A(1), . . . , A(Q) as intro-
duced in (6), and σ : K ′

dt → Kdt being the permutation
function associated with Σ, introduced in (5).

Figure 1 displays a subset of the kernels V ∈ S64×3

for the WCNN architecture based on AlexNet, which we
refer to as WAlexNet. The kernels are shown as RGB color
images, before and after training with ImageNet, for both
freely-trained and Gabor channels.

According to (8), given a Gabor channel l ∈
{(Llow + 1) . . L}, the convolution kernels Vlk for k ∈
{1 . .K} are equal, up to a multiplicative constant. This
property is actually observed in the Gabor channels of stan-
dard CNNs: the corresponding RGB kernels roughly appear
monochrome (see, for instance, Figs. 7a and 9a). A numer-
ical assessment of this property can by found in [21]. This
constraint can be relaxed by performing color mixing after
DT-CWPT. In this case, the luminance parameter vector µ
differs for each output channel. Numerical experiments on
such models are left for future work.

3.3. Complex WCNNs

Our antialiasing method is based on the use of complex
convolutions and modulus activations. In WCNNs, the first
convolution layer is followed by ReLU and max pooling. If

Figure 1. Left: partial representation of WAlexNet’s convolution
kernels V ∈ S64×3. A random subset of 8 freely-trained channels
and 8 Gabor channels have been selected. The top and bottom
images respectively display the kernels before and after training
with ImageNet. Right: corresponding power spectra.

we denote by Al ∈ S the output of the max pooling layer
for any given channel l ∈ {1 . . L}, we get

Al := MaxPool (ReLU(Yl)) , (10)

with Yl satisfying (1). Here, for any 2D index n ∈ Z2,

ReLU(Yl)[n] := max(0, Yl[n]); (11)
MaxPool(Yl)[n] := max

k∈{−1..1}2
Yl[2n+ k]. (12)

We now consider the Gabor channels l ∈ {(Llow + 1) . . L}
from the wavelet block. Max pooling and ReLU can be in-
terchanged. Therefore, according to (3) and (8), expression
(10) becomes

Al = ReLU(Ymax
l + bl), (13)

where Ymax
l is the output of an RMax operator:

Ymax
l := MaxPool

{(
Xlum ⋆ Re W̃l

)
↓ 2J−1

}
. (14)

On the other hand, we consider another operator, CMod,
which is at the heart of our antialiased architecture. Its out-
put, denoted by Ymod

l , is defined by

Ymod
l :=

∣∣∣(Xlum ⋆ W̃l

)
↓ 2J

∣∣∣ . (15)

Note that RMax and CMod share the same subsampling
factor of 2J because max pooling is implemented with a
subsampling factor of 2.

We assume that, after training, the feature map mixing
layer has selected one and only one DT-CWPT channel (see
“Sparse Regularization” in Sec. 3.2). In this scenario, (9)
becomes

W̃l = W
(J)
k , (16)

for some k ∈ {1 . .Kdt}. Thus, as explained in Sec. 3.2,
the filter’s power spectrum is concentrated around a spe-
cific location in the Fourier domain. Therefore, according
to [21], CMod produces nearly shift-invariant image repre-
sentations. Moreover, the RMax operator acts as a proxy
for CMod:

Ymax
l ≈ Ymod

l . (17)
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(a) AlexNet (b) WAlexNet (baseline) (c) CWAlexNet (proposed approach) (d) Wavelet blocks (details)

Figure 2. First layers of AlexNet and its variants, corresponding to a convolution layer followed by ReLU and max pooling. The models
are framed according to the same colors and line styles as in Figs. 3 and 4. The green modules are the ones containing trainable parameters;
the orange and purple modules represent static linear and nonlinear operators, respectively. The bias is represented as a separate module
for clarity. The numbers between each module represent the depth (number of channels), height and width of each output. Fig. 2a:
freely-trained models. Top: standard AlexNet. Bottom: Zhang’s “blurpooled” AlexNet. Fig. 2b: RMax-based twin models (WAlexNet),
reproducing the behavior of standard (top) and blurpooled (bottom) AlexNet. The 64 output channels are split into two groups. The left
side of each diagram corresponds to the 32 freely-trained, presumably low-frequency output channels, whereas the right side (32 remaining
channels) represents RMaxa (top) or BlurRMaxa (bottom). Both of them contain a wavelet block, whose structure is detailed in Fig. 2d.
Fig. 2c: CMod-based twin models (CWAlexNet), where RMaxa as well as BlurRMaxa are replaced by standalone CModa. Fig. 2d: details
of the wavelet block, in its real and complex configurations (respectively, RWBlock and CWBlock).

