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Abstract

We propose new methods for estimating the frontier of a set of points. The

estimates are defined as kernel functions covering all the points and whose as-

sociated support is of smallest surface. They are written as linear combinations

of kernel functions applied to the points of the sample. The weights of the lin-

ear combination are then computed by solving a linear programming problem.

In the general case, the solution of the optimization problem is sparse, that is,

only a few coefficients are non zero. The corresponding points play the role

of support vectors in the statistical learning theory. In the case of uniform

bivariate densities, the L1 error between the estimated and the true frontiers

is shown to be almost surely converging to zero, and the rate of convergence

is provided. The behaviour of the estimates on one finite sample situation is

illustrated on simulations.
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1 Introduction

Many proposals are given in the literature for estimating a set S given a fi-

nite random set of points drawn from the interior. This problem of frontier

or support estimation arises in classification (Hardy & Rasson [24]), clus-

tering problems (Hartigan [25]), discriminant analysis (Baufays & Ras-

son [3]), and outliers detection. Applications are found in medical diagnosis

(Tarassenko et al [33]) as well as in condition monitoring of machines (De-

vroye & Wise [12]). In image analysis, the segmentation problem can be

considered under the support estimation point of view, where the support is a

convex bounded set in R2 (Korostelev & Tsybakov [30]). We also point

out some applications in econometrics (e.g. Deprins, et al [11]). In such cases,

the unknown support can be written

S = {(x, y) : 0 ≤ x ≤ 1 ; 0 ≤ y ≤ f(x)}, (1)

where f : [0, 1]→ (0,+∞) is an unknown function. Here, the problem reduces

to estimating f , called the production frontier (see for instance Härdle et

al [22]). The data consist of pair (X,Y ) where X represents the input (labor,

energy or capital) used to produce an output Y in a given firm. In such a

framework, the value f(x) can be interpreted as the maximum level of output

which is attainable for the level of input x. Korostelev et al [29] suppose f

to be increasing and concave, from economical considerations, which suggests

an adapted estimator, called the DEA (Data Envelopment Analysis) estima-

tor. It is the lowest concave monotone increasing function covering all the

sample points. Therefore it is piecewise linear and, up to our knowledge, it is

the first frontier estimate computed thanks to a linear programming technique

(Charnes et al [8]). Its asymptotic distribution is established by Gijbels et

al [16].

An early paper was written by Geffroy [14] for independent identically dis-

tributed observations from a density φ. The proposed estimator is a kind of

histogram based on the extreme values of the sample. This work was extended

in two main directions.
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On the one hand, piecewise polynomials estimates were introduced. They are

defined locally on a given slice as the lowest polynomial of fixed degree cov-

ering all the points in the considered slice. Their optimality in an asymptotic

minimax sense is proved under weak assumptions on the rate of decrease α of

the density φ towards 0 by Korostelev & Tsybakov [30] and by Härdle

et al [23]. Extreme values methods are then proposed by Hall et al [21] and

by Gijbels & Peng [15] to estimate the parameter α.

On the other hand, different propositions for smoothing Geffroy’s estimate were

made in the case of a Poisson point process. Girard & Jacob [19] introduced

estimates based on kernel regressions and orthogonal series method [17, 18].

In the same spirit, Gardes [13] proposed a Faber-Shauder estimate. Girard

& Menneteau [20] introduced a general framework for studying estimates of

this type and generalized them to supports writing

S = {(x, y) : x ∈ E ; 0 ≤ y ≤ f(x)},

where f : E → (0,+∞) is an unknown function and E an arbitrary set. In

each case, the limit distribution of the estimator is established.

We also refer to Abbar [1] and Jacob & Suquet [27] who used a similar

smoothing approach, although their estimates are not based on the extreme

values of the Poisson process.

