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Abstract. In this paper, an alternative to Mixture of Experts (ME) called lo-
calised mixture of experts is studied. It corresponds to ME where the experts are
linear regressions and the gating network is a Gaussian classifier. The underlying
regressors distribution can be considered to be Gaussian, so that the joint distribu-
tion is a Gaussian mixture. This provides a powerful speed-up of the EM algorithm
for localised ME. Conversely, when studying Gaussian mixtures with specific con-
straints, one can use the standard EM algorithm for mixture of experts to carry out
maximum likelihood estimation. Some constrained models should be very useful,
and the corresponding modifications to apply to the EM algorithm are described.

1 Introduction

Let consider a regression model, where the dependent variable Y can be fully
explained with a given set of variables Xi,--- , X441. Assume that X441 is
a not observed discrete variable. This regressor is called a latent variable. A
natural way of carrying out regression is to explain Y with the d remaining
regressors. But the latent variable can carry much information and it could
be important to try to recover it. For example, for each value of the latent
variable X411, the conditional model is completely different. The missing
information can be estimated in a mixture of regressions model (Quandt
and Ramsey (1978)). Distinction between clusterwise regression models was
performed by Hennig (1999).

Switching regression is well known in econometrics literature ; it is a
special case of mixture of linear regressions, assuming that the mixture pro-
portions do not depend on the regressors. This model was first examined in
Quandt (1972) and Kiefer (1978) gave consistency proof of maximum likeli-
hood (ML) estimators. See Hurn et al. (2001) for Bayesian analysis of this
model.

In a general framework, mixtures of regressions are often referred as Miz-
tures of Ezperts (ME), due to their first introduction in the machine learning
community (Jacobs et al. (1991)). ME considers a gating network which is
the conditional distribution of the hidden variable given the regressors. These
models are therefore called conditional mizture models. Some useful results



2 G. Bouchard

have been established, regarding the convergence rate of EM algorithm (Jor-
dan and Xu (1995)) or identifiability (Jiang and Tanner (1999)). Direct ex-
tension is Hierarchical ME where the gating network has a tree structure
(Jordan and Jacobs, 1994).

The motivation of this paper is to study mixtures of regressions where
we assume a Gaussian distribution for the regressors. It leads to the so-
called localized mixture of experts (Moerland (1999)) first introduced by Xu
et al. (1995). It is also referred as normalized Gaussian networks by Sato
and Ishii (2000). Our approch was to work on the joint distribution of the
observations. It enables us to link localized mixture of experts with mixture
models in their standard form, and thus to take profit of well established
theoretical results (McLachlan and Peel (2000)). In this way, we provide a
version of the EM algorithm that dramatically decreases the computing time.
Conversely, mixtures of experts can be used in the mixture model context to
estimate models with specific constraints on parameters. Detailed formula of
the EM algorithm for such models are given in this paper.

2 The Model

We consider relashionships between three variables X, Y and H:

e X in R% is a vector of d real regressors,
e Y in IR is the dependent variable,
e Hin {1,---,K} is the latent or hidden discrete variable.

Let (z,y) = {(2s,Yi)i=1,. ,n} be ild observations of the couple (X,Y"). Since
H is not observed, the density of (X,Y") is obtained by marginalization:

K

p(X,Y) =) p(X,Y,H = k). (1)

Applying the Bayes rule on p(X,Y, H), we derive two useful expressions of
the joint probability:

K
p(X,Y) =) p(X)p(H = k| X)p(Y|X,H = k) (2)
k=1
K
p(X,Y) = p(H = k)p(X|H = k)p(Y|X, H = k). 3)
k=1

For these two parametrizations, the distribution of Y conditionally on H = k
and X = z is, as usual in linear regression, an univariate Gaussian with mean
B« + oy and variance 77

Y|X =2,H=k~N(Biz+ oy, 7). (4)

. We now present models that find estimators of S,ar and 7.
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2.1 Standard mixture of experts

The expression (2) corresponds to the conditional mixture model, since max-
imizing its log-likelihood does not require knowledge of the distribution of X.
It is equivalent to work with the conditional probability of ¥ given X:

K

p(Y|X) = Y p(H = kX) p(Y|X, H = k) (5)

k=1 gating network expert

In this case, the gating network classifier p(H|X) has to be specified. The
multinomial logit model is usually choosed. It is a generalised linear model
with conditional density

pkevk.’v
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wh;re vectors vy and proportions pg are parameters such that vg = 0 and
2k=1 Pk =1

p(H = k|X) = k=1,---,K, (6)

2.2 Localized mixture of experts

In the sequel, we opt for parametrization (3), which corresponds to a standard
mizture model where each component has density p(X|H = k)p(Y|X,H =
k). A multinomial distribution is assumed for H:

H ~ M(1,p), (7)