The quality of this approximation depends on the filter’s
frequency and orientation. For some pathological frequen-
cies, the max pooling layer fails to reproduce the behavior
of complex modulus. For this reason, RMax may produce
unstable representations, as observed in related work.

In order to improve the model’s shift invariance, we
therefore propose to replace RMax by CMod for all Gabor
output channels. In this family of models, which we call
CWCNNs, (13) becomes, for any l ∈ {(Llow + 1) . . L},

A′
l = ReLU(Ymod

l + bl), (18)

whereas the first Llow channels remain unchanged.
According to (13) and (18), the operators mapping Xlum

to Al and A′
l can be interpreted as “activated” versions of

RMax and CMod operators, respectively. As such, they are
referred to as RMaxa and CModa.

In practice, the wavelet block is implemented with fully-
decimated DT-CWPT (each decomposition stage is per-
formed with a subsampling factor of 2). It is followed by a
modulus layer, a bias layer parameterized by a simple vec-
tor bhigh ∈ RLhigh and a ReLU activation. All the other
layers—including the Llow freely-trained channels and the
subsequent ReLU and max pooling—continue to follow the
principles established in Secs. 3.2 and 3.4. A schematic rep-
resentation of CWAlexNet is provided in Fig. 2c (top).
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WAlexNet WResNet
J (decomposition depth) 3 2

Kdt (dual-tree filters) 128 32
K′

dt (manually selected filters) 94 16
Llow, Lhigh (output channels) 32, 32 40, 24

Table 1. Experimental settings for our WCNN twin models. Other
details are provided in Appendix A.2.

3.4. WCNNs with Blur Pooling

We benchmark our approach against the antialiasing
methods proposed by Zhang [40] and Zou et al. [42]. To this
end, we consider WCNNs containing blurpooled RMaxa on
the one hand, and standalone CModa on the other hand.
Note that CModa does not contain blur pooling because it
is in itself an antialiased version of RMaxa. However, for a
fair comparison, both RMax- and CMod-based models use
blur pooling in the remaining freely-trained layers.

In what follows, we refer to BlurRMaxa and
ABlurRMaxa when talking about antialiased RMaxa us-
ing, respectively, static and adaptive blur pooling methods.
A schematic representation of WAlexNet and CWAlexNet
with static blur pooling can be found in Fig. 2b and Fig. 2c,
respectively (bottom images).

3.5. Adaptation to ResNet: Batch Normalization

In many recent architectures including ResNet, the bias
is computed after an operation called batch normalization
(BN) [16]. To build twin WCNNs based on ResNet, which
we call WResNet, the bias modules, such as displayed in
Fig. 2, are replaced by “BN + bias”. However, as shown
in Appendix A.1, the modulus layer must be followed
by a special type of batch normalization, which we call
CModBN. More specifically, Ymod is divided by the square
root of its second moment E

[
Ymod2

]
, computed during

training over mini-batches. A schematic representation of
ResNet-based models, as done in Fig. 2 for AlexNet, is pro-
vided in Fig. 6.

4. Experiments
4.1. Experiment Details

ImageNet. We built our WCNN and CWCNN twin mod-
els based on AlexNet [20] and ResNet-34 [12] architectures.
Their overall design is described in Sec. 3, along with set-
ting details in Tab. 1, whose values were determined empir-
ically from the standard models; further details are provided
in Appendix A.2. Regarding benchmarks against antialias-
ing methods based on blur pooling, Zhang’s static approach
is tested on both AlexNet and ResNet, whereas Zou et al.’s
adaptive approach is only tested on ResNet.

