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Abstract

Unsupervised learning of generative models has seen tremendous progress over re-
cent years, in particular due to generative adversarial networks (GANs), variational
autoencoders, and flow-based models. GANs have dramatically improved sample
quality, but suffer from two drawbacks: (i) they mode-drop, i.e., do not cover the
full support of the train data, and (ii) they do not allow for likelihood evaluations on
held-out data. In contrast likelihood-based training encourages models to cover the
full support of the train data, but yields poorer samples. These mutual shortcomings
can in principle be addressed by training generative latent variable models in a
hybrid adversarial-likelihood manner. However, we show that commonly made
parametric assumptions create a conflict between them, making successful hybrid
models non trivial. As a solution, we propose to use deep invertible transformations
in the latent variable decoder. This approach allows for likelihood computations
in image space, is more efficient than fully invertible models, and can take full
advantage of adversarial training. We show that our model significantly improves
over existing hybrid models: offering GAN-like samples, IS and FID scores that
are competitive with fully adversarial models, and improved likelihood scores.

1 Introduction

Successful recent generative models of natural images can be divided into two broad families, which
are trained in fundamentally different ways. The first is trained using likelihood-based criteria,
which ensure that all training data points are well covered by the model. This category includes
variational autoencoders (VAEs) [26, 27, 40l |41]], autoregressive models such as PixelCNNs [47,54]],
and flow-based models such as Real-NVP [9} 21} 25]]. The second category is trained based on a
signal that measures to what extent (statistics of) samples from the model can be distinguished from
(statistics of) the training data, i.e., based on the quality of samples drawn from the model. This is the
case for generative adversarial networks (GANs) [2, [15} 23], and moment matching methods [29].

Despite tremendous recent progress, existing methods exhibit a number of drawbacks. Adversarially
trained models such as GANs do not provide a density function, which poses a fundamental problem
as it prevents assessment of how well the model fits held out and training data. Moreover, adversarial
models typically do not allow to infer the latent variables that underlie observed images. Finally,
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Figure 1: An invertible non-linear mapping f,, maps
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adversarial models suffer from mode collapse [2]], i.e., they do not cover the full support of the
training data. Likelihood-based model on the other hand are trained to put probability mass on all
elements of the training set, but over-generalise and produce samples of substantially inferior quality
as compared to adversarial models. The models with the best likelihood scores on held-out data
are autoregressive models [36], which suffer from the additional problem that they are extremely
inefficient to sample from [39], since images are generated pixel-by-pixel. The sampling inefficiency
makes adversarial training of such models prohibitively expensive.

In order to overcome these shortcomings, we seek to design a model that (i) generates high-quality
samples typical of adversarial models, (ii) provides a likelihood measure on the entire image space,
and (iii) has a latent variable structure to allow for efficient sampling, that permits adversarial training.
Additionally we show that, (iv) a successfull hybrid adversarial-likelihood paradigm requires going
beyond simplifying conditional independance assumptions commonly used with likelihood based
latent variable models. These simplifying assumptions on the conditional distribution on data x given
latents z, p(x|z), include full independence across the dimensions of - and/or simple parametric forms
such as Gaussian [26], or use fully invertible networks [9} 25]. These assumptions create a conflict
between achieving high sample quality and high likelihood scores on held-out data. Autoregressive
models, such as pixelCNNs [47, 154], do not make factorization assumptions, but are extremely
inefficient to sample from. As a solution, we propose learning a non-linear invertible function fy,
between the image space and an abstract feature space as illustrated in Figure[I] Training a model with
full support in this feature space induces a model in the image space that does not make Gaussianity
or independence assumptions in the conditional p(z|z). Trained by MLE, f,, adapts to modelling
assumptions made by py so we refer to this approach as “adaptive density estimation”.

We experimentally validate our approach on the CIFAR-10 dataset with an ablation study. Our model
significantly improves over existing hybrid models, producing GAN-like samples, and IS and FID
scores that are competitive with fully adversarial models. At the same time, we obtain likelihoods on
held-out data comparable to state-of-the-art likelihood-based methods which requires covering the
full support of the dataset. We further confirm these observations with quantitative and qualitative
experimental results on the STL-10, ImageNet and LSUN datasets.