"is a vector of component proportions such that

where p = (pla' o ;pK)
Eszl pr, = 1. Given mixture component H, the regressors X are assumed to

arise from a multivariate Gaussian distribution:
X|H = k ~ N (g, Zp)- (8)

With the Gaussian parametrization, components can be interpreted in a more
natural way than the standard ME, since the means u; summarize the regres-
sors. The corresponding gating network classifier can be obtained by direct
application of the Bayes rule:
P(H = E)p(X = alH = k)
p(H =KX = 2) or= o) )
pk|2k|_%e_%(z—mk)lzk_1($—mk)

T YK pm) e M my S e m)”

(10)

This is exactly the gating network with Gaussian kernel proposed by Xu et
al. (1995). This parametrization differs from the usual softmaz fonction pri-
marily by the quadratic form of the canonical link. We refer this model as
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Fig. 1. Illustration of a mixture of two regression: from a dataset where a simple
linear regression is not suitable (top left), switching regression (top right) finds two
optimal regression lines equally distributed on the regressors. Standard mixture
of experts (bottom left) expresses the proportions from a linear logistic model on
the regressors. Localized ME (bottom right) assume that the distribution of the
regressors is normal with parameters depending on the hidden variable. We see
that the last two models give similar results. Proportions are represented at the
bottom of the graphs.

Original set Switching regression

6 6
4
2
0]

-2

_4_14
6
4
2

>0

-2

-4 - 4 o
-4 —727 — 0 2 4 -4 - -2 o 0 2 4

localized mixture of experts, following Moerland (1999), who compared Gaus-
sian and standard gating network for classification and noted a slight superi-
ority of standard ME. Localized ME was successfully exploited in Fritsch (1996)
and Fritsch, Finke and Waibel (1997) for speech recognition. They show that
such kernels can reduce significantly the time of convergence of the EM algo-
rithm for large databases. They obtain near optimal initial parameter values
ur and X, by an unsupervised learning applied on regressors only. We should
stress that originally, localized ME introduction was for convenience, but we
give a natural justification of their use in terms of probability assumption.

It can easily be proved that the joint distribution of the observations
(X',Y") is a mixture of (d + 1)-dimensional Gaussian distributions. The pro-
portions are the pg, k = 1,--- , K defined above, the mean and covariance
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matrix of the kth component are

( " Lk kB
me={ , I = . (11)
o)
HiPi + o Bk T+ BrXkBr

Then, localised ME is just a Gaussian mixture with a specific parametriza-
tion.

2.3 Adding constraints

The basic model described above has (%2 + %d + 3)K — 1 parameters. It can
be excessive since the number of parameters grows quadraticaly with the
dimension d of the data. To avoid overfitting, we can derive more parsimo-
nious models by adding constraints on parameter values. The first assumption
would be to constraint the component covariance matrix X} to be diagonal.
This assumption corresponds to the conditional independence of regressors
given the component, and we claim that it may not be very severe since
regression focus essentially on coefficients ;. We then obtain a particular
covariance matrices I'y of the joint distribution for each component k:

2 2
Okt 0 O'klﬂkl

0 ... Uid Ulzcgﬂkd
01291/8/91 —e- U}%dﬂkd T/? + Hz’:1 ﬂiﬂii

To our knowledge, this type of covariance matrix was never mentioned in the
literature on Gaussian mixtures. It can yet be useful for specific problems.
This model has now K (2d + 3) — 1 parameters which is linear in d, so that it
can be more suitable in high dimension problems.

Another class of models can be obtained by constraining some parameters
to be equal between groups:

1. pr = p: components proportions are equal. This assumption can be re-
garded as unrealistic. However, maximum likelihood estimator can be
expected to be more stable since the number of local maxima of likeli-
hood dramatically decreases when proportions are equal.

2. Br = B: common slope between components. The model is then a linear
regression for which the error term can be dependent on regressors values.

3. 7, = 7: common error term between regression. This constraint forces
the model to have a constant error term in each component.

4. X} = X: common regressors covariance matrix. This assumption is useful
when we want a linear separations between groups instead of a quadratic
one. This is illustrated on Figure 2 with o = 0. The probabilities of each
component are split between left and right, contrary to other models.
Some other contraints would be to set a = a or py = p, i.e. assuming that

components have a common intercept or a common mean. They correspond
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to very specific models, as it can be viewed on Figure 2. Combinations of these
constraints leads to a large variety of different models. Note that some of these
constraints may be very severe and only applicable to specific distributions.