To apply blur pooling to RMaxa, we proceed as follows.
Following Zhang’s approach, the wavelet block is not an-

tialiased if m = 2 as in ResNet, for computational reasons.
However, when m = 4 as in AlexNet, a blur pooling layer
is placed after the ReLU activation. To counterbalance ad-
ditional subsampling, only the first wavelet decomposition
stage (out of J = 3) is performed with subsampling, at the
cost of increased redundancy. This kind of wavelet trans-
form is qualified as (partially) stationary, as introduced in
Nason and Silverman [26]. In any case, as in the standard
models, MaxPool is replaced by “Max + BlurPool”.

When antialiasing our models we used filters of size 4
and 3 for static and adaptive blur pooling methods respec-
tively, which are the default values in publicly available
repositories [40, 42]. Besides, DT-CWPT decompositions
are performed with Q-shift orthogonal filters of length 10
as introduced by Kingsbury [19].

Our models were trained on the ImageNet ILSVRC2012
dataset [29], following the standard procedure provided by
PyTorch [1]. Moreover, we set aside 100K images from the
training set—100 per class—in order to compute the top-1
error rate after each training epoch.

CIFAR-10. We also trained ResNet-18, ResNet-34 and
their variants on the CIFAR-10 dataset. Training was per-
formed on 300 epochs, with an initial learning rate equal to
0.1, decreased by a factor of 10 every 100 epochs. As for
ImageNet, we set aside 5 000 images out of 50K to com-
pute accuracy during the training phase. Given the images
of small size in this dataset (32× 32 pixels), feature extrac-
tion can be performed efficiently with a reduced number of
layers. For this reason, the first layers (“convolution + max
pooling”) arguably have a higher influence on the overall
predictive power. We therefore expect to clearly highlight
the benefits of our approach on this specific task.

4.2. Evaluation Metrics

Classification Accuracy. Classification accuracy was
computed on the standard ImageNet evaluation set (50K
images). We followed the ten-crops procedure [20]: pre-
dictions are made over 10 patches extracted from each in-
put image, and the softmax outputs are averaged to get the
overall prediction. We also considered center crops of size
224 for one-crop evaluation. In both cases, we used top-1-
5 error rates. For CIFAR-10 (10K images) evaluation, we
measured the top-1 error rate with one- and ten-crops.

Measuring Shift Invariance. For each image in the Im-
ageNet evaluation set, we extracted several patches of size
224, each of which being shifted by 0.5 pixel along a given
axis. We then compared their outputs in order to measure
the model’s robustness to shifts. This was done by com-
puting the Kullback-Leibler (KL) divergence between out-
put vectors—which, under certain hypotheses, can be inter-
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(a) AlexNet-based models

(b) ResNet-based models

Figure 3. Evolution of the top-1 validation error along training
with ImageNet, for AlexNet and ResNet. These plots display the
twin WCNNs without blur pooling (blue diamonds), with static
(red stars) and adaptive (green squares) blur pooling. The CMod-
based models appear in solid lines. Besides, standard AlexNet and
ResNet, upon which the twin models are built, appear in gray.

preted as probability distributions [4, pp. 205-206]. This
metrics is intended for visual representation.

In addition, we measured the mean flip rate (mFR) be-
tween predictions, as introduced by Hendrycks and Diet-
terich [13]. For each direction (vertical, horizontal and di-
agonal), we measured the mean frequency upon which two
shifted input images yield different top-1 predictions, for
shift distances varying from 1 to 8 pixels. We then normal-
ized the results with respect to AlexNet’s mFR, and aver-
aged over the three directions.

We repeated the procedure for the models trained on
CIFAR-10. This time, we extracted patches of size 32× 32
from the evaluation set, and computed mFR for shifts vary-
ing from 1 to 4 pixels. Besides, normalization was per-
formed with respect to ResNet-18’s mFR.

4.3. Results and Discussion

Validation Curves. Top-1 accuracy measured along
training with ImageNet is presented in Fig. 3. Regard-

Figure 4. AlexNet-based models: mean KL divergence between
the outputs of a reference image versus shifted images.