2 Related work

Mode-collapse in GANs has received considerable attention, and stabilizing the training process
as well as improved and bigger architectures have been shown to alleviate this issue [2} [18] 38]].
Another line of work focuses on allowing the discriminator to access batch statistics of generated
images, as pioneered by [23|46], and further generalized by [30}33]]. This enables comparison of
distributional statistics by the discriminator rather than only individual samples. Other approaches
to encourage diversity among GAN samples include the use of maximum mean discrepancy [1]],
optimal transport [48], determinental point processes [[14] and bayesian formulations of adversarial
training [43] that allow model parameters to be sampled. In contrast to our work, these models lack
an inference network, and do not define an explicit density over the full data support.
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An other line of research has explored inference mechanisms for GANs. The discriminator of
BiGAN [10] and ALI [12]}, given pairs (z, z) of images and latents, predict if z was encoded from
a real image, or if © was decoded from a sampled z. In [53] the encoder and the discriminator
are collapsed into one network that encodes both real images and generated samples, and tries to
spread their posteriors apart. In [6]] a symmetrized KL divergence is approximated in an adversarial
setup, and uses reconstruction losses to improve the correspondence between reconstructed and target
variables for  and z. Similarly, in [42] a discriminator is used to replace the KL divergence term in
the variational lower bound used to train VAEs with the density ratio trick. In [34] the KL divergence
term in a VAE is replaced with a discriminator that compares latent variables from the prior and
the posterior in a more flexible manner. This regularization is more flexible than the standard KL
divergence. The VAE-GAN model [28]] and the model in [22] use the intermediate feature maps of
a GAN discriminator and of a classifier respectively, as target space for a VAE. Unlike ours, these
methods do not define a likelihood over the image space.

Likelihood-based models typically make modelling assumptions that conflict with adversarial training,
these include strong factorization and/or Gaussianity. In our work we avoid these limitations by
learning the shape of the conditional density on observed data given latents, p(z|z), beyond fully
factorized Gaussian models. As in our work, Flow-GAN [16] also builds on invertible transformations
to construct a model that can be trained in a hybrid adversarial-MLE manner, see Figure E} However,
Flow-GAN does not use efficient non-invertible layers we introduce, and instead relies entirely on
invertible layers. Other approaches combine autoregressive decoders with latent variable models to
go beyond typical parametric assumptions in pixel space [[7,[19|32]. They, however, are not amenable
to adversarial training due to the prohibitively slow sequential pixel sampling.

3 Preliminaries on MLE and adversarial training

Maximum-likelihood and over-generalization. The de-facto standard approach to train generative
models is maximum-likelihood estimation. It maximizes the probability of data sampled from an
unknown data distribution p* under the model py w.r.t. the model parameters 6. This is equivalent
to minimizing the Kullback-Leibler (KL) divergence, Dk, (p*||pe), between p* and py. This yields
models that tend to cover all the modes of the data, but put mass in spurious regions of the target
space; a phenomenon known as “over-generalization” or “zero-avoiding” [4], and manifested by
unrealistic samples in the context of generative image models, see Figure[dl Over-generalization is
inherent to the optimization of the KL divergence oriented in this manner. Real images are sampled
from p*, and py is explicitly optimized to cover all of them. The training procedure, however, does
not sample from py to evaluate the quality of such samples (ideally using the inaccessible p*(z) as a
score). Therefore pg may put mass in spurious regions of the space without being heavily penalized.
We refer to this kind of training procedure as “coverage-driven training” (CDT). This optimizes a
loss of the form Lc(pg) = [, p*()sc(x,pg) dz, where s.(z,pg) = Inpg(z) evaluates how well
a sample zx is covered by the model. Any score s, that verifies: Lc(pg) = 0 <= pg = p*, is
equivalent to the log-score, which forms a justification for MLE on which we focus.