The estimate proposed in this paper can be considered to belong to the in-

tersect of these two directions. It is defined as a kernel estimate obtained by

smoothing some selected points of the sample. These points are chosen auto-

matically by solving a linear programming problem to obtain an estimate of

the support covering all the points and with smallest surface. Its advantages

are the following: it can be computed with standard optimization algorithms

(see e.g. Bonnans et al [6], chapter 4), its smoothness is directly linked to

the smoothness of the chosen kernel and it benefits from interesting theoretical

properties. For instance, we prove that it is almost surely convergent for the

L1 norm. The estimate is defined in Section 2. Its theoretical properties are es-
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tablished in Section 3. The behaviour of the estimate is illustrated in Section 4

on one finite sample situation. It is compared to a similar proposition found

in Barron et al [2]. We conclude by describing our further work in Section 5.

Proofs can be found in Bouchard el al [5].

2 Boundary estimates

2.1 A linear programming problem

Let all the random variables be defined on a probability space (Ω,F , P ).

The problem under consideration is to estimate an unknown positive function

f : [0, 1] → (0,∞) on the basis of observations ZN = (Xi, Yi)i=1,...,N . The

former represents an i.i.d. sequence with pairs (Xi, Yi) being uniformly dis-

tributed in the set S defined as in (1). For the sake of simplicity, we consider

in the following the extension of f on all R by introducing f(x) = 0 for all

x /∈ [0, 1]. Letting

Cf ,
∫ 1

0
f(u) du =

∫

R
f(u) du,

each variable Xi is distributed in [0, 1] with p.d.f. f(·)/Cf while Yi has the

uniform conditional distribution with respect to Xi in the interval [0, f(Xi)].

The considered estimate of the frontier is chosen from the family of functions:





f̂N (x) =
N∑

i=1

Kh(x−Xi)αi , Kh(t) = h−1K(t/h),

αi ≥ 0, i = 1, . . . , N,

(2)

where K is a kernel function K : R→ [0,∞) integrating to one and with band-

width h > 0. Each coefficient αi represents the importance of the point (Xi, Yi)

in the estimation. In particular, if αi 6= 0, the corresponding point (Xi, Yi) can

be called a support vector by analogy with Support Vector Machines (SVM).

We refer to Cristianini & Shawe-Taylor [10] for a review on this topic and

to Schölkopf & Smola [32], chapter 8, for examples of application of SVM

to quantile estimation. The constraint αi ≥ 0 for all i = 1, . . . , N ensures that

f̂N (x) ≥ 0 for all x ∈ R and prevents the estimator from being too irregular.
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Let us remark that the surface of the estimated support is given by

∫

R
f̂N (x) dx =

N∑

i=1

αi.

This suggests to define the vector parameter α = (α1, . . . , αN )T from a linear

program as follows

J∗P , min
α

1Tα (3)

subject to

Aα ≥ Y (4)

α ≥ 0. (5)

The following notations have been introduced:

1 , (1, 1, . . . , 1)T ∈ RN

A , {Kh(Xi −Xj)}i,j=1,...,N

Y , (Y1, . . . , YN )T .

Hence, Aα = (f̂N (X1), . . . , f̂N (XN ))T , and the vector constraint (4) means

that f̂N (Xi) ≥ Yi, i = 1, . . . , N . In other words, f̂N defines the kernel estimate

of the support covering all the points and with smallest surface. In practice

(see Section 4 for an illustration) the solution of the linear program is sparse

in the sense that n(α) = #{αi 6= 0} is small (for a properly selected value of

h, see Paragraph 2.2) and thus the resulting estimate is fast to compute even

for large samples.

Let us note that the above described estimator (2)–(5) might be derived as

the Maximum Likelihood Estimate related to the approximation family (2).

Indeed, the joint probability density function for observations ZN given pa-

rameter function f(x) can be written

p(ZN | f) =
N∏

i=1

f(Xi)

Cf
· 1

f(Xi)
1{0 ≤ Yi ≤ f(Xi)},

where 1{.} is the indicator function. Moreover,

Cf

∣∣∣
f= bfN

=
N∑

i=1

αi,
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and therefore, the Log-Likelihood function is

L(α) , log p(ZN | f̂N ) = −N log
N∑

i=1

αi +
N∑

i=1

log 1{Yi ≤ f̂N (Xi)},

and its maximization over the set of non-negative parameters α is equivalent

to problem (3)–(5).