Model One-crop Ten-crops Shifts
top-1 top-5 top-1 top-5 mFR

AlexNet
Standard 45.3 22.2 41.3 19.3 100.0
RMaxa 44.9 21.8 40.8 19.0 101.4
CModa 44.3 21.3 40.2 18.5 88.0

Blur 44.8 22.0 41.1 19.1 58.1
BlurRMaxa + Blur 44.6 21.9 40.6 19.0 59.2

CModa + Blur 43.6 20.9 39.5 17.9 71.0
ResNet-34

Standard 27.6 9.2 24.8 7.7 78.1
RMaxa 27.4 9.2 24.7 7.6 77.2
CModa 27.2 9.0 24.4 7.4 73.1

Blur 26.5 8.7 24.1 7.3 60.3
BlurRMaxa + Blur 26.6 8.7 24.3 7.3 62.7

CModa + Blur 26.6 8.6 24.0 7.3 61.5
ABlur 26.1 8.3 23.5 7.0 60.8

ABlurRMaxa + ABlur 26.0 8.2 23.6 6.9 62.1
CModa + ABlur 26.1 8.2 23.7 7.0 63.1

Table 2. Evaluation metrics on ImageNet (%).

Model ResNet-18 ResNet-34
1crp 10crp shft 1crp 10crps shft

Standard 14.9 10.8 100.0 15.2 10.9 100.3
RMaxa 14.2 10.3 92.4 14.5 10.5 99.2
CModa 13.8 9.6 88.8 12.9 9.2 93.0

Blur 14.2 10.4 87.7 15.7 11.6 88.2
BlurRMaxa + Blur 13.1 9.7 84.6 13.2 9.9 85.6

CModa + Blur 12.3 8.9 85.7 12.4 9.1 83.7
ABlur 14.6 11.0 90.9 16.3 12.8 91.9

ABlurRMaxa + ABlur 14.5 11.0 86.5 14.0 10.4 93.3
CModa + ABlur 12.8 9.7 81.7 12.8 9.2 86.6

Table 3. Evaluation metrics on CIFAR-10 (%): top-1 error rate
using one- and ten-crops methods (“1crp” and “10crp”); and mFR
measuring shift invariance (“shft”).

ing AlexNet (Fig. 3a), we notice significant improve-
ments when CModa replaces RMaxa (blue diamonds), or
BlurRMaxa (red stars). In fact, our CMod-based approach
alone (blue diamonds, solid line) suffices to perform better
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than both WAlexNet and blurpooled WAlexNet (blue dia-
monds and red stars, dashed lines).

Now, when looking at ResNet (Fig. 3b), similar improve-
ments are observed, however to a lesser extent. More pre-
cisely, top-1 validation error decreases when CModa re-
places RMaxa (blue diamonds), or BlurRMaxa (red stars).
However, no visible improvement seems to occur when
ABlurRMaxa is replaced by CModa (green squares).

Finally, we notice that the training curves for WCNNs
(colored dashed lines) closely follow those of standard
CNNs (gray dotted lines). This is an expected behavior
since the former models are designed to mimic the behav-
ior of the latter. However, the training curve for WAlexNet
(blue diamonds, Fig. 3a) is below standard AlexNet for a
large part of training, before converging toward the end.
This can be explained by the more constrained architecture,
which can lead to faster training.

Accuracy Scores on Evaluation Sets. Error rates com-
puted on the evaluation sets are provided in Tab. 2 for Ima-
geNet and Tab. 3 for CIFAR-10.

The figures reported in Tab. 2 are consistent with our ob-
servations from Fig. 3. We observe a significant increase
in accuracy for AlexNet, and mixed results for ResNet.
More precisely, replacing RMaxa (without blur pooling) by
CModa clearly improves accuracy. The gain is less pro-
nounced, albeit still positive, when replacing BlurRMaxa

(Zhang’s method) by CModa. However, CModa slightly
degrades performances over ABlurRMaxa (Zou et al.’s
method). Arguably, the higher gains obtained on AlexNet,
compared to ResNet, are linked to the higher impact of early
layers on the network’s accuracy, due to the higher sub-
sampling factor. Moreover, ResNet models are deeper than
AlexNet, limiting the relative influence of our antialiasing
method.

Nevertheless, our method nearly achieves, or even ex-
ceeds, the predictive power of WCNNs antialiased with
blur pooling methods, with a significantly reduced mem-
ory footprint—more details on this is provided in Ap-
pendix A.4. Moreover, in the adaptive blur pooling sce-
nario, additional trainable parameters, and therefore compu-
tational complexity, are required (an adaptive blur pooling
layer typically contains more than 40K parameters). Con-
versely, in our method, CModa does not contain any addi-
tional parameter when compared with RMaxa.