Explicitly evaluating sample quality is redundant in the regime of unlimited model capacity and
training data. Indeed, putting mass on spurious regions takes it away from the support of p*, and thus
reduces the likelihood of the training data. In practice, however, datasets and model capacity are
finite, and models must put mass outside the finite training set in order to generalize. The maximum
likelihood criterion, by construction, only measures how much mass goes off the training data, not
where it goes. In classic MLE, generalization is controlled in two ways: (i) inductive bias, in the form
of model architecture, controls where the off-dataset mass goes, and (ii) regularization controls to
which extent this happens. An adversarial loss, by considering samples of the model py, can provide



a second handle to evaluate and control where the off-dataset mass goes. In this sense, and in contrast
to model architecture design, an adversarial loss provides a “trainable” form of inductive bias.

Adversarial models and mode collapse. Adversarially trained models produce samples of excellent
quality. As mentioned, their main drawbacks are their tendency to “mode-drop”, and the lack of
measure to assess mode-dropping, or their performance in general. The reasons for this are two-fold.
First, defining a valid likelihood requires adding volume to the low-dimensional manifold learned
by GANSs to define a density under which training and test data have non-zero density. Second,
computing the density of a data point under the defined probability distribution requires marginalizing
out the latent variables, which is not trivial in the absence of an efficient inference mechanism.
When a human expert subjectively evaluates the quality of generated images, samples from the
model are compared to the expert’s implicit approximation of p*. This type of objective may be
formalized as Lo (pg) = [, po(x)sq(x, p*) da, and we refer to it as “quality-driven training” (QDT).
To see that GANSs [[15]] use this type of training, recall that the discriminator is trained with the loss
Loan = [, p*(x) In D(x) + pg(x) In(1 — D(x)) dz. It is easy to show that the optimal discriminator
equals D*(z) = p*(x)/(p*(x) + po(z)). Substituting the optimal discriminator, Lgan equals the
Jensen-Shannon divergence,

. 1 1 1 1 .
Dis(p*||pe) = §DKL(P ||§(p0 +p%)) + §DKL(P9H§(P0 +p%)), (D

up to additive and multiplicative constants [[15]. This loss, approximated by the discriminator, is
symmetric and contains two KL divergence terms. Note that Dk, (p*||2 (ps + p*)) is an integral on
p*, so coverage driven. The term that approximates it in Lgan, i.€., fx p*(z) In D(z), is however
independent from the generative model, and disappears when differentiating. Therefore, it cannot be
used to perform coverage-driven training, and the generator is trained to minimize In(1 — D(G(z)))
(or to maximize In D(G(z))), where G(z) is the deterministic generator that maps latent variables z
to the data space. Assuming D = D*, this yields

/zp(z) In(1 — D*(G(2))) dz = /mpg(x) lnm dz = Dki(pol|(pe +07)/2), (2)

which is a quality-driven criterion, favoring sample quality over support coverage.

4 Adaptive Density Estimation and hybrid adversarial-likelihood training

We present a hybrid training approach with MLE to cover the full support of the training data, and
adversarial training as a trainable inductive bias mechanism to improve sample quality. Using both
these criteria provides a richer training signal, but satisfying both criteria is more challenging than
each in isolation for a given model complexity. In practice, model flexibility is limited by (i) the
number of parameters, layers, and features in the model, and (ii) simplifying modeling assumptions,
usually made for tractability. We show that these simplifying assumptions create a conflict between the
two criteria, making successfull joint training non trivial. We introduce Adaptive Density Estimation
as a solution to reconcile them.

Latent variable generative models, defined as pg () = [, po(x|2)p(z) dz, typically make simplifying
assumptions on py(x|z), such as full factorization and/or Gaussianity, see e.g. [11} 26, [31]. In
particular, assuming full factorization of py(x|z) implies that any correlations not captured by z are
treated as independent per-pixel noise. This is a poor model for natural images, unless z captures
each and every aspect of the image structure. Crucially, this hypothesis is problematic in the context
of hybrid MLE-adversarial training. If p* is too complex for py(x|z) to fit it accurately enough, MLE
will lead to a high variance in a factored (Gaussian) py(x|z) as illustrated in Figure {4| (right).

This leads to unrealistic blurry samples, easily detected by an adversarial discriminator, which then
does not provide a useful training signal. Conversely, adversarial training will try to avoid these poor
samples by dropping modes of the training data, and driving the “noise” level to zero. This in turn is
heavily penalized by maximum likelihood training, and leads to poor likelihoods on held-out data.

