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Abstract: Given any generative classifier based on an inexact density model,
we can define a discriminative counterpart that reduces its asymptotic error
rate. We introduce a family of classifiers that interpolate the two approaches,
thus providing a new way to compare them and giving an estimation pro-
cedure whose classification performance is well balanced between the bias of
generative classifiers and the variance of discriminative ones. We show that
an intermediate trade-off between the two strategies is often preferable, both
theoretically and in experiments on real data.

1 Introduction

In supervised classification, inputs x and their labels y arise from an unknown
joint probability p(x, y). If we can approximate p(x, y) using a parametric
family of models G = {pθ(x, y), θ ∈ Θ}, then a natural classifier is obtained
by first estimating the class-conditional densities, then classifying each new
data point to the class with highest posterior probability. This approach is
called generative classification.

However, if the overall goal is to find the classification rule with the small-
est error rate, this depends only on the conditional density p(y|x). Dis-
criminative methods directly model the conditional distribution, without as-
suming anything about the input distribution p(x). Well known generative-
discriminative pairs include Linear Discriminant Analysis (LDA) vs. Linear
logistic regression and naive Bayes vs. Generalized Additive Models (GAM).
Many authors have already studied these models e.g. [5,6]. Under the as-
sumption that the underlying distributions are Gaussian with equal covari-
ances, it is known that LDA requires less data than its discriminative counter-
part, linear logistic regression [3]. More generally, it is known that generative
classifiers have a smaller variance than.

Conversely, the generative approach converges to the best model for the
joint distribution p(x, y) but the resulting conditional density is usually a bi-
ased classifier unless its pθ(x) part is an accurate model for p(x). In real world
problems the assumed generative model is rarely exact, and asymptotically,
a discriminative classifier should typically be preferred [9, 5]. The key argu-
ment is that the discriminative estimator converges to the conditional density
that minimizes the negative log-likelihood classification loss against the true
density p(x, y) [2]. For finite sample sizes, there is a bias-variance tradeoff
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and it is less obvious how to choose between generative and discriminative
classifiers.

In this paper, we will first consider the parameter estimation problem,
focusing on the theoretical distinction between generative and discriminative
classifiers. Then we propose a new technique for combining the two classi-
fiers: the Generative-Discriminative Trade-off (GDT) estimate. It is based
on a continuous class of cost functions that interpolate smoothly between the
generative strategy and the discriminative one. Our method assumes a joint
density based parametrization pθ(x, y), but uses this to model the conditional
density p(x|y). The goal is to find the parameters that maximize classifica-
tion performance on the underlying population, but we do this by defining
a cost function that is intermediate between the joint and the conditional
log-likelihoods and optimizing this on training and validation sets.

Given that the generative model based on maximum likelihood (ML) pro-
duces minimum variance — but possibly biased — parameter estimates, while
the discriminative one gives the best asymptotic classification performance,
there are good reasons for thinking that an intermediate method such as the
GDT estimate should be preferred. We illustrate this on simulations and on
real datasets.

2 Preliminaries

Using independent training samples {xi, yi}, i = 1, . . . , n, xi ∈ Rd,and yi ∈
{1, . . . ,K} sampled from the unknown distribution p(x, y), we aim to find
the rule that gives the lowest error rate on new data. This is closely related
to estimating the conditional probability p(y|x).

For each of the K classes, the class-conditional probability p(x|y = k)
is modeled by a parametric model fk with parameters θk. The y follows a
multinomial distribution with parameters p1, . . . , pK . The full parametriza-
tion of the joint density is θ = (p1, . . . , pK , θ1, . . . , θK). Given θ, new data
points x are classified to the group k giving the highest posterior probability

Pθ(Y = k|X = x) =
pkfk(x; θk)

∑K
l=1 plfl(xi; θl)

. (1)

The generative and the discriminative approaches differ only in the estimation
of θ.