Finally, when trained on CIFAR-10, all models achieve
significant gains in accuracy when replacing RMaxa,
BlurRMaxa, or even ABlurRMaxa, by CModa. As for
AlexNet with ImageNet, this is explained by a higher im-
pact of early layers on the network’s accuracy. In the CIFAR
case though, this is due to the small size of input images.

Shift Invariance (KL Divergence). The mean KL di-
vergence between outputs of shifted images are plotted in
Fig. 4 for AlexNet trained on ImageNet.

In standard and twin WAlexNet (gray and blue dia-
monds, dashed lines), when the input image is shifted by
4 pixels, the output of the first convolution layer is strictly
shifted by one pixel. The first layer is therefore equivariant
to a 4-pixel shift. Consequently, any divergence between
outputs is due to the action of deeper layers—and proba-
bly to boundary effects. Likewise, when the shift is equal
to 8 pixels, equivariance applies to the output of the max
pooling layer. When replacing RMaxa by CModa (blue di-
amonds, solid line), a similar 8-pixel-equivariance applies
to the output of the modulus layer. However, what hap-
pens in between depends on the chosen model. We ob-
serve that CWAlexNet smoothens the curve, avoiding the
“bumps” observed in non-antialiased models.

On the other hand, standard and twin WAlexNet an-
tialiased with blur pooling (gray and red stars, dashed lines)
have their curves considerably flattened compared to non-
antialiased models, or even to CWAlexNet without blur
pooling (gray and blue diamonds). This demonstrates the
efficiency of Zhang’s blur pooling method. Contrary to
the previous models, replacing BlurRMaxa by CModa (red
stars, solid line) degrades shift invariance, as witnessed by
the bell-shaped curve. And yet, the corresponding classi-
fier is significantly more accurate. This can be explained as
follows. Blur pooling methods are fundamentally based on
low-pass filtering, causing significant loss of information.
By contrast, our antialiasing method is designed to keep
all high-frequency information (up to a phase shift), which
may contain discriminant features. Therefore, a tradeoff be-
tween information preserving and perfect shift invariance
seems necessary to achieve the best performances. Note
that KL divergence at 8-pixel shifts is lower for blurpooled
models. This is because deeper layers are also antialiased,
transforming shift equivariance into near shift invariance.

Shift Invariance (Mean Flip Rate). The mean flip
rate for shifted inputs is reported in Tab. 2 for Ima-
geNet (AlexNet and ResNet-34) and Tab. 3 for CIFAR-10
(ResNet-18 and 34). In most situations, replacing stan-
dalone or blurpooled RMaxa by CModa leads to decreased
mFR, and therefore improved shift invariance. The two ex-
ceptions are blurpooled AlexNet, for which an explanation
is provided above, and adaptive-blurpooled ResNet on Im-
ageNet.

5. Conclusion and Perspectives
Shift invariance can lead to increased accuracy—this is

what is suggested by this work and several others introduc-
ing antialiasing techniques in CNNs. The method proposed
in this paper, which consists in replacing RMax operators
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by CMod, preserves high-frequency information. By do-
ing so, we reached or even outperformed previous methods
based on low-pass filtering, while limiting memory con-
sumption and, to some extent, computational complexity.
An interesting research direction would be to extend this
method to deeper layers, or adapt its principles to other deep
learning architectures.
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A. Appendix

A.1. Batch Normalization in ResNet

This section complements Sec. 3.5. In many recent ar-
chitectures including ResNet, the bias (see Fig. 2) is re-
placed by an affine batch normalization layer (BN). In this
section, we show how to adapt our approach to this context.