2.2 Choice of the bandwidth

The bandwidth parameter h has to be properly selected. The asymptotic re-

sults presented in Section 3 (see Corollary 1 and 2) only provide an order of

magnitude and thus are useless in practical situations. Assuming that (X,Y )

is uniformly distributed on S, we have two different estimations of E[Y ]:

• m̂1 =
1

N

N∑

i=1

Yi

• m̂2 =
1

N

N∑

i=1

f̂N (Xi;h)

2

These estimations are expected to be equal whenever the estimated frontier f̂N

is close to f . Hence, we propose to select the value ĥN minimizing the quantity

D(h) =
1

N

∣∣∣∣∣
N∑

i=1

Yi −
1

2

N∑

i=1

f̂N (Xi;h)

∣∣∣∣∣ .

This criterion is tested on simulations in section 4.

2.3 Comparison with other methods

Let us remark that other solutions for estimating α in (2) have already been

proposed. Girard & Menneteau [20] considered a partition {Ir : 1 ≤ r ≤ k}
of [0, 1], with k →∞. For all 1 ≤ r ≤ k, they introduce

Dr = {(x, y) : x ∈ Ir, 0 ≤ y ≤ f(x)},

the slice of S built on Ir, Y
∗
r = max{Yi; (Xi, Yi) ∈ Dr}, and the estimates

α̂i =

∣∣∣∣∣∣
λ(Ir)Y

∗
r if ∃ r ∈ {1, . . . , k} ; Yi = Y ∗r

0 otherwise,
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where λ is the Lebesgue measure. They propose the following frontier estimate

f̌N (x) =

k∑

r=1

Kh(x− xr)λ(Ir)Y
∗
r ,

where xr is the center of Ir. This approach suffers from a practical difficulty:

the choice of the partition and more precisely the choice of k. In our context,

solving the linear problem (3)–(5) direcly yields the support vectors, once h

has been chosen according to the method described in Paragraph 2.2.

In this sense, the estimate proposed in Barron et al [2] is similar to f̂N . It is

defined by the Fourier expansion:

ĝN (x) = c0 +
M∑

k=1

ak cos (2πkx) +
M∑

k=1

bk sin (2πkx),

where the vector of parameters β = (c0, a1, . . . , aM , b1, . . . , bM )T is solution of

the linear programming problem:

min c0

(
=

∫ 1

0
ĝN (x)dx

)
(6)

under the constraints

ĝN (Xi) ≥ Yi, i = 1, . . . , N (7)
M∑

k=1

k(|ak|+ |bk|) ≤ L/(2π). (8)

Therefore, ĝN defines the Fourier estimate of the support covering all the points

(equation (7)), L-Lipschitzian (equation (8)) and with smallest surface (equa-

tion (6)). From the theoretical point of view, this estimate benefits from min-

imax optimality. It is compared to f̂N on one practical situation in Section 4

for different choices of parameters M , L and h.

3 Theoretical results

In this section, we establish that f̂N is almost surely convergent for the L1

norm on [0, 1]. To this end, the basic assumptions on the unknown boundary

function are introduced:
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A1. 0 < fmin ≤ f(x) < fmax <∞, for all x ∈ [0, 1],

A2. |f(x)− f(y)| ≤ Lf |x− y|, for all x, y ∈ [0, 1], Lf <∞.

The following assumptions on the kernel function are considered:

B1. K(t) = K(−t) ≥ 0,

B2.

∫
K(t) dt = 1,

B3. |K(s)−K(t)| ≤ LK |s− t|, LK <∞,

B4.

∫
K2(t) dt <∞ and

∫
t2K(t) dt <∞.

In the following, we note ‖f̂N − f‖1 =
∫
| ˆf(x)N − f(x)|dx.

Theorem 1 Let h → 0 and logN/(Nh2) → 0 as N → ∞. Let the above

mentioned assumptions A and B hold true. Then, estimator (2)–(5) has the

following asymptotic properties:

lim sup
N→∞

ε−1
1 (N)‖f̂N − f‖1 ≤ C <∞ a.s.

with ε1(N) , max
{
h,
√

logN/(Nh2)
}
.

