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Abstract: We advocate the usefulness of taking into account the modelling purpose when selecting
a model. Two situations are considered to support this idea: Choosing the number of components
in a mixture model in a cluster analysis perspective, and choosing a probabilistic model in a su-
pervised classification context. For this last situation we propose a new criterion, the Bayesian
Entropy Criterion, and illustrate its behavior with numerical experiments.
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1 Introduction

In statistical inference from data, selecting a parsimonious model among a collection of models is
an important but difficult task. This general problem receives much attention since the seminal
papers of Akaike (1974) and Schwarz (1978). A model selection problem consists essentially of
solving the bias-variance dilemma: A too simple model will produce a large approximation error
(underfitting) and a too complicated model will produce a large estimation error (overfitting).

A classical approach to the model assessing problem consists of penalizing the fit of a model
by a measure of its complexity. A convenient measure of fit is the deviance of a model m ∈ M,
which is

d(x) = 2[log p(x)− log p(x|m, θ̂m)]

where p(x) =
∏n

1=1 p(xi) denotes the true distribution of the data x = (x1, . . . , xn), (for simplicity,
the x′is are supposed to be iid) p(x|m, θm) =

∏n
i=1 p(xi|m, θm) is the distribution under the model

m parameterized with θm, and θ̂m is the maximum likelihood (ml) estimate of θm. Under the
maximum likelihood approach and in a prediction perspective, a common way of penalization
is based on the idea that the deviance will be smaller on a learning set than on a test set of
comparable size, since we actually chose the parameters to minimize the deviance on the learning
set. Thus, the problem when choosing a penalization term is to evaluate how large would be the
difference on average over learning and test sets. That is the penalization would be an estimation
of nD(X)− E(d(x)) where

D(X) = 2E[log p(X)− log p(X|m, θ̂m)]

is the expected deviance on a single test observation X. Assuming that the data arose from
a distribution belonging to the collection of models in competition, Akaike (1974) proposes to
estimate this difference with 2νm where νm is the number of free parameters of the model m. This
leads to the so called AIC criterion.

AIC(m) = 2 log p(x|m, θ̂m)− 2νm. (1)
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Relaxing this unrealistic assumption leads to alternative criteria such as the NIC criterion of
Murata et al. (1994). (Details can be found in Ripley 1996, pp. 32-34 and 61.)

An other point of view consists of basing the model selection on the integrated likelihood of
the data in a Bayesian perspective (see Kass and Raftery 1995). This integrated likelihood is

p(x|m) =
∫

p(x|m, θm)π(θm)dθm, (2)

π(θm) being a prior distribution for parameter θm. The essential technical problem is to ap-
proximate this integrated likelihood in a right way. A classical asymptotic approximation of the
logarithm of the integrated likelihood is the BIC criterion of Schwarz(1978). It is

BIC(m) = log p(x|m, θ̂m)− νm

2
log(n). (3)

This approximation needs regularity conditions on the likelihoods of the model collection M and is
accurate when the prior distribution π(θm) is centered around the maximum likelihood estimate θ̂m

(see Raftery 1995). Notice that it has been argued that this formulation may only be appropriate
in circumstances where it was really believed that one and only one of the competing models is in
fact true (Bernardo and Smith 1994, chapter 6).

Beyond technical difficulties which can occur when choosing a model, the scope of this paper
is to show how it can be fruitful to take into account the purpose of the model user to get reliable
and useful models for statistical description or decision tasks. In that viewpoint in mind, we focus
on model-based cluster analysis and generative models for supervised classification.

The paper is organized as follows. In Section 2, the problem of assessing the number of com-
ponents in a mixture model is considered from the cluster analysis point of view. In Section 3, a
criterion for choosing a model in a supervised classification context is proposed and is experimented
for choosing a model among mixture discriminant analysis models. A discussion section ends the
paper.

2 Choosing the number of mixture components for cluster-
ing

Assessing the number K of components in a mixture model is a difficult question, from both
theoretical and practical points of view, which had received much attention in the past two decades.
In this paper, we do not propose a state of the art of this problem which has not been completely
resolved. The reader is referred to the chapter 6 of the recent book of McLachlan and Peel (2000)
for an excellent overview on this subject. We are essentially aiming to discuss elements of practical
interest regarding the problem of choosing the number of mixture components when concerned
with cluster analysis.