A BN layer is parameterized by trainable weight and bias
vectors, respectively denoted by a and b ∈ RL. In the re-
maining of the section, we consider Xlum, introduced in (2),
as a discrete stochastic process. Then, (10) is replaced by

Al :=MaxPool

{
ReLU

(
al ·

Yl−Em[Yl]√
Vm[Yl]+ε

+bl

)}
, (19)

with Yl satisfying (1). In the above expression, we have
introduced Em(Yl) ∈ R and Vm(Yl) ∈ R+, which re-
spectively denote the mean expected value and variance of
Yl[n], for indices n contained in the support of Yl, denoted
by supp(Yl). Let us denote by N ∈ N∗ the support size
of input images. Therefore, if the filter’s support size Nfilt

is much smaller that N , then supp(Yl) is roughly of size
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N/m. We then define the above quantities as follows:

Em[Yl] :=
m2

N2

∑
n∈Z2

E[Yl[n]]; (20)

Vm[Yl] :=
m2

N2

∑
n∈Z2

V[Yl[n]]. (21)

In practice, estimators are computed over a minibatch of
images, hence the layer’s denomination. Besides, ε > 0 is a
small constant added to the denominator for numerical sta-
bility. For the sake of concision, we now assume that a = 1.
Extensions to other multiplicative factors is straightforward.

Proposition 1. We assume that the Fourier transform of
W̃l, such as introduced in (9), is supported in a region of
size κ × κ which does not contain the origin (band-pass
filter). If, moreover, κ ≤ 2π

m , then∑
n∈Z2

Yl[n] = 0. (22)

Proof. This proposition takes advantage of Shannon’s sam-
pling theorem. A similar reasoning can be found in the
proof of Theorem 1 in [21].

As before, we assume that (16) is satisfied for each
Gabor channel l ∈ {(Llow + 1) . . L} (i.e., only one DT-
CWPT feature map has been selected). The power spec-
trum of DT-CWPT filters cannot be exactly zero on re-
gions with nonzero measure, since they are finitely sup-
ported. However, we can reasonably assume that it is con-
centrated within a region of size π/2J−1 = π/m, as ex-
plained in [21]. Therefore, since we have discarded low-
pass filters, the conditions of Prop. 1 are approximately met
for W̃l.

We now assume that (22) is satisfied. Moreover, we
assume that E[Yl[n]] is constant for any n ∈ supp(Yl).
Aside from boundary effects, this is true if E[Xlum[n]] is
constant for any n ∈ supp(Xlum).3 We then get, for any
n ∈ Z2, E[Yl[n]] = 0. Therefore, interchanging max pool-
ing and ReLU yields the normalized version of (13):

Al = ReLU

(
Ymax

l√
Em[Y2

l ] + ε
+ bl

)
. (23)

As in Sec. 3.3, we replace Ymax
l by Ymod

l for any Gabor
channel l ∈ {(Llow + 1) . . L}, which yields the normalized
version of (18):

A′
l := ReLU

(
Ymod

l√
Em[Y2

l ] + ε
+ bl

)
. (24)

3This property is a rough approximation for natural images. In prac-
tice, the main subject is generally located at the center, the sky at the top,
etc. These are sources of variability for color and luminance distributions
across images, as discussed by Torralba and Oliva [33].

Implementing (24) as a deep learning architecture is
cumbersome because Yl needs to be explicitly computed
and kept in memory, in addition to Ymod

l . Instead, we want
to express the second-order moment Em[Y2

l ] as a function
of Ymod

l . To this end, we state the following proposition.

Proposition 2. If we restrict the conditions of Prop. 1 to
κ ≤ π/m, we have

∥Yl∥22 = 2
∥∥Ymod

l

∥∥2
2
. (25)

Proof. This result, once again, takes advantage of the Shan-
non’s sampling theorem. The proof of our Proposition 3
in [21] is based on similar arguments.

As for Prop. 1, the conditions of Prop. 2 are approxi-
mately met. We therefore assume that (25) is satisfied, and
(24) becomes

A′
l := ReLU

 Ymod
l√

1
2E2m[Ymod

l

2
] + ε

+ bl

 . (26)

Therefore, the bias layer following the modulus operator in
Fig. 2c is replaced by a modified batch normalization layer
implementing (26), which we call CModBN. The second-
order moment of Ymod

l

2 is computed on feature maps which
are twice smaller than Yl in both directions—hence the in-
dex “2m” in (26), which is the subsampling factor for the
CMod operator.

Schematic representations of RMax- and CMod-based
CWResNet are provided in Fig. 6.