Generative classifier. Given data {xi, yi}, i = 1, . . . , n, a standard way
to estimate the parameters of densities is the Maximum Likelihood (ML)
estimate (we assume that the solution is unique):

θ̂GEN = arg max
θ∈Θ
LGEN (θ), LGEN (θ) =

∑n
i=1 log pyifyi(xi; θ). (2)
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Discriminative classifier. Let D = {pθ(y|x) = pθ(x, y)/
∑
z pθ(x, z), θ ∈

Θ} be the set of conditional densities derived from the generative model. Our
aim is to find the conditional density in D that minimizes a classification loss
function on the training set. Here, we consider only the negative conditional
log-likelihood −LDISC , which can be viewed as a convex approximation to
the error rate:

θ̂DISC = arg max
θ∈Θ
LDISC(θ), LDISC(θ) =

∑n
i=1 log

pyifyi (xi;θ)P
k pkfk(xi;θ)

. (3)

The discriminative approach allows to eliminate parameters that influence
only p(x) ,not p(y|x) (e.g. shared covariance matrix in Gaussian distribu-
tions), leading to logistic regression over lower dimensional parameter spaces.
However, we will not use this reduction, as we need to maintain a common
parametrization for the discriminative and generative cases. thus, the so-
lution (3) of the discriminative classifier may not be unique — there may
exist infinitely many parameters that give the same conditional distribution
pθ(x|y). However, the classification performance is the same for all such
solutions.

Relationship. The quantity LDISC can be expanded as follows:

LDISC(θ) =
n∑

i=1

log pyifyi(xi; θ)

︸ ︷︷ ︸
LGEN (θ)

−
n∑

i=1

log
K∑

k=1

pkfk(xi; θ)

︸ ︷︷ ︸
Lx(θ)

(4)

The difference between the generative and discriminative objective func-
tions LGEN and LDISC is thus

∑n
i=1

∑
k log pθ(xi, k), the log-likelihood of

the input space probability model pθ(x). Equation (4) shows that compared
to the discriminative approach, the generative strategy tends to favor param-
eters that give high likelihood on the training data.

3 Between Generative and Discriminative classifiers

To get a natural trade-off between the two approaches, we can introduce a
new objective function Lλ based on a parameter λ ∈ [0, 1] that interpolates
continuously between the discriminative and generative objective functions:

Lλ(θ;x,y) = LGEN (θ;x,y)− (1− λ)Lx(θ;x) (5)

= λLGEN (θ) + (1− λ)LDISC(θ). (6)

For λ ∈ [0, 1], the GDT estimate is

θ̂λ = arg maxθ∈Θ Lλ(θ). (7)
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Taking λ = 0 leads to the discriminative estimate θ̂DISC , while λ = 1 leads
to the generative one θ̂GEN . We expect that the GDT estimates θ̂λ (0 <
λ < 1) will sometimes have better generalization performances than these
two extremes. Even if the discriminative estimate (3) is not unique, the

maximum of (7) is unique for all λ ∈ [0, 1) if the ML estimate θ̂GEN is
unique.

Computation of θ̂λ. Since we use a differentiable classification loss, the
maximization problem (7) can be solved by any gradient ascent method.
The Newton algorithm converges rapidly, but requires the computation of
the Hessian matrix, The Conjugate Gradient (CG) algorithm may be more
suitable for large scale problems: it needs only the first derivative and it is
possible to avoid the storage of the quasi-Hessian matrix which can be huge
when the number of parameters is large.

For simplicity, we assume that the parameters θk of the different class
densities are independent. Taking the derivative of (5) with respect to θk
and πk, we get

{
∂
∂θk
Lλ(θk) =

∑n
i=1(I{yi=k} − (1− λ)τki)

∂log fk(xi;θk)
∂θk

∂
∂πk
Lλ(θk) = 1

πk
(nk − (1− λ)

∑n
i=1 τki)

(8)

with nk =
∑n
i=1 I{yi=k} and τki = πkfk(xi;θk)PK

l=1 πlfl(xi;θl)
. The optimal parameters

are zeros of the equations (8) for k = 1, . . . ,K.
For a given class k, these equations are analogous to the ML equations

on weighted data, although unlike ML, the weights can be negative here
Each point has a weight I{yi=k} − (1− λ)τki. The examples that have most
influence on the θk-gradient are those that belong to the class k but have
a low probability to be in it (τki is small), and conversly those that do not
belong to the class k but that are assigned to it with a high probability. The
influence of the assignment probabilities is controlled by the parameter λ.
This remark may ultimately help us to link our approach to boosting, and
similar algorithms that iteratively re-weight misclassified data. It also shows
that the generative estimator (λ=1) is not affected by the classification rate
of the data points.