In a mixture model, observations x = (x1, . . . ,xn) in Rnd are assumed to be a sample from a
probability distribution with density

p(xi | K, θK) =
K∑

k=1

pkφ(xi | ak) (4)

where the pk’s are the mixing proportions (0 < pk < 1 for all k = 1, . . . ,K and
∑

k pk = 1)
and φ(. | ak) denotes a parameterized density (usually the d-dimensional Gaussian density) with
parameter ak, and θK = (p1, . . . , pK−1, a1, . . . , aK).

Assessing the number of components in the mixture model is known as a difficult problem from
the theoretical point of view. As a matter of fact, even when K∗ the right number of component



is assumed to exist, if K∗ < K0 then K∗ is not identifiable in the parameter space ΘK0 (see for
instance McLachlan and Peel 2000, chapter 6).

But, here, we want to stress the importance of taking into account of the modelling context
to select a reasonable and useful number of mixture components. Our opinion is that, behind
the theoretical difficulties, assessing the number of components in a mixture model from data is a
weakly identifiable statistical problem. Mixture densities with different number of components can
lead to quite similar resulting densities. For instance, the galaxy velocities data of Roeder (1990)
has became a benchmark data set and is used by many authors to illustrate procedures for choosing
the number of mixture components. Now, according to those authors the answer lies from K = 2
to K = 10, and it is not exaggerating a lot to say that all the answers between 2 and 10 have been
proposed as the good answer, at least one time, in the papers considering this particular data set.
(An interesting and illuminating comparative study on this data set can be found in Aitkin, 2001.)
Thus, we consider that it is highly desirable to choose K by keeping in mind what is expected
from the mixture modelling to get a relevant answer to this question. Actually, mixture modelling
can be used in quite different purposes. It can be regarded as a semi parametric tool for density
estimation purpose or as a tool for cluster analysis.

In the first perspective, much considered by Bayesian statisticians, numerical experiments (see
Roeder and Wasserman 1997 or Fraley and Raftery 1998, 2002) show that the BIC approximation
of the integrated likelihood works well at a practical level. Moreover, under regularity conditions
including the fact that the component densities are finite, Keribin (2000) proved that BIC provides
a consistent estimator of K.

But, in the second perspective, the integrated likelihood does not take into account the clus-
tering purpose at hand for selecting a mixture model in a model-based clustering setting. As a
consequence, in the most current situations where the distribution from which the data arose is
not in the collection of considered mixture models, BIC criterion will tend to overestimate the
correct size regardless of the separation of the clusters (see Biernacki, Celeux and Govaert 2000
for illustrations).

To overcome this limitation, it can be advantageous to choose K in order to get the mixture
giving rise to partitioning data with the greatest evidence. With that purpose in mind, Biernacki et
al. (2000) considered the integrated likelihood of the complete data (x, z) (or integrated completed
likelihood), z = (z1, . . . , zn) denoting the missing data such that zi = (zi1, . . . , ziK) are binary K-
dimensional vectors with zik = 1 if and only if xi arises from component k. Those missing indicator
vectors define a partition P = (P1, . . . , PK) of the observed data x with Pk = {xi | zik = 1}. Then,
the integrated complete likelihood is

p(x, z | K) =
∫

ΘK

p(x, z | K, θ)π(θ | K)dθ, (5)

where

p(x, z | K, θ) =
n∏

i=1

p(xi, zi | K, θ)

with

p(xi, zi | K, θ) =
K∏

k=1

pzik

k [φ(xi | ak)]zik .

To approximate this integrated complete likelihood, those authors propose to use a BIC-like ap-
proximation leading to the criterion

ICL(K) = log p(x, ẑ | K, θ̂)− νK

2
log n, (6)



where the missing data have been replaced by their most probable value for parameter estimate
θ̂. (Details can be found in Biernacki et al. 2000.) Roughly speaking criterion ICL is the criterion
BIC penalized by the estimated mean entropy

E(K) = −
K∑

k=1

n∑

i=1

tik log tik ≥ 0,

tik denoting the conditional probability that xi arises from the kth mixture component (1 ≤ i ≤ n
and 1 ≤ k ≤ K).

