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Abstract

We propose a hierarchical generative model for coding the geometry
and appearance of visual object categories. The model is a collection
of loosely connected parts containing more rigid assemblies of subparts.
It is optimized for domains where there are relatively large numbers of
somewhat informative subparts, such as the features returned by local
feature methods from computer vision. The model is learned quickly by
an E-M procedure. Some experiments on real images show the its ability
to fit complex natural object classes.

1 Introduction

In object categorization from digital images, existing geometrical models are typically very
specific to a particular object class (for example 3D human body models). There is a need
for generic models that are suitable for more general object categories. “Part” or “fragment”
based models that combine local image features or regions into loose geometric assemblies
offer one possible solution to this [9, 11, 4, 3, 8]. One such approach is the method of
Fergus, Perona & Zisserman (“FZP”) [4]. This is a joint probabilistic model for multiple
parts distributed normally in appearance and location space. One of its major limitations
is the fact that it is requires an explicit enumeration over possible matchings of model
features to image ones. This optimal, but combinatorially expensive, step limits the model
to relatively few detected features (‘parts’), typically 6 or at most 7. This in turn means that
a good deal of the available image information must often be ignored, especially in cases
where the objects have many parts, either naturally, or because fine grained local visual
features are being used to characterize them. Indeed, such structural approaches often fail
to compete with geometry-free “bag of features” style approaches because the latter make
better use of the available image information [9, 10, 1]. Hence it is useful to investigate
structural models that can handle models with hundreds of local features efficiently.

Secondly, many natural object categories (humans and animals, man made classes with
variable forms) have relatively rigid local shape, but significant large scale shape variability,
so that nearby object features have strongly correlated positions while more distant ones
are much more weakly correlated. Another advantage of part-based models is that they
can easily represent this kind of covariance structure. But to do this well, it is natural to
include at least two levels of part hierarchy, with loosely connected parts containing more



Parameters Coding Model Structure
ρr the part r average position relative to the center of gravity
αkr the kth subpart average position relative to the center of the part r
τkr the probability for the kth subpart to be assigned to the part r
πk the probability of observing the kth subpart
σ2
r the variances of the parts around their mean

Random Variables depending on the Image i
gi the center of gravity of the object
si the scale of the object
hir the position of the part r in the image
`ik the observed position of the part k
Γik ∈ {1, . . . , R} the index of the part to which the subpart k is assigned
Oik ∈ {0, 1} the observation variable equal to one is the subpart k is observed,

0 if is is an outlier

Table 1: A summary of the parameters and variables used in our model.

tightly connected subparts. Hence the overall model becomes a tree-structured graphical
model [7].

In this paper, we propose such a two-level model that is capable of handling hundreds of
subparts efficiently (albeit slightly suboptimally). Compared to FZP, we use a two layer
model rather than a single layer one, and we have simplified the correspondence problem
by using greedy nearest-neighbour matching in location-appearance space . . . but as a result
we can deal with many more subparts. The model is learned by using E-M over the hidden
structure variables.

Below, we first present the probabilistic model and the initial matching procedure. Then
the learning method is explained, and finally we show some experiments on real images.

2 Part-based Model

In this paper we consider only a two-layer model containing R parts and K subparts, how-
ever additional hierarchical layers can easily be added if required. Table 1 defines the
parameters and variables used.

2.1 Appearance and Location Clustering

As input, our method requires a set of local features detected in each image. In the experi-
ments below, we followed a current computer vision trend and used SIFT descriptors [9, 10]
calculated over scale invariant salient regions returned by Kadir & Brady’s entropy-based
local region detector [6]. However, any kind of local features with appearance descriptors
in some space A and some kind of local position variables can be used. To construct the
inputs to the model, we need a first guess of the position of the subparts in the image.
This is done by grouping the detected points in the joint local position / appearance space
R2 ×A into K clusters, using K-means with the norm ‖`‖2 + q‖a‖2. Each cluster defines
a corresponding initial class of subparts, coded by the cluster centre µk = (λk, µk)′. The
constant q is set to make the influence of the appearance similar in magnitude to that of the
location.