Choice of λ. The GDT estimate contains a tuning parameter to set, which
functions like the smoothing parameter in regularization methods. λ cannot
be set on the basis of minimum classification loss on the training set, since by
definition, λ = 0 gives the optimal θ for training set classification. Instead,
λ is set to the value λ̂ that minimizes the cross-validation error rate.

If the optimal λ̂ is close to one, the generative classifier is preferred. This
suggests that the bias in pθ(x, y) (if any) does not affect the discrimination

of the model too much. Similarly, if λ̂ is close to 1, it suggests that the model
pθ(x, y) does not fit the data well, and the bias of the generative classifier is
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too high to provide good classification results. In this case, a more complex
model — i.e. with more parameters, or less constrained — may be needed
to reduce the bias. For other λ̂, there is an equilibrium between the bias
and the variance, meaning that the model complexity is well adapted to the
amount of training data.

4 Simulations

To illustrate the behavior of the GDT method, we study its performance on
two synthetic test problems. We define the true distributions of the data as
follows: In the first experiment, the class conditional probabilities are gaus-
sian with identity covariance matrix and means m1 = (1.25, 0, 0, 0) and m0 =
(−1.25, 0, 0, 0). In the second case, we simulate x according to a uniform den-
sity with correlated covariates : x(1) ∼ U [0; 1] and x(d) ∼ U [x(d−1); 1+x(d−1)]
with d ∈ {2, 3, 4} and x(i) denotes the ith covariate. Then y|x is simulated
according to a Bernoulli distribution with parameter 1/ exp(−2.5x(1)). Note
that the linear logistic model is true in the two experiments.

The assumed model is a Gaussian distribution for each class with shared
diagonal covariance matrices and prior probabilities equal to 1

K . Hence, the
model does not correspond exactly to the true density in the second experi-
ment, but it can provide a good approximation when the differences between
the variances are small.

In each case, we estimated the true error rate of the classifiers learned on
training samples of size 50, 100 and 200. The results are plotted in figure (1).
We used standard plug-in estimates for λ = 1 and closed form logistic regres-
sion for λ = 0. For intermediate estimates, the conjugate gradient method
was used. The first row illustrates the fact that the generative classifier per-
forms better than the other estimates, but this difference tends to decrease
when the sample size increases. In the second row, the best performance is
from the BDG estimate for all training set sizes, and the optimal value of λ
(the one that minimizes the expected loss) decreases with n since we know
that the discriminative approach becomes optimal when n tends to infinity.

5 Experiments

We tried our classification method on some of the publically available Statlog
datasets. In our implementation of the GDT estimates, the parameter di-
mension is limited due to the size of the optimization problem (7). To make
the computation feasible, we reduced the dimension of the data by computing
the first four Fisher discriminant variables and using them as inputs (when
the number of classes was less than 5, so that there were fewer than four
discriminant directions, we computed the remaining directions by PCA on
the residuals). These directions are computed using the training data and do
not involve the test data.

We tried four types of density for the class-conditional distributions:
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Figure 1: The full lines plot logistic loss computed on test sets of size 105

against the tuning parameter λ. Each plotted value is the median of 200
experiments. The rows correspond to the first and second simultations. The
columns correspond to different training sample sizes.

1. Gaussian densities with common covariance matrix (LDA), 2. Gaussian
densities with unconstrained covariance (QDA), 3. Gaussian densities with
spherical covariance matrix (Balls1), 4. Mixture of two Gaussian densities
with spherical covariance matrix (Balls2). These distributions do not exactly
fit the data, but they are distributions that are often used to approximate
real datasets. Therefore, when the training sample is small, the generative
approach may still behave better than the discriminative one. Training sam-
ple sizes were set to 50 times the number of classes so the discriminative
classifiers should not have reached their asymptotic behavior.