As a consequence, ICL favors K values giving rise to partitioning the data with the greatest
evidence, as highlighted in the numerical experiments in Biernacki et al. (2000), because of this
additional entropy term. Most generally, ICL appears to provide a stable and reliable estimate of
K for real data sets and also for simulated data sets from mixtures when the components are not
too much overlapping (see for instance McLachlan and Peel, 2000). But ICL, which is not aiming to
discover the true number of mixture components, can underestimate the number of components for
simulated data arising from mixture with poorly separated components as illustrated in Figueiredo
and Jain (2002).

On the contrary, BIC performs remarkably well to assess the true number of components from
simulated data (see Biernacki et al. 2000, Fraley and Raftery, 1998, 2002, for instance). But, for
real world data sets, BIC has a marked tendency to overestimate the numbers of components. The
reason is that real data sets do not arise from the mixture densities at hand, and the penalty term
of BIC is not strong enough to balance the tendency of the loglikelihood to increase with K to
improve the fit of the mixture model.

3 Model Selection in Classification

Supervised classification is about guessing the unknown class, denoted by z and taking value in
{1, . . . , K} of an observation x. For that purpose, a decision function, called a classifier, (δ(x) :
Rd → {1, . . . ,K} is designed from a learning sample (xi, zi), i = 1, . . . , n). A classical approach to
design a classifier is to represent the class conditional densities with a parametric model p(x|m, z =
k, θm) for k = 1, . . . ,K. Then the classifier is assigning an observation x to the class k maximizing
the conditional probability of a class p(z = k|m,x, θm). Using the Bayes rule, it leads to set
δ(x) = j if and only if k = arg maxk pkp(x|m, z = k, θ̂m), θ̂m being the ml estimate of the class
conditional parameters θ and pk being the prior probability of class k. This approach is known as
the generative discriminant analysis in the Machine Learning community (see for instance Schölkopf
and Smola 2002).

In this context, it could be expected to improve the actual error rate by selecting a generative
model m among a large collection of models M (see for instance Friedman 1989 or Bensmail and
Celeux 1996). Recently Hastie and Tibshirani (1996) proposed to model each class density with a
mixture of Gaussian distributions. In this approach the number of mixture components per class
are sensitive tuning parameters. They can be supplied by the user, as in Hastie and Tibshirani
(1996), but it is clearly a sub-optimal solution. They can be chosen to minimize the v-fold cross-
validated error rate, as done in Friedman (1989) or Bensmail and Celeux (1996) for other tuning
parameters. Despite the fact the choice of v can be sensitive, it can be regarded as a nearly
optimal solution. But it is highly CPU time consuming. Thus choosing such tuning parameter
with a penalized loglikelihood criterion, as BIC, can be expected to be much more efficient in many
situations. In such a context, denoting z = (z1, . . . , zn) the classification of the learning sample,
BIC takes the form

BIC(m) = log p(x, z|m, θ̂m)− νm

2
log(n), (7)



where νm is the dimension of θm. But, BIC measures the fit of the model m to the data (x, z)
rather than its ability to produce a reliable classifier. Thus, in many situations, BIC can have a
tendency to overestimate the complexity of the generative classification model to be chosen. In
order to counter this tendency, we now propose a penalized likelihood criterion taking into account
the classification task when evaluating the performance of a model.

3.1 The Bayesian Entropy Criterion

As stated above, a classifier deduced from model m is assigning an observation x to the class
k maximizing p(z = k|m,x, θ̂m). Thus, from the classification point of view, the conditional
likelihood p(z|m,x, θm) has a central position. For this very reason, we propose to make use of
the integrated conditional likelihood

p(z|m,x) =
∫

p(z|m,x, θm)π(θm)dθm, (8)

where π(θm) is the prior distribution of θm, to select a relevant model m. As for the integrated
likelihood, this integral is generally difficult to calculate and has to be approximated. The approx-
imation we now present of log p(z|m,x) leads to the so-called Bayesian Entropy Criterion (BEC).
In the following we denote

θ̂m = arg max
θm

p(x, z|m, θm),

θ̃m = arg max
θm

p(x|m, θm)

and
θ?

m = arg max
θm

p(z|m,x, θm).