Given an image i, to get the initial values of (`i, ai), we match each of theK cluster centres
µk to the detected image point that is closest to it under the above position-appearance
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Figure 1: Left: graphical model of the image random variables. The gray nodes represent
hidden variables.

norm:
(`ik, aik) = arg min

j∈{1,...,ni}
‖x`ij − λk‖2 + q ‖xaij − µk‖2

where ni is the number of detections in the image and xaij , x
`
ij are the detected appearance

and location vectors.

Finally, λk is used as initial value for the quantity
∑
k αkr + ρr. Note that we do not re-

estimate the values of the appearance means µak in the learning step, as we consider that
we have chosen K large enough to code the full set of possible feature appearances and
locations reasonably well.

2.2 Generative model

We now define the generative model for an image i, where the object occurs at position gi
and scale si. The position of each of the r parts is assumed to have a Gaussian distribution
around its rescaled mean offset:

hir | gi, ρr ∼ N (gi + siρr, s
2
iσ

2
rId).

The observed subparts can be generated by any part or the background. The parent of
subpart k is part r with probability τkr. Given this assignment, the position of the subpart
relative to the part has a local Gaussian distribution:

`ik |Γik=r, hir, αkr ∼ N (hir + siαkr, s
2
i Id).

Only the positions `ik and appearances aik of the K subparts are directly observable. The
positions of the parts and the overall centre and scale are hidden variables that must be
estimated anew in each image.

Putting all of these components together, the posterior probability for the complete model
is:

P(g, ρ, h, α, π, τ |`, a) ∝ P(`, a|∗)P(h|g, ρ)P(g)P(ρ)P(α) (1)

where P(x|∗) denotes the distribution of x conditional on all of the other variables,
g, ρ, h, α, π, τ .

Priors: The distribution P(g) is assumed to be uniform on the image range. The prior
on ρ is also assumed uniform. Parts are encouraged to be spatially compact by putting a
Gaussian prior on α with zero mean and variance η2. A very small η would force all of
the subparts to be located at one of the part centers. Such a constrained model could be
viewed as simple extension of the rigid model of Weber etal [12], in which each subpart is
a mixture of possible appearances.



Part and subpart models: As above, the distribution of the parts relative to the object
frame is

P(hir|gi, ρr) = Φ(hir; gi + ρr, s
2
iσ

2
rId),

where Φ(m,Σ) is the 2-D Gaussian distribution with mean m and covariance Σ. To ensure
a unique parametrization, we add the natural constraint that the object frame is centred on
the mean of the part positions ρr, i.e.

∑
r ρr = 0.

The subpart distribution P(`, a|∗) is somewhat more complicated as it depends on the hid-
den variables O and Γ. Conditioning on the observation variable O allows us to separate
location and appearance:

P(`, a|∗) =

K∏

k=1

{πk P(`k, ak|Ok = 1) + (1− πk) P(`k, ak|Ok = 0)} (2)

The appearance and location of the subpart are independent given O, and we assume that
the appearance does not depend on the assigned parent part r, so:

P(`ik, aik,Γik = r|Oik = j, ∗) =

{
pappik plocikr if j = 1

1
χappχloc

if j = 0
(3)

with

pappik = P(aik|Oik = 1, ∗) = Φ(aik;µk, σ
app) (4)

plocikr = P(Γik = r)P(`ik|Γik = r, h, α,Oik = 1) (5)
= τkrΦ(`ik;hir + αkr, Id). (6)

Assuming uniform distributions for outliers (unassigned subparts), χapp and χloc are con-
stants. χloc is set to the area of the image domain that we search for possible matches. χapp
is the volume of the appearance-space domain in which two descriptors are considered to
be similar (which should be set by preliminary studies with the image descriptor that is
being used).

We use the E-M algorithm to make maximum likelihood estimates of our model. The full
E-M update equations are given in the appendix.

3 Experiments

Datasets: We used five different image classes from the Caltech database: motorbikes (200
images), aeroplanes (362 images) backgrounds (430 images), leaves (186 images) and faces
(435 iamges). These datasets have already been used by several groups, e.g. [12, 5, 3, 2].
Half of the images in each class were held out for testing.