We used a Cholesky-based parametrization of the inverse covariance ma-
trix, so there was no need for a separate positivity constraint on the parame-
ters. Derivatives with respect to this parametrization were obtained for each
density, and we used the generative solution — which is explicit for densities
1-3 and obtained by the EM algorithm for the densities 4 — to initialize the
CG algorithm.

Table (1) shows the generalization performance for each dataset and each
model with different values of λ. These results show that substantial im-
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Dataset australian diabetes heart satimage vehicle
Training size 100 100 100 300 200
LDA GEN 0.143 0.253 0.178 0.188 0.237
LDA GDT0.75 0.144 0.252 0.178 0.187 0.235
LDA GDT0.5 0.144 0.249 0.179 0.186 0.235
LDA GDT0.25 0.144 0.250 0.182 0.185 0.236
LDA DISC 0.145 0.249 0.185 0.191 0.243
QDA GEN 0.149 0.262 0.181 0.181 0.235
QDA GDT0.75 0.151 0.261 0.182 0.179 0.234
QDA GDT0.5 0.150 0.262 0.181 0.180 0.235
QDA GDT0.25 0.151 0.262 0.182 0.181 0.234
QDA DISC 0.168 0.270 0.204 0.215 0.267
Balls1 GEN 0.146 0.262 0.168 0.185 0.318
Balls1 GDT0.75 0.145 0.260 0.167 0.183 0.293
Balls1 GDT0.5 0.144 0.259 0.165 0.182 0.271
Balls1 GDT0.25 0.144 0.257 0.169 0.181 0.254
Balls1 DISC 0.150 0.253 0.190 0.194 0.242
Balls2 GEN 0.146 0.266 0.181 0.185 0.239
Balls2 GDT0.75 0.145 0.265 0.180 0.185 0.239
Balls2 GDT0.5 0.146 0.265 0.180 0.184 0.236
Balls2 GDT0.25 0.146 0.268 0.181 0.183 0.232
Balls2 DISC 0.166 0.279 0.211 0.210 0.250

Table 1: Test error rate on real datasets, averaged over 100 trials. For each
trial, training data were randomly chosen and the error rate was computed
on the remaining data. In the heart dataset, a misclassified heart disease has
a cost of 5 instead of 1.



C
0
4
 P

A
P

E
R

D
R

A
F

T

8 Guillaume Bouchard and Bill Triggs

provements in the classification rate can be obtained for intermediate values
of λ. However, they do not directly show the performance of the GDT esti-
mate because we fixed λ rather than selecting it by cross-validation on the
training set. The evaluation of the cost as a function of λ could be used as
a model selection criterion. For example, on the vehicle dataset, the simple
Gaussian model (Balls1) gives an optimal λ equal to 0. This suggests that
the bias is dominating the error, and indeed the results are improved by using
two Gaussian densities for each class (Balls2).

One can object that the gain in error rate in these experiments is not
sufficient to really conclude the usefulness of the GDT estimator.

6 Conclusion

In this study, the relationship between generative and discriminative classi-
fiers has been clarified: they correspond to two different maximizations in the
parameter space. By interpolating linearly between the two objective func-
tions, we introduced the GDT estimator. This can be seen either as a less
biased variant version of the discriminative solution, or as an improvement
of the generative classifier. The regularization is “natural” in the sense that
the parameters are encouraged to fit the inputs. Our preliminary results on
real data showed that the intermediate model often gives better classification
performances than the discriminative and generative classifiers.

The real interest of the GDT estimate resides in its application to gener-
ative models. Probabilistic models already exist in many areas: time series
models, mixed models and graphical models — including Markov Random
Fields and Hidden Markov Models — are examples of widely used generative
models. When class-conditional probabilities are modelled generatively, then
the GDT estimator should often improve the classification performances.

Currently, the main difficulty with the GDT method is the choice of the
tuning parameter, as this requires an expensive cross-validation computation.
We believe that more computationally efficient criteria can be developed by
analyzing the solutions on the training set, in the spirit of the Bayesian
Information Criterion [7].
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