We have

p(z|m,x) =
p(x, z|m)
p(x|m)

with
p(x, z|m) =

∫
p(x, z|m, θm)π(θm)dθm, (9)

and
p(x|m) =

∫
p(x|m, θm)π(θm)dθm. (10)

It is valid to approximate logarithms of integrals (??) and (??) with the BIC approximation
according to a line described in Raftery (1995). It leads to

log p(x, z|m) = log p(x, z|m, θ̂m)− ν

2
log n + O(1)

and
log p(x|m) = log p(x|m, θ̃m)− ν

2
log n + O(1),

ν being the dimension of the vector parameter θ. From which it follows that

log p(z|m,x) = log p(x, z|m, θ̂m)− log p(x|m, θ̃m) + O(1). (11)

Thus the approximation of log p(z|m,x) that we proposed is

BEC = log p(x, z|m, θ̂m)− log p(x|m, θ̃m). (12)

Some remarks are in order.



1. Denoting, as in Section 2, tik(m, θ̂m) the conditional probability that xi arises from class k

in model m with ml parameter estimate θ̂m, we can write

log p(z|m,x, θ̂) =
n∑

i=1

log tizi(m, θ̂m)

which can be regarded as the entropy of the classification z. And, roughly speaking, the
criterion defined in (??) is related to this term. This is the reason why we called this
criterion Bayesian Entropy Criterion (BEC).

2. Equation (??) is the approximation on which BEC is based and its O(1) error means that, in
general, the error in it does not vanish as n tends to infinity. Thus BEC can be thought of as
a crude approximation of log p(z|m,x). The criterion BEC can be more accurate in practice
when θ̂ ≈ θ̃. Typically this fact occurs, for the true model, when the joint distribution of the
data x, z belongs to one of the models in competition. Thus, some more accurate criteria
than the present BEC criterion are desirable. For instance, the à la BIC approximation

log p(z|m,x) ≈ log p(z|m,x, θ∗m)− ν

2
log n

is sensible, but θ∗ is difficult to derive for most of models. An other track of approximation
consists of starting from the equation

p(z|m,x) =
∫

p(x, z|m, θm)
p(x|m, θm)

π(θm)dθm,

but the resulting approximation involves the difficult estimation of matrices

J = − 1
n

∂2

∂θ∂θt
log p(x, z|m, θ̂m)

and

K = − 1
n

∂2

∂θ∂θt
log p(x|m, θ̃m).

In the present moment, we are working to propose a more accurate and simple alternative
to criterion BEC.

3. The criterion BEC needs to compute θ̃m = arg maxθm p(x|m, θm). Since, for i = 1, . . . , n,

p(xi|m, θm) =
K∑

k=1

p(zik = 1|m, θm)p(xi|zik = 1, m, θm),

θ̃ is the ml estimate of a finite mixture distribution. It can be derived from the EM algorithm
(see McLachlan and Peel 2000). In the present circumstance, the mixing proportions are
known : pk = card{i such that zik = 1}/n for k = 1, . . . , K and the EM algorithm can be
initiated in a quite natural way with θ̂. Thus the calculation of θ̃ involves no difficulty.

3.2 Numerical experiments

In this section, we report on some case studies for analyzing the practical ability of BEC to select
a reasonable classification model and compare BEC with criteria as the cross-validated error rate
and BIC. In an illustrative purpose, we concentrate on a collection of models assuming that the



class densities are a mixture of Gaussian distributions. This kind of modelling has been called
MDA and studied in Hastie and Tishirani (1996). More precisely, we restrict attention to mixture
of spherical Gaussian distributions, an attractive family of models for its simplicity and flexibility
(Bouchard and Celeux 2003). Note that the spherical Gaussian components wil be called “balls”
in this section.