Adaptive density estimation. The point of view of regression hints at a possible solution. For
instance, with isotropic Gaussian model densities with fixed variance, solving the optimization
problem 6* € maxg In(pe(z)) is similar to solving ming ||e(2) — z||2, i.e., {2 regression, where
to(z) is the mean of the decoder py(z|z). The Euclidean distance in RGB space is known to



be a poor measure of similarity between images, non-robust to small translations or other basic
transformations [35]]. One can instead compute the Euclidean distance in a feature space, || fy, (1) —
fu(x2)||2, where fy is chosen so that the distance is a better measure of similarity. A popular way to
obtain f is to use a CNN that learns a non-linear image representation, that allows linear assessment
of image similarity. This is the idea underlying GAN discriminators, the FID evaluation measure [[20],
the reconstruction losses of VAE-GAN [28]] and classifier based perceputal losses as in [22].

Despite their flexibility, such similarity metrics are in general degenerate in the sense that they may
discard information about the data point «. For instance, two different images = and y can collapse to
the same points in feature space, i.e., fy, () = fy(y). This limits the use of similarity metrics in the
context of generative modeling for two reasons: (i) it does not yield a valid measure of likelihood
over inputs, and (ii) points generated in the feature space f,, cannot easily be mapped to images.
To resolve this issue, we chose fy, to be a bijection. Given a model py trained to model fy(x) in
feature space, a density in image space is computed using the change of variable formula, which
yields pg,y () = po(fy(x)) |det (9 fy(x)/0xT)|. Image samples are obtained by sampling from
Py in feature space, and mapping to the image space through f,- 1. We refer to this construction as
Adaptive Denstiy Estimation. If py provides efficient log-likelihood computations, the change of
variable formula can be used to train f,, and pg together by maximum-likelihood, and if py provides
fast sampling adversarial training can be performed efficiently.

MLE with adaptive density estimation. To train a generative latent variable model pg(z) which
permits efficient sampling, we rely on amortized variational inference. We use an inference network
¢4(z|x) to construct a variational evidence lower-bound (ELBO),
Liipo(w,0,¢) = oy I(po(Fy (2)12))] = Prcr(gs (2l2)lpo(2)) < Inpo(fy(z)). (3)
b zZ|xT
Using this lower bound together with the change of variable formula, the mapping to the similarity
space f, and the generative model py can be trained jointly with the loss

Lc(9, ¢,1) 0fu(@) } >~ E [Inppy()]. (4)

oxT ~p*

We use gradient descent to train f,, by optimizing Lc (8, ¢, ) w.r.t. 0. The Lgigo term encourges
the mapping f, to maximize the density of points in feature space under the model pg, so that fy,
is trained to match modeling assumptions made in py. Simultaneously, the log-determinant term
encourages f,, to maximize the volume of data points in feature space. This guarantees that data
points cannot be collapsed to a single point in the feature space. We use a factored Gaussian form
of the conditional pg(.|z) for tractability, but since fy, can arbitrarily reshape the corresponding
conditional image space, it still avoids simplifying assumptions in the image space. Therefore,
the (invertible) transformation f, avoids the conflict between the MLE and adversarial training
mechanisms, and can leverage both.

= o

E —L¥ po(x.0,¢) —In ‘det

Adversarial training with adaptive density estimation. To sample the generative model, we
sample latents from the prior, z ~ pg(z), which are then mapped to feature space through p9(z), and
to image space through f; 1. We train our generator using the modified objective proposed by [51]],
combining both generator losses considered in [15], i.e. In[(1 — D(G(z)))/D(G(%))], which yields:

Lqo(po,w) = —E [IHD(JZZI(M@(Z))) —In(1 = D(f; " (ne(2))))| - )

Assuming the discriminator D is trained to optimality at every step, it is easy to demonstrate that
the generator is trained to optimize Dkr,(ps,||[p*). The training procedure, written as an algorithm
in Appendix alternates between (i) bringing Lq(pg,,) closer to it’s optimal value L4 (po,w) =
D1, (po,|p*), and (ii) minimizing Lc(pg,y) + Lo(Po,y). Assuming that the discriminator is trained
to optimality at every step, the generative model is trained to minimize a bound on the symmetric
sum of two KL divergences: Lc(po,y) + L(Po,y) > Drr(p*||po,w) + Pxr(pe.y|lp*) + H(p*),
where the entropy of the data generating distribution, H(p*), is an additive constant independent of
the generative model py . In contrast, MLE and GANs optimize one of these divergences each.