Corollary 1 The maximum rate of convergence which is guaranteed by Theo-

rem 1

‖f̂N − f‖1 = Op

(
(logN/N)1/4

)

is attained for h � (logN/N)1/4 .

This rate of convergence can be ameliorated at the price of a slight modification

of the estimate. In the following, an additional constraint is considered in order

to impose to each coefficient αi to be of order 1/N . The counterpart of this

modification is that the new estimate f̃N will usually rely on more support

vectors than f̂N .

Let us modify the estimator (2)–(5) as follows.

f̃N (x) =
N∑

i=1

Kh(x−Xi)αi (9)
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where vector α = (α1, . . . , αN )T is defined from the Modified Linear Program

J∗MP , min
α

1Tα (10)

subject to

Aα ≥ Y (11)

0 ≤ α ≤ Cα/N (12)

with a constant

Cα > fmax. (13)

Remark. In fact, we need to ensure Cα > Cf which is implied by (13).

The modified estimator (9)–(13) differs from that of (2)–(5) by additionally

bounding each αi from above, see constraints (12).

Theorem 2 Let h→ 0 and logN/(Nh)→ 0 as N →∞. Let kernel function

K(·) has a finite support, that is K(t) = 0 ∀ |t| ≥ 1, and the assumptions A and

B hold true. Then, estimator (9)–(13) has the following asymptotic properties:

lim sup
N→∞

ε−1
2 (N)‖f̃N − f‖1 ≤ C <∞ a.s.

with ε2(N) , max
{
h,
√

logN/(Nh)
}
.

Remark. The support of K(·) is fixed to be the interval [−1, 1] without loss

of generality.

Corollary 2 The maximum rate of convergence which is guaranteed by Theo-

rem 2

‖f̃N − f‖1 = Op

(
(logN/N)1/3

)

is attained for h � (logN/N)1/3.

Note that the rates of convergence of the DEA and FDH estimators areOp(N
−2/3)

(see Kneip et al [28]) and Op(N
−1/2) (see Park et al [31]), but stronger as-

sumptions are required (monotonicity or concavity of the frontier function f).
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Figure 1: Illustration of the kernel estimation on a simulation.

4 Numerical experiments

The simulations presented here illustrate the behaviour of the kernel estimator

f̂N compared to the estimator based on Fourier expansions ĝN proposed in

Barron et al [2]. Since the Fourier estimate ĝN requires the unknown function

to be periodic, we choose f such that f(0) = f(1). Besides, to avoid boundary

effects on the input domain, we consider functions that are nearly zero when x

is close to 0 or 1. In more general situations, boundary corrections should be

implemented (see Cowling & Hall [9]). The chosen function

f(x) = 0.1 + 5(x− 0.1)1{x>0.1}

− 5(x− 0.2)1{x>0.2}

+ 1(x− 0.5)1{x>0.5}

− 9(x− 0.8)1{x>0.8}

+ 8(x− 0.9)1{x>0.9},

is piecewise linear and locally Lipschitizian with a Lipschitz constant Lf = 8.

Its graph is given on the right part of Figure 1 (dotted line). Here, N = 50

points are uniformly generated on the domain S upper bounded by f (left part

of Figure 1). The smoothing parameter h is chosen according to Paragraph 2.2.

On the right, the kernel estimate (continuous line) is superimposed to the

unknown function f . The squares represent the points for which f̂N (Xi) = Yi.

The triangles represent the support vectors (i.e. the points for which αi > 0).

On this example, the estimate ĝN is not visually different from f̂N .

Thus, a more precise comparison should be done. For each estimate, the L1
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error ∆N as well as the number of effective parameters np (that is nα and nβ =

#{βi 6= 0}) are evaluated for N = 25 and N = 100. The average value and

the standard deviation of these quantities are computed on 1000 replications.

The estimation is carried out with different values of the parameters, namely

h for the kernel estimate, and L and M for the Fourier estimate. For each

value of h the criterion D(h) presented in Paragraph 2.2 is evaluated. The

adaptive choice of L and M parameters is not implemented in this setting.