Fig. 2. Some illustrations of data sets in accordance with constrained models.
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3 Maximum likelihood estimation

Before carrying out ML estimation, we must ensure that the model is identifi-
able. Hennig (2000) gives necessary conditions for the existence of consistent
estimators in mixture of regressions with random regressors: the regressor
distribution must not give positive probability to any (d — 1)-dimensional
hyperplanes. Of course, this does not occur as soon as the X} are not singu-
lar, which is not a mild condition. Following Dempster et al. (1977), we now
describe the EM algorithm for the Gaussian mixture of experts. We write
Br = (a,B) for k =1,--- K. Let 6 be the vector of parameters containing
Dk, ﬂ: Tk Mk OT Xy for k= 17 7K'

E step. The expectation step require the computation of the conditional
expectation of the complete log likelihood

Q(010Y) = B{L.(6; z,y)|z,y,6®} (13)
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where (%) is the value of parameter vector at iteration ¢ and L.(8; z,y) is the
complete log likelihood of the model. Denoting h the density of X|H and g
the density of Y| X, H, we have

n

(6;2,y) ZZczk log (prh(xi; e, 2r)9(yis i, B, 7)) (14)

i=1 k=1

Here, c;; equals to 1 if data ¢ comes from component k, and 0 otherwise. Its
expectation conditionally on parameters 8() is

o s, 2 gy 2, BY 1)

wy, = (15)
R R R A
M step. The maximization step is computing
0V = argmaz Q(06Y). (16)
9

From equations (13) and (14) we get

n

Q) = 3° 5wl 1k B nassul?, Zatuan B0, 7O (1)
i=1 k=1

Let X = [x1,--- ,%,]' be the matrix of regressors and X = [l X| where T

is a n x 1 vector of ones. Y is the vector of y; and W,gt) are n x n diagonal
()

matrices with w;;,” on their diagonal. Expression (17) is maximised by setting

its partial on py, ﬁ , Tk, ik and X to zero. We obtained closed form solutions:

pitt = t w (18)
Gt — ( Xwih )1 xwivy, (19)
t+1 1
2 = (v = XYWy - XBEHY), (20)
triv,
(t+1) 1 —r—
ptn = x'wir, (21)
k tTW,gt) k
1 ! !
Y = — (0 = YW - ). (22)
triv,

We can notice that equations (19) and (20) correspond to a weighted least
square fit and equations (21) and (22) give weighted mean and variance.

3.1 ML estimation of constrained models

To adapt the previous algorithm to the constraint models defined above, the
procedure is the same. Derivatives of expression (17) are slightly different,
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but except for B,(:H), the modifications are straightforward and no included
here, except for the constraint 8 = 8: we have to solve the nonlinear system

2 = e (v - XAy W‘”(Y KAL),

5 (23)
Bty = (X’(E,“ S WIOX) " XS, e W)Y,

Since closed form solution of this system is not available, we simply replace
the term 7, 2(t+1) by its previous value Tz ® in the expression of B,(CHI). It can
be proved that acting in such a way, the modified M step still increases the
likelihood. Thus, we have defined a Generalised EM algorithm which have

the same properties than EM (see Dempster et a. (1977)).

3.2 Reducing the computing time

If no constraint on component parameters is applied, ML estimation is straight-
forward since the model is a mixture of normal distributions. This approch
differs from Fritsch’s one in the sense that we directly obtain ML estimators
by an unsupervised learning on the joint distribution p(X,Y") instead of p(X).
There exists various effective ways of finding ML estimators of u; and I,
but the most used is the EM algorithm (McLachlan and Peel (2000)). Once
we get the ML estimators fiy and I, we write = ;2 and I}, = 12,’“ i },
Ay, being a d x d matrix, by and ey vectors of R? and fr and eg real val-
ues. We solve equations (11), getting fix = ek, Sk = Ap, Br = E Lo,
Ty = Cp — Bkﬂkﬂk, and finally ap = fr — ,ukﬂk Not only this estimation is
simple, but it is faster than the previous EM algorithm. Namely, in the first
algorithm, two inversions of matrices are needed for each EM step and each
component (one in the evaluation of the density h((z;; ,u(t) E(t)) in the E step
and one for the weighted least square fit (19) in the M step). By constrast,
in this new version, each step requires one matrix inversion (evaluation of
the Gaussian density in the E step), thus dividing the computing time by 2
when the dimension d is large. It proves that this specific parametrization
can appreciably simplify estimation.

4 Discussion

We studied a mixture of Gaussian distributions used in a regression purpose,
and showed that it can be viewed as a mixture of experts with Gaussian
gating network. The specific parametrization provide a natural interpretation
of clusters and enable us to add constraints that were never mentioned in
Gaussian mixture literature. A wide variety of clusterwise regression models
is therefore available, that can be used for multiple purposes. Robust linear
regression is possible, so that non-Gaussian error terms can be handle easily.
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Some further work is needed to provide results on this topic. Independence
constraints also permit to reduce significantly the number of parameters, and
this can be particulary desirable in high dimension. Finally, on the model
without constraint on component parameters, we gave a powerful way of
estimating ML parameters.
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