S Experimental evaluation

We present our evaluation protocol, followed by an ablation study to assess the importance of the
components of our model (Section[5.1)). We then show the quantitative and qualitative performance of



fy Adv. MLE BPD | IST FID |

GAN x v x [7.0] 6.8 314
VAE X X v 44 20 171.0
vaabEl v x v 35 3.0 1120
AV-GDE X v Vv 44 5.1 58.6
av-aDEl v v v 39 7.1 280

Table 1: Quantitative results. T : Parameter
count decreased by 1.4% to compensate for
fw. [Square brackets] denote that the value
is approximated, see Section 3}

Figure 5: Samples from GAN and VAE
baselines, our V-ADE, AV-GDE and AV-
) ADE models, all trained on CIFAR-10.

our model, and compare it to the state of the art on the CIFAR-10 dataset in Section[5.2] We present
additional results and comparisons on higher resolution datasets in Section[5.3]

Evalutation metrics. We evaluate our models with complementary metrics. To assess sample
quality, we report the Fréchet inception distance (FID) [20] and the inception score (IS) [46], which
are the de facto standard metrics to evaluate GANSs [53},55]. Although these metrics focus on sample
quality, they are also sensitive to coverage, see Appendix [D| for details. To specifically evaluate
the coverage of held-out data, we use the standard bits per dimension (BPD) metric, defined as the
negative log-likelihood on held-out data, averaged across pixels and color channels [9].

Due to their degenerate low-dimensional support, GANs do not define a density in the image space,
which prevents measuring BPD on them. To endow a GAN with a full support and a likelihood, we
train an inference network “around it”, while keeping the weights of the GAN generator fixed. We
also train an isotropic noise parameter o. For both GANs and VAEs, we use this inference network to
compute a lower bound to approximate the likelihood, i.e., an upper bound on BPD. We evaluate all
metrics using held-out data not used during training, which improves over common practice in the
GAN literature, where training data is often used for evaluation.

5.1 Ablation study and comparison to VAE and GAN baselines

We conduct an ablation study on the CIFAR-10 dataset. EI Our GAN baseline uses the non-residual
architecture of SNGAN [J38]], stable and quick to train, without spectral normalization. The same
convolutional architecture is kept to build a VAE baseline. El It produces the mean of a factorizing
Gaussian distribution. To ensure a valid density model we add a trainable isotropic variance o.
We train the generator for coverage by optimizing L¢(pg), for quality by optimizing L (ps), and
for both by optimizing the sum Lg(pg) + Lc(pe). The model using Variational inference with
Adaptive Density Estimation (ADE) is refered to as V-ADE. The addition of adversarial training is
denoted AV-ADE, and hybrid training with a Gaussian decoder as AV-GDE. The bijective function
f,ﬂ increases the number of weights by approximately 1.4%, which we compensate for with a slight
decrease in the width of the generator for fair comparisonﬂ See Appendix for details.

Experimental results in Table[T|confirm that the GAN baseline yields better sample quality (IS and
FID) than the VAE baseline, e.g., obtaining inception scores of 6.8 and 2.0, respectively. Conversely,
VAE achieves better coverage, with a BPD of 4.4, compared to 7.0 for GAN. An identical generator
trained for both quality and coverage, AV-GDE, obtains a sample quality that is in between that of the
GAN and the VAE baselines, in line with the analysis in Sectionf[d} Samples from the different models
in Figureconﬁrm these quantitative results. Using fy; and training with £ (py) only, denoted by
V-ADE in the table, leads to improved sample quality with IS up from 2.0 to 3.0 and FID down from
171 to 112. Note that this quality is still below the GAN baseline and our AV-GDE model.