The results are summarized in Tables 1 and 2. The lowest error is emphasized

for each estimate. It can be noted that the mean L1 error of both estimates

are very similar. In fact, the kernel estimate seems to give a slight lower error

for small number of points and the Fourier estimate yields better results for

large sample size situations, confirming its asymptotic optimality. Let us note

that the standard deviation of the L1 error is in general smaller for the kernel

estimate. Regarding the number of parameters, the kernel estimate seems to be

more parsimonious than the Fourier estimate. Finally, we can notice that our

criterion D(h) yields a reasonable choice of h, although a slight oversmoothing

appears for small sample sizes.

5 Further work

As noticed in Section 3, the rate of convergence of the L1 error is not optimal.

This problem can be overcomed by modifying the constraints of the linear

programming problem in order to impose to the estimate the same Lipschitz

properties as the unknown function f . We also plan to adapt our proofs to more

general settings, namely non uniform distributions with multidimensional sup-

port. The extension to the case where X is multidimensional is straightforward

since it suffices to consider multivariate kernels. The non-uniform case requires

assumptions on the behaviour of the distribution in the unknown boundary

neighborhood. From the practical point of view, the selection procedure of the

smoothing parameter has to be improved.
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estimate h L M ∆N np D(h)

kernel 0.120 0.113 (0.033) 4.476 (0.840) 43.692

0.150 0.111 (0.032) 3.613 (0.649) 38.232

0.180 0.122 (0.027) 3.093 (0.623) 34.362

0.210 0.137 (0.023) 2.702 (0.590) 32.258

0.240 0.153 (0.023) 2.434 (0.557) 33.793

0.270 0.163 (0.028) 2.184 (0.403) 37.642

Fourier 3 4 0.142 (0.036) 4.534 (0.741)

5 4 0.116 (0.043) 5.532 (1.008)

7 4 0.124 (0.040) 6.636 (1.193)

9 4 0.135 (0.040) 7.312 (1.235)

11 4 0.143 (0.041) 7.690 (1.219)

13 4 0.150 (0.041) 7.870 (1.172)

Fourier 3 8 0.143 (0.036) 4.545 (0.757)

5 8 0.117 (0.043) 5.574 (1.055)

7 8 0.126 (0.041) 6.771 (1.321)

9 8 0.139 (0.042) 7.691 (1.584)

11 8 0.150 (0.042) 8.376 (1.756)

13 8 0.159 (0.042) 8.877 (1.900)

Table 1: Results for 1000 simulations with N = 25 points. The mean value of ∆N

and np is given with the standard deviation in parentheses.
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estimate h L M ∆N np D(h)

kernel 0.050 0.072 (0.015) 13.777 (1.351) 31.972

0.070 0.058 (0.013) 9.976 (1.249) 23.200

0.090 0.058 (0.011) 7.558 (1.104) 17.611

0.110 0.061 (0.011) 5.696 (0.887) 15.210

0.130 0.073 (0.011) 4.725 (0.714) 15.881

0.150 0.082 (0.012) 3.964 (0.524) 17.337

Fourier 3 4 0.123 (0.021) 5.080 (0.716)

5 4 0.073 (0.019) 5.792 (0.781)

7 4 0.060 (0.011) 7.850 (0.979)

9 4 0.063 (0.012) 8.751 (0.579)

11 4 0.067 (0.014) 8.896 (0.362)

13 4 0.069 (0.015) 8.955 (0.235)

Fourier 3 8 0.124 (0.021) 5.117 (0.752)

5 8 0.073 (0.020) 5.889 (0.863)

7 8 0.057 (0.012) 8.315 (1.470)

9 8 0.057 (0.013) 10.620 (1.672)

11 8 0.061 (0.014) 12.454 (1.858)

13 8 0.067 (0.014) 13.890 ( 1.879)

Table 2: Results for 1000 simulations with N = 100 points. The mean value of ∆N

and np is given with the standard deviation in parentheses.
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