The model is the following: Assuming that the number of clusters in each class is fixed to Rk,
k = 1, · · · ,K, the distribution of data in the kth class is

pk(x; θk) =
Rk∑
r=1

πrφ(x; µr, σ
2
rId) (13)

where πr, µr and σr are respectively the weight, mean and standard deviation of the rth component,
φ(x; µ,Σ) denoting the density of a Gaussian distribution with mean µ and covariance Σ. The
set of parameters of class k is denoted θk. Obviously, the selection of the number of mixture
components {Rk}k=1,··· ,K is an important and difficult question. Cross-validation error rate can
be regarded as the reference criterion but it is time consuming especillay when the cardinality of
the collection of models to be compared is large. For the time consuming point of view, BIC is
attractive. But, assuming spherical Gaussian mixtures for the class conditional densities can be
regarded in many situations as a rough model. Thus, BIC can be expected to perform poorly in
such cases since this criterion measures the fit of the spherical Gaussian mixture rather than the
fit to the classification task. In practice, it is difficult to guess the practical behavior of BIC (see
Bouchard and Celeux 2003).

We first present some Monte Carlo numerical experiments on simulated data sets, then we
present some numerical experiments on real data sets.

3.2.1 Monte Carlo numerical experiments

In the first experiment a couple of models are compared. Fifty samples of n = 120 points from
two classes with equal prior probabilities have been generated with the following class conditional
densities:

X|Z = 1 ∼ N
([

0
0

]
,

[
2 0.5

0.5 1

])

and

X|Z = 2 ∼ N
([

∆
0

]
,

[
1 0.5

0.5 2

])
.

The first model (DIAG) is considering a Gaussian class conditional distribution with a diago-
nal variance matrix, while the second model (BALL) is considering a Gaussian class conditional
distributions with a spherical variance matrix. The performances of criteria BEC and BIC are
compared in Table ??. In this table, the column err gives the error rate obtained with an in-
dependant test sample of size 50,000. It appears that most often BEC chooses the model giving
the smallest error rate with an higher probability than BIC does. BIC often selects the spherical
Gaussian distribution because it is more suitable as a density estimate. When the class separation
increases, BEC tends to choose the most parsimonious model more often as expected.

In the second experiment, the same data sets are used, but the considered models are now the
spherical Gaussian mixture distributions described above, and the problem is to select the number
of balls Rk, k = 1, 2. For simplicity, we assume that R1 = R2. The behavior of criteria BEC
and BIC are compared in table ??. It can be remarked that BEC criterion selects the complexity
suitable for the classification purpose. For instance, in the well separated situation, the error rates
of the different models are equivalent and BEC selects the simplest model most often. On the



separation model err BIC BEC BIC choice(%) BEC choice(%)
∆ = 1 DIAG 0.250 502.331 64.108 24 98
∆ = 1 BALL 0.268 500.422 69.665 76 2
∆ = 3.5 DIAG 0.070 502.331 22.067 24 94
∆ = 3.5 BALL 0.076 500.422 26.120 76 6
∆ = 5 DIAG 0.019 502.331 6.081 24 84
∆ = 5 BALL 0.023 500.422 8.310 76 16
∆ = 7 DIAG 0.002 502.331 0.458 24 80
∆ = 7 BALL 0.004 500.422 1.046 76 20
∆ = 10 DIAG 0.000 502.331 0.001 24 60
∆ = 10 BALL 0.000 500.422 0.002 76 40

Table 1: Comparison of criteria BEC and BIC for choosing between two models DIAG and BALL.
Column err gives the error rate evaluated on a test sample of size 50,000. Means are computed
over 50 replications.

other side, BIC criterion selects always the same model without taking into account the separation
between the classes.

3.2.2 Real data sets

The first real dataset considered is the Pima Indian Diabete database1. It is described for instance
in Ripley (1996), pp.14-15. It concerns a population of n = 768 women described by d = 8 variables
and it is a two-class problem (K = 2) where class 2 is interpreted as ”tested positive for diabete”.
For this dataset, two experimented where performed. The first experiment was achieved in the
whole space of description, the second experiment was achieved on the plane generated by the first
two axes of a Principal Component Analysis.(Actually dimension reduction is often relevant with
Spherical Gaussian Mixture Discrimnant Analysis.)