! We use the standard split of 50k/10k train/test images of 32x32 pixels. 2 In the VAE model, some intermediate
feature maps are treated as conditional latent variables, allowing for hierarchical top-down sampling (see
Appendix [B). Experimentally, we find that similar top-down sampling is not effective for the GAN model.
3 implemented as a small Real-NVP with 1 scale, 3 residual blocks, 2 layers per block. # This is too small to
make a significant difference in experiments.



When f is used with coverage and quality driven training, AV-ADE, we obtain improved IS and
FID scores over the GAN baseline, with IS up from 6.8 to 7.1, and FID down from 31.4 to 28.0. The
examples shown in the figure confirm the high quality of the samples generated by our AV-ADE model.
Our model also achieves a better BPD than the VAE baseline. These experiments demonstrate that
our proposed bijective feature space substantially improves the compatibility of coverage and quality
driven training. We obtain improvements over both VAE and GAN in terms of held-out likelihood,
and improve VAE sample quality to, or beyond, that of GAN. We further evaluate our model using the
recent precision and recall approach of [44] an the classification framework of [49] in Appendix [E]
Additional results showing the impact of the number of layers and scales in the bijective similarity
mapping f, (Appendix @, reconstructions qualitatively demonstrating the inference abilities of our
AV-ADE model (Appendix |G)) are presented in the appendix.

5.2 Refinements and comparison to the state of the art

We now consider further refinements to our model, inspired by recent  Refinements BPD| ISt FID
generative modeling literature. Four refinements are used: (i) adding ~“Gan (7.0] 68 314
residual connections to the discriminator [18] (rd), (ii) leveraging GAN (d) [6.91 7.4 24.0

: 3 3 4 4 _ 3 AV-ADE 3.9 7.1 28.0
more accurate posterlor appr0x1mat10ns using inverse auto regressive AV-ADE (¢d) 38 75 260

flow [27] (iaf); see Appendix@ (iii) training wider generators with  Av.ADE (we,rd) 3.8 82 17.2
twice as many channels (wg), and (iv) using a hierarchy of two scales ~ AV-ADE (iaf,rd) 3.7 8.1 18.6

to build fy (s2); see Appendix Table shows consistent improve- _AY-ADE (2 35 69 289
ments with these additions, in terms of BPD, IS, FID. Table 2: Model refinements.
Table [3] compares our model to existing hybrid approaches and Hybrid (L) BPD | IST FID{

state-of-the-art generative models on CIFAR-10. In the category AV-ADE (wg,rd) 3.8 82 17.2

of hybrid models that optimize likelihood, denoted by Hybrid (L) I/:X'igg (isazf' rd) 3;; 2'; é:g
in the table, FlowGAN(H) optimizes MLE and an adversarial loss, Flo_wGan((A))[16] 85 58

and FlowGAN(A) is trained adversarially. The AV-ADE model FlowGan(H) [I6] 4.2 3.9

significantly outperforms these two variants both in terms of BPD,

from 4.2 to between 3.5 and 3.8, and quality, e.g., IS improves Hybrid (A) BPD| ISt FID|
from 5.8 to 8.2. Compared to models that train an inference age 53] 5.9
network adversarially, denoted by Hybrid (A), our model shows ALI[12] 5.3

a substantial improvement in IS from 7.0 to 8.2. Note that these 2%256342] g:g
models do not allow likelihood evaluation, thus BPD values are absent.  SVAE-r [§] 7.0
Compared to adversarial models, which are not optimized for support  Adversarial BPD| ISt FID|
coverage, AV-ADE obtains better FID (17.2 down from 21.7) and sim- "4 "Ganim) 73 250
ilar IS (8.2 for both) compared to SNGAN with residual connections  SNGan [38] 7.4 29.3
and hinge-loss, despite training on 17% less data than GANSs (test E\j‘(‘}c)\‘g’g)[a% 7o 2T
split removed). The improvement in FID is likely due to this mea- SNGAI\}( R 82 217
sure being more sensitive to support coverage than IS. Compared to