A.2. Setting Details for WCNNs

In this section, we provide further information that com-
plements the experimental details presented in Sec. 4.1
and Tab. 1.

According to (3), the decomposition depth J is deter-
mined by the subsampling factor m, which is equal to 4 in
AlexNet and 2 in ResNet. We then get the number of dual-
tree filters Kdt := 2× 4J .

We then manually selected K ′
dt < Kdt filters. In par-

ticular, we removed the two low-pass filters, which are
outside the scope of our theoretical study. Besides, for
computational reasons, in WAlexNet we removed 32 “ex-
tremely” high-frequency filters which are clearly absent
from the standard model (see Fig. 5a). Finally, in WResNet
we removed the 14 filters whose characteristic frequencies
lie close to an edge of the Fourier domain [−π, π]

2 (see
Fig. 5b). These filters indeed have a poorly-defined orienta-
tion, since a small fraction of their energy is located at the
far end of the Fourier domain [3, see Fig. 1, “Proposed DT-
CWPT”]. Therefore, they somewhat exhibit a checkerboard
pattern.
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(a) WAlexNet (J = 3)

(b) WResNet (J = 2)

Figure 5. Mapping scheme from DT-CWPT feature maps D ∈
SKdt to the wavelet block’s output Yhigh ∈ SLhigh . Each wavelet
feature map is symbolized by a small faint square in the Fourier
domain, where its energy is mainly located. The gray areas show
the feature maps which have been manually discarded. Elsewhere,
each group of feature maps D(q) ∈ SKq is symbolized by a dark
frame (in ResNet, Kq is always equal to 1). For each group q ∈
{1 . . Q}, a number indicates how many output channels Lq are
assigned to it. The colored numbers in Fig. 5a refer to groups on
which we have applied l∞/l1-regularization. Note that, without
any loss of information, only half of the filters are considered when
inputs are real-valued (in our example, positive x-values, but we
could also have considered the complex conjugates).

As explained in Sec. 3.2, once the DT-CWPT feature
maps have been manually selected, the output D′ ∈ SK′

dt

is sliced into Q groups of channels D(q) ∈ SKq . For each
group q, a depthwise linear mapping from D(q) to a bunch
of output channels Y(q) ∈ SLq is performed. Finally, the
wavelet block’s output feature maps Yhigh ∈ SLhigh are
obtained by concatenating the outputs Y(q) depthwise, for
any q ∈ {1 . . Q}. Figure 5 shows how the above grouping

Model Filt. frequency Reg. param.

WAlexNet

[π/8, π/4[ –

[π/4, π/2[ 4.1 · 10−3

[π/2, π[ 3.2 · 10−4

WResNet any –

Table 4. Regularization hyperparameters λq for each group q of
DT-CWPT feature maps. The groups with only one feature map
do not need any regularization. The second and third rows of
WAlexNet correspond to the blue and magenta groups in Fig. 5a,
respectively.

Model Free Gabor Total
AlexNet

Standard – – 602
RMaxa 376 571 947
CModa 376 298 674

Blur – – 2 208
BlurRMaxa + Blur 1 179 2 258 3 437

CModa + Blur 1 179 298 1 477
ResNet-34

Standard – – 2 760
RMaxa 1 781 1 229 3 011
CModa 1 781 527 2 308

Blur – – 3 563
BlurRMaxa + Blur 2 283 1 530 3 813

CModa + Blur 2 283 527 2 810
ABlur – – 6 046

ABlurRMaxa + ABlur 3 835 2 462 6 297
CModa + ABlur 3 835 527 4 362

Table 5. Number of elements (×1 000) in the intermediate and
output feature maps during forward propagation, for a given input
image of size 3 × 224 × 224. Only the layers shown in Figs. 2
and 6 are taken into account.

is made, and how many output channels Lq each group q is
assigned to.

During training, the above process aims at selecting one
single DT-CWPT feature map among each group. This
is achieved through mixed-norm l∞/l1 regularization, as
introduced in (7). The regularization hyperparameters λq

have been chosen empirically. If they are too small, then
regularization will not be effective. On the contrary, if they
are too large, then the regularization term will become pre-
dominant, forcing the trainable parameter vector α

(q)
l to

randomly collapse to 0 except for one element. The cho-
sen values of λq are displayed in Tab. 4.