Tables ?? and ??) show that BEC selects a satisfactory number of balls. The behavior of BEC
is here close to the cross-validated error rate criterion. On the contrary, as it happens often on real
datasets, BIC is overestimating the number of balls that are needed to reach a small error rate.

The second example Contraceptive Method Choice. This data set (Lim, T.-S., Loh, W.-Y. and
Shih, Y.-S. 2000) is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The
samples are married women who were either not pregnant or do not know if they were at the time
of interview. The problem is to predict the current contraceptive method choice (no use, long-
term methods, or short-term methods) of a woman based on her demographic and socio-economic
characteristics. The sample size is n = 1473 described with d = 9 variables and there K = 3 classes
to be classified.

The results for this dataset are reported in Table ??. The error rates are here rather poor
and not very different. Probably the Spherical Gaussian Mixture Discriminant Analysis is not well
adapted to this problem. But the interesting point is the difference of behaviour of BEC and BIC
and this data set. BEC prefers parsimonious solution and its behaviour is similar to the behaviour
of the cross-validated error rate. On the contrary BIC prefers the most complex model.

1It is available at http://www.maths.lth.se/help/R/.R/library/mlbench/html/PimaIndiansDiabetes.html



separation model err BIC BEC BIC choice(%) BEC choice(%)
∆ = 1.5 1 components 0.272 501.745 68.786 100 0
∆ = 1.5 2 components 0.259 522.658 59.120 0 30
∆ = 1.5 3 components 0.264 554.613 57.390 0 70
∆ = 3.5 1 components 0.076 501.745 25.547 100 0
∆ = 3.5 2 components 0.064 522.658 17.859 0 38
∆ = 3.5 3 components 0.065 554.613 17.124 0 62
∆ = 5 1 components 0.024 501.745 7.726 100 0
∆ = 5 2 components 0.016 522.658 4.269 0 58
∆ = 5 3 components 0.017 554.613 4.426 0 42
∆ = 7.5 1 components 0.004 501.745 1.162 100 8
∆ = 7.5 2 components 0.002 522.658 0.510 0 58
∆ = 7.55 3 components 0.002 554.613 0.938 0 34
∆ = 10 1 components 0.000 501.745 0.062 100 58
∆ = 10 2 components 0.000 522.658 0.086 0 28
∆ = 10 3 components 0.000 554.613 0.496 0 14

Table 2: Comparison of criteria BEC and BIC for choosing the number of component in the
Spherical Gaussian mixture model. Column err gives the error rate evaluated on a test sample of
size 50,000. Means are computed over 50 replications.

R1 R2 3-CV BIC BEC
1 1 0.2622 9119 719.3
1 2 0.2664 9125 783
1 3 0.2693 9140 946.1
2 1 0.2565 8855 513.1
2 2 0.2635 8861 662.2
2 3 0.2758 8876 761.3
3 1 0.2646 8779 523.2
3 2 0.2727 8784 669.6
3 3 0.2768 8800 684.5
4 1 0.2703 8770 655.2
4 2 0.2701 8776 665.5
4 3 0.2651 8778 663.5
Selected number of balls (3-fold CV) : 2 1
Selected number of balls (BIC criterion): 4 1
Selected number of balls (BEC criterion): 2 1

Table 3: Results on Pima Indians Diabetes dataset.



R1 R2 3-CV BIC BEC
1 1 0.2409 9119 719.3
1 2 0.2427 9125 783
1 4 0.2424 9108 928.4
1 5 0.2464 9173 1056
3 1 0.2422 8779 523.2
3 2 0.2375 8784 669.6
3 4 0.2391 8768 608.8
3 5 0.2378 8833 712
5 1 0.2453 8796 678.1
5 2 0.2461 8798 677.1
5 4 0.2414 8784 638.3
5 5 0.2406 8851 701.9
7 1 0.2461 8762 616.4
7 2 0.2479 8768 638.4
7 4 0.2451 8751 584.3
7 5 0.2437 8817 610.1
Selected number of balls (3-fold CV) : 3 2
Selected number of balls (BIC criterion): 7 4
Selected number of balls (BEC criterion): 3 1

Table 4: Results on Pima Indians Diabetes data set with reduction in 2D by PCA.