models optimized with MLE only, we obtain a BPD between 3.5 and g BPD| IST FID

3.7, comparable to 3.5 for Real-NVP demonstrating a good coverage R . rE——
calNVP[9] 3.5 4.57 56.8
of the support of held-out data. We computed IS and FID scores for  yapjarpp7 31 3.8t 7350
MLE based models using publicly released code, with provided pa- Pixenn++ [@&7] 29 55
rameters (denoted by T in the table) or trained ourselves (denoted by ). Flow++ I 3.1 : :
Despite being smaller (for reference Glow has 384 layers VS at most Glow 23] 34 55 468
10 for our deeper generator), our AV-ADE model generates better ~ Table 3: Performance on CIFARI0,
samples, e.g., IS up from 5.5 to 8.2 (samples displayed in Figure 6), W“rl:f:)‘égTzlssc'al:ﬁﬁfeaiiggﬁ?iFL)
owing to quality driven training controling where the off-dataset mass  computed by us using provided weights.
goes. Additional samples from our AV-ADE model and comparison 1 computed by us using provided code

e . ain models.
to others models are given in Appendix [A] (© (retrain models

5.3 Results on additional datasets

To further validate our model we evaluate it on STL10 (48 x 48), ImageNet and LSUN (both 64 x 64).
We use a wide generator to account for the higher resolution, without iaf, a single scale in f,,, and
no residual blocks (see Section[5.2). The architecture and training hyper-parameters are not tuned,
besides adding one layer at resolution 64 x 64, which demonstrates the stability of our approach.
On STLI10, Table @] shows that our AV-ADE improves inception score over SNGAN, from 9.1 up to



Glow @ 3.35 BPD FlowGan (H) @ 4.21 BPD AV-ADE (iaf, rd) @ 3.7 BPD

Figure 6: Samples from models trained on CIFAR-10. Our AV-ADE spills less mass on unrealistic samples,
owing to adversarial training which controls where off-dataset mass goes.

9.4, and is second best in FID. Our likelihood performance, between 3.8 and 4.4, and close to that
of Real-NVP at 3.7, demonstrates good coverage of the support of held-out data. On the ImageNet
dataset, maintaining high sample quality, while covering the full support is challenging, due to its
very diverse support. Our AV-ADE model obtains a sample quality behind that of MMD-GAN with
IS/FID scores at 8.5/45.5 vs. 10.9/36.6. However, MMD-GAN is trained purely adversarially and
does not provide support guarantees, unlike our approach.

Figure[7]shows samples from our generator trained on a single GPU with 11 Gb of memory on LSUN
classes. It yields compelling samples compared to those of the Glow model, despite having more
flexibility (over 500 VS 7 layers) showing that Glow spills more mass outside of the training support.
Additional samples and other LSUN categories are presented in Appendix [A]

STL-10 (48 x 48) BPD | IST FID|  ImageNet (64 x 64) BPD | IS FID| LSUN Real-NVP Glow Ours

AV-ADE (wg,wd) 4.4 94 443 AV ADE (wg, wd) 4.90 8.5 45.5 Bedroom (2.72/x) (2.38/208.8")(3.91,21.1)
AV-ADE (iaf, wd) 4.0 8.6 52.7

B t
AV-ADE (s2) 38 86 521 Real-NVP 3.98 Tower (2.81/%) (2.46/214451) (3.95, 15.5)
Real-NVP 37t 4.8% 103.2¢ Glow 3.81 Church (3.08/x) (2.67/222.3") (4.3,13.1)
BatchGAN 8.7 51 Flow++ 3.69 Classroom X X (4.6, 20.0)
SNGAN (Res-Hinge) 9.1 40.1 MMD-GAN 10.9 36.6  Restaurant X X (4.7,20.5)

Table 4: Results on the STL-10, ImageNet, and LSUN datasets. AV-ADE (wg, rd) is used for LSUN.
Ours: AV-ADE (wg, rd)

a

h

Figure 7: Samples from models trained on LSUN Churches (C) and bedrooms (B). Our AV-ADE model
over-generalises less and produces more compelling samples. See AppendixElfor more classes and samples.

6 Conclusion

We presented a generative model that leverages invertible network layers to relax the conditional pixel
independence assumption commonly made in VAE decoders. It allows for efficient feed-forward
sampling, and can be trained using a maximum likelihood criterion that ensures coverage of the data
generating distribution, as well as an adversarial criterion that ensures high sample quality.
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