Feature Detection: For our underlying features we used the Kadir & Brady entropy-based
scale invariant salient region detector [6], but any other fairly well localized class of features
could be used. We used K = 200 clusters to characterize the subparts.

Training: The current implementation assumes that the position, orientation and scale
of the objects in the training images is approximately known (although both of these are
estimated on-line in the test images). For motorbikes images, the approximate bounding
box of the object location was initialized by hand. We set the subpart coherence parameter
η to 2.0, a value that separates parts well in the images, while still allowing most of the
subparts to contribute actively to the fit.

Experimentally, the EM algorithm converges in around 30 iterations. On these datasets,
about one minute was needed to learn the parameters, as compared to many hours for the
FZP model.
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Figure 2: Some examples of our motorbike model with R = 4 parts applied to the motor-
bike dataset. The final image shows the canonical structure of the model. Each point on
this figure gives the average position of a subpart over the training set: xk =

∑
r τkr.

The models estimated for the aeroplane and motorbike datasets are illustrated in figures 3
and 2. It can be seen that the relative locations of the parts and subparts have adjusted
relatively well to the forms of the objects, and that the final models have sufficient flexibility
to adapt to a considerable range of shape variation in each case.

To test whether the models had really managed to learn the most important appearance
parameters and spatial interrelationships, and whether they were sufficiently selective for a
given object category, we assessed their discriminative power by fitting true-class and false-
class models to unseen test images, and using their fitted log likelihood ratios as decision
variables. The decision thresholds were set to give equal error rates for false positives and
false negatives. The resulting error rates for R = 1 and 3 parts models are given in table 2.
The basic rigid model (R = 1) is already strongly discriminative for these data sets. Using
a model with 3 parts reduced the error rate by a factor of two. The following graphs plot
the test error rate of the leaves/faces classifier against R and K:
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we see that the actual number of parts is not very critical, but overfitting starts to worsen
the results at around 8-10 parts. It is also clear that a large number of subparts is needed



Figure 3: Our R = 3 part aeroplane model to the aeroplane dataset. Note the range of
viewpoints and visibility of the wings, and the fact that the ‘part’ degrees of freedom allow
the model to adjust to a considerable range of variation in the fuselage length.

3 parts models
model aero. motos bg. leaves
motorbikes 1.66
backgrounds 1.4 0.0
leaves 3.31 0.0 2.15
faces 1.10 0.0 0.0 6.45

one-part model
arero. motos bg. leaves
2.0
2.79 0.0
4.97 0.0 8.6
2.3 1.0 0.9 12.9

Table 2: Test set error rates in % for binary probabilistic classifiers based on true-model
versus false-model likelihood ratios, for R = 3 and R = 1 parts.

for optimal results – about 200 in this case.

4 Conclusions and Future Work

We have described a two-layered part-based generative model for category-level visual ob-
ject recognition using large numbers of local features. The model managed to adapt very
well to the object categories tested in supervised classification experiments. Reasons for
this are its well-graded spatial flexibility, and the fact that it can efficiently incorporate a
large number of interest points, each carrying a worthwhile amount of discriminant infor-
mation. We also showed experimentally that so long as the model uses sufficiently many
detected points, the matching of subparts to image features does not need to be very accu-
rate.

Future work: Our priority is to include a matching step into the recursive learning pro-



Figure 4: Some examples of incorrectly classified test images, with the detection and the
estimated part positions. Most of the incorrect classifications arise because the fitting algo-
rithm has become stuck in a local minimum and hence gives incorrect likelihood estimates.
The right image shows the plane model estimated on a badly classified background image.

cedure, to allow automatic localization of the objects during learning. Other obvious ex-
tensions are to study deeper hierarchical structures (with parts, subparts, sub-subparts, etc),
and to use more flexible models of the parts’ positions, including relative scale changes and
rotations as well as relative translations.
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Appendix: E-M Equations

For clarity below, we use scale-normalized positions for the centers, parts and subparts:
h̃ir = hir/si, ˜̀

ir = `ir/si and g̃ir = gir/si. The EM algorithm is used to maximize the
likelihood of our model.