4 Discussion

In this paper, we highlighted how it could be useful to take into account the model purpose to
select a relevant and useful model. This point of view can lead to define different selection criteria
than the classical BIC criterion. It has been illustrated in two situations: modelling in a clustering
purpose and modelling in a supervised classification purpose. For this particular context, we
have proposed a promising criterion, the so-called BEC criterion, which takes into account the
classification task when selecting a model. It can be a efficient alternative to the cross-validated
error rate when the collection of models in competition is large.

Now, it can be noticed that we do not considered the modelling purpose when estimating the
model parameters. In both situations, we simply considered the ml estimator. Taking into account
of the modelling purpose in the estimation process could be regarded as an interesting point of
view. As a matter of fact, we do not think that this point of view is fruitful and, moreover, we
think it can jeopardize the statistical analysis. For instance, in the cluster analysis context of
Section 2, it could be thought of as more natural to compute the parameter value maximizing
the complete loglikelihood log p(x, z|θ) rather than the observed loglikelihood log p(x|θ). But as
proved in Bryant and Williamson (1978), this strategy leads to asymptotically biased estimates of
the mixture parameters. In the same manner, in the supervised classification context of Section 3,
considering the parameter value maximizing directly the conditional likelihood log p(z|x, θ) could
be regarded as an alternative to the classical ml estimation. But this would lead to a difficult
optimization problem and would provide unstable estimate values. Finally, we do not recommend
taking into account the modelling purpose when estimating the model parameters because it could
lead to cumbersome algorithms or provoke undesirable biases in the estimation. On the contrary,
we think that taking into account the model purpose when assessing a model could lead to choose
reliable and stable models especially in unsupervised or supervised classification context.



R1 R2 R3 2-CV BIC BEC
1 1 1 0.5234 2.031e+004 2587
1 1 2 0.5249 2.017e+004 3050
1 1 3 0.5424 2.001e+004 3188
1 2 1 0.5223 2.025e+004 2818
1 2 2 0.5208 2.012e+004 3153
1 2 3 0.5431 1.995e+004 3197
1 3 1 0.5241 2e+004 3306
1 3 2 0.5256 1.986e+004 3462
1 3 3 0.5427 1.97e+004 3500
2 1 1 0.5065 1.999e+004 2738
2 1 2 0.5223 1.986e+004 3165
2 1 3 0.5183 1.969e+004 3301
2 2 1 0.509 1.993e+004 3079
2 2 2 0.5165 1.98e+004 3406
2 2 3 0.5229 1.963e+004 3446
2 3 1 0.5134 1.968e+004 3286
2 3 2 0.521 1.954e+004 3345
2 3 3 0.5259 1.938e+004 3293
3 1 1 0.5248 1.986e+004 3014
3 1 2 0.5261 1.973e+004 3339
3 1 3 0.5248 1.957e+004 3378
3 2 1 0.5229 1.981e+004 3144
3 2 2 0.5191 1.967e+004 3458
3 2 3 0.5229 1.951e+004 3564
3 3 1 0.5276 1.955e+004 3342
3 3 2 0.5248 1.942e+004 3321
3 3 3 0.529 1.925e+004 3464
4 1 1 0.5412 1.972e+004 3327
4 1 2 0.5286 1.959e+004 3375
4 1 3 0.528 1.942e+004 3348
4 2 1 0.5313 1.966e+004 3461
4 2 2 0.521 1.953e+004 3490
4 2 3 0.5183 1.936e+004 3606
4 3 1 0.5359 1.941e+004 3336
4 3 2 0.5221 1.927e+004 3467
4 3 3 0.5195 1.911e+004 3360
Selected number of balls (2-fold CV) : 2 1 1
Selected number of balls (BIC criterion): 4 3 3
Selected number of balls (BEC criterion): 1 1 1

Table 5: Results on Contraceptive data set.
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