Finally, the split Llow-Lhigh between the freely-trained

12



and Gabor channels, provided in the last row of Tab. 1, have
been empirically determined from the standard models.

A.3. Kernel Visualization

The resulting convolution kernels V ∈ S64×3, satisfy-
ing (1), are shown in Figs. 7 and 8 for AlexNet-based mod-
els, Figs. 9 to 11 for ResNet-based models trained on Ima-
geNet and Figs. 12 to 14 for ResNet-based models trained
on CIFAR-10. The kernels are shown as RGB color images,
for both freely-trained and Gabor channels.

We can notice that, up to a few exceptions, the freely-
trained channels (4 or 5 first rows) have been specialized to
lower-frequency filters (mono- or bi-color blobs).

In the CMod-versions of our models, the 3 or 4 last rows
display the complex-valued kernels W ∈ SLhigh×3 such
that the outputs Ymod

l satisfy

Ymod
l =

∣∣∣∣∣
K∑

k=1

(Xk ⋆Wlk) ↓ 2J

∣∣∣∣∣ . (27)

According to (15), we have Wlk = µkW̃l, where W̃l has
been introduced in (9). When looking at the power spec-
tra, these filters appear well-localized in the Fourier domain
(only one bright spot, versus two in the RMax-based mod-
els).

A.4. Memory Consumption

According to Sec. 4.3, our method nearly achieves, or
even exceeds, the predictive power of WCNNs antialiased
with blur pooling methods, with a significantly reduced
memory footprint. Table 5 displays the size of interme-
diate and output feature maps for the layers presented in
Figs. 2 and 6. We notice that replacing RMaxa by CModa

drastically reduces the memory consumption for the Gabor
channels.
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(a) ResNet (b) WResNet (baseline) (c) CWResNet (proposed approach) (d) Wavelet blocks (details)

Figure 6. First layers of ResNet and its variants, corresponding to a convolution layer followed by ReLU and max pooling. The models
are framed according to the same colors and line styles as in Fig. 3b. The bias modules from Fig. 2 have been replaced by an affine batch
normalization layer (“BN + Bias”, or “CModBN + Bias” when placed after Modulus—see Appendix A.1). Top: ResNet without blur
pooling. Middle: Zhang’s “blurpooled” models [40]. Bottom: Zou et al.’s approach, using adaptive blur pooling [42].
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(a) Standard

(b) RMaxa (four bottom rows)

(c) CModa (four bottom rows). Spatial domain: real part only

Figure 7. AlexNet (ImageNet, no blur pooling).

15



(a) Blur

(b) BlurRMaxa (four bottom rows) + Blur

(c) CModa (four bottom rows) + Blur. Spatial domain: real part only

Figure 8. AlexNet with static blur pooling (ImageNet).
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(a) Standard

(b) RMaxa (three bottom rows)

(c) CModa (three bottom rows). Spatial domain: real part only

Figure 9. ResNet-34 (ImageNet, no blur pooling).
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(a) Blur

(b) BlurRMaxa (three bottom rows) + Blur

(c) CModa (three bottom rows) + Blur. Spatial domain: real part only

Figure 10. ResNet-34 with static blur pooling (ImageNet).
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(a) ABlur

(b) ABlurRMaxa (three bottom rows) + ABlur

(c) CModa (three bottom rows) + ABlur. Spatial domain: real part only

Figure 11. ResNet-34 with adaptive blur pooling (ImageNet).
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(a) Standard

(b) RMaxa (three bottom rows)

(c) CModa (three bottom rows). Spatial domain: real part only

Figure 12. ResNet-18 (CIFAR-10, no blur pooling).
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(a) Blur

(b) BlurRMaxa (three bottom rows) + Blur

(c) CModa (three bottom rows) + Blur. Spatial domain: real part only

Figure 13. ResNet-18 with static blur pooling (CIFAR-10).
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(a) ABlur

(b) ABlurRMaxa (three bottom rows) + ABlur

(c) CModa (three bottom rows) + ABlur. Spatial domain: real part only

Figure 14. ResNet-18 with adaptive blur pooling (CIFAR-10).
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