E step: We note θ the set of variables {α, ρ, h̃, g̃, σr}.
wikr = P(Γik = r,Oik = 1|θ, `ik, aik) (7)

=
P(Oik = 1)P(`ik, aik,Γik = r|Oik = 1, θ)∑

j∈{0,1} P(Oik = j)P(`ik, aik,Γik = r|Oik = j, θ)
(8)

with pappik , plocikr, χ
app and χloc are previously defined.

M step: The completed log-likelihood is:

Lc(θ) = −1

2

∑

i,k,r

{
1

η2
‖αkr‖2 +

1

σ2
r

‖h̃ir − g̃i − ρr‖2 + wikr‖˜̀ik − h̃ir − αkr‖2
}

(9)

To maximize Lc, we set the derivatives equal to zero. Given the variance parameters η and
σr, the variables α,h̃ and g̃, can be found by solving the system of KR + R + NR + N
linear equations:
∑
i (wikr + 1

η2 )αkr + wikrh̃ir − wikr ˜̀
ik = 0∑

i,k ρ̃r − h̃ir + g̃i = 0∑
k wikrαkr − 1

σ2
r
ρ̃r + (wikr + 1

σ2
r
)h̃ir − 1

σ2
r
g̃i − wikr ˜̀

ik = 0∑
k,r − h̃ir + g̃i = 0

(10)



In the last equation we used the constraint
∑
ρ̃r = 0 to remove the term ρ̃r. We can reduce

(by substitution) the number of equations of this system to either KR + R or NR + R,
depending on the application. Otherwise, it is possible to apply the reestimation formulae:

αkr =
1

1
η2 +

∑
i wikr

∑

i

wikr(˜̀
ik − h̃ir) (11)

ρ̃r =
1

NK

∑

i,k

h̃ir − g̃i (12)

h̃ir =
1

K
σ2
r

+
∑
k wikr

(
1

σ2
r

(g̃i + ρr) +
∑

k

wikr(˜̀
ik − αkr)

)
(13)

g̃i =
1

KR

∑

k,r

h̃ir (14)

References

[1] G. Csurka, C. Dance, L. Fan, J. Williamowski, and C. Bray. Visual categorization
with bags of keypoints. In ECCV’04 workshop on Statistical Learning in Computer
Vision, pages 59–74, Prague, 2004.

[2] Gy. Dorko and C. Schmid. Object class recognition using discriminative local fea-
tures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004. sub-
mitted.

[3] Li Fei-Fei, Rob Fergus, and Pietro Perona. A Bayesian approach to unsupervised one-
shot learning of object categories. In Proceedings of the 9th International Conference
on Computer Vision, Nice, France, pages 1134–1141, Nice, France, 2003.

[4] R. Fergus, P. Perona, and A.Zisserman. Object class recognition by unsupervised
scale-invariant learning. In Proceedings of the Conference on Computer Vision and
Pattern Recognition, Madison, Wisconsin, USA, 2003.

[5] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised
scale-invariant learning. In Proceedings of the Conference on Computer Vision and
Pattern Recognition, Madison, Wisconsin, USA, 2003.

[6] T. Kadir and M. Brady. Scale, saliency and image description. International Journal
of Computer Vision, 45(2):83–105, 2001.

[7] William T. Freeman Kevin Murphy, Antonio Torralba. Using the forest to see the
trees: A graphical model relating features, objects, and scenes. In Neural Info. Pro-
cessing Systems, 2003.

[8] B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and segmen-
tation with and implicit shape model. In ECCV’04 workshop on Statistical Learning
in Computer Vision, pages 17–32, Prague, 2004.

[9] D. G. Lowe. Local feature view clustering for 3D object recognition. In Proceedings
of the Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA,
pages 682–688, December 2001.

[10] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. In
Proceedings of the Conference on Computer Vision and Pattern Recognition, Madi-
son, Wisconsin, USA, June 2003.

[11] S. Ullman, E. Sali, and M. Vidal-Naquet. A fragment-based approach to object rep-
resentation and classification. In 4th International Workshop on Visual Form, Capri,
Italy, May 2001.



[12] M. Weber, M. Welling, and P. Perona. Unsupervised learning of models for recog-
nition. In Proceedings of the 6th European Conference on Computer Vision, Dublin,
Ireland, pages 18–32, 2000.


