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Abstract

In this paper, we present a method for estimating articu-
lated human poses in videos. We cast this as an optimization
problem de ned on body parts with spatio-temporal links
between them. The resulting formulation is unfortunately
intractable and previous approaches only provide approx-
imate solutions. Although such methods perform well on
certain body parts, e.g., head, their performance on lower
arms, 1.e., glbows and W”Sts’ remains poor. We present aFigure 1. Human pose estimated by (a) Yang & Ramanan's
new approximate scheme with two steps dedicated to pose ,

. . . . method B3], our approach: (b) local temporal model for less-
estimation. First, our approach takes into account tempo- o 15 parts, and (c) mixing body-part sequences.
ral links with subsequent frames for the less-certain parts 0 ]
namely elbows and wrists. Second, our method decomposedata. A probabilistic graphical model, often a Markov ran-
poses into limbs, generates limb sequences across time, and°™M €ld (MRF), is designed with scores provided by these

recomposes poses by mixing these body part sequences. templates. For single images, the MRF _is usually modeled
We introduce a new dataset “Poses in the Wild”, which 25 & tree or a star-shaped graph, leading to tractable and

is more challenging than the existing ones, with sequenceSEf cient inference, as successfully done in, [7, 8, 33].

containing background clutter, occlusions, and severe-cam Qne way to e_xtend S_UCh metho_ds for estimating poses in
era motion. We experimentally compare our method with VId€0S IS by introducing regularization on the body parts
recent approaches on this new dataset as well as on two2crss time, e.g., by adding temporal part-part edgss [

other benchmark datasets, and show signi cant improve- 2% 2/ 2% 31]. The resulting graphical model is no longer
ment. atree, and inference becomes intractable. Thus, apprexima

tions are required, which can be done by changing the graph
1. Introduction structure, e.g., ensemble of tree-structured MRFs §1],
or by using approximate inference methods, such as loopy
belief propagation or sampling.(), 27, 29].

In this paper, we introduce a new approximation scheme
tors make this task challenging, such as the diversity of ap_adapted to_the human pose estlmat|on problem. We be@_l'”
pearances, changes in scene illumination and camera viewPY 9€nerating a set of pose candidates in each frame with
point, background clutter, and occlusion. In recent years, & Model including temporal links with subsequent frames
a signi cant effort has been devoted to estimating human O the less-certain parts, namely elbows and wrists, see
poses in single images,[7, 24, 33. Although these meth- ~ Figure 1(b). - Since the loops in the corresponding MRF
ods perform well on certain body parts, e.g., head, their per &€ isolated, we show that inference can be performed ef-
formance on localizing parts corresponding to lower arms, Ciently with the use of distance transforms][ We then
i.e., elbows and wrists, is poor in general. The focus of COMpute the n-best poses [L] in each frame to obtain a
this paper is to improve human pose estimation, and in par-divérse set of candidate poses (Sec8ds). Next we intro-
ticular to localize lower-arm parts accurately by modeling duce an effective method to smooth these poses temporally.
interactions between body parts across time. We decompose the human pose into limbs and track them

Recent algorithms assume that articulated human poseé,0 generate body-pa_lrt_ sequences. We then recompose the
are composed of a set of rigid body pafis4, 7, 8, 11, 33], complete Pose b,y mixing these part sequences (Fijisle
for which body-part templates are learned from training _Sect|on3.4)._ T_h|$ procec_;lure explores a set of poses that

is exponential irK , the size of the candidate set, in poly-

e 2 i
LEAR team, Inria Grenoble Rine-Alpes, Laboratoire Jean Kuntz- nomial t|m97 O(NTK #), whereN is the number of body
mann, CNRS, Univ. Grenoble Alpes, France. parts andr is the number of frames).
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Articulated human pose estimation plays a key role
in many computer vision applications, including activity
recognition and video understanding)[ 34]. Several fac-




We experimentally demonstrate the effectiveness of ourthe tracking problem on the neighboring part(s). Our ap-
algorithm on two state-of-the-art datasets: VideoPasg [ proach also tracks parts individually to exploit a largegpos
and MPII Cooking Activities P1]. While these are inter- candidate set, but imposes regularization along the limbs
esting preliminary benchmarks, they do not have the same(connecting two body parts) instead of the parts alone, as
level of dif culty that occurs in recent datasets for pos@-es  shown in Figures.
mation in single images (i.e., datasets where pose labels ar  More recently, Zuf et al. [35] have proposed a scheme
only provided for individual isolated frames), such as Fash where poses across two consecutive frames are coupled us-
ionPose §]. For instance, VideoPose sequences have verying optical ow. Although this method showed promising
limited occlusions, are all shot indoors, pre-processed toresults, it is limited to frame-to-frame re nements. In com
stabilize motion and to align the head location. The videos parison, our approach additionally optimizes pose-part lo
in the Cooking Activities dataset are recorded in a single cations over entire sequences. Toketal. [28] explore the
indoor environment with a static camera. We introduce a exponentially large search space for nding optimal parts
more challenging dataset call®dses in the Wildwhich is with an ad hoc approach to nd part tracks (i.e., locations
available on-line []. It contains 30 sequences from three of a part over the entire sequence), whereas we present a
Hollywood movies. It is representative of real-world sce- method to nd optimal tracks. As shown in the experimen-
narios, with background clutter, body-part occlusions] an tal evaluation in Sectiod, our proposed approach outper-
severe camera motion. Our method improves over prior artforms both these methods.
on these three datasets by approximal&gl9oin localizing
wrists (Sectior). 3. Proposed Approach

2 Related Work Our work relies on the. deform_able mixture—of-parts
model proposed for single images &3] due to its good

One of the main challenges for pose estimation in videos performance and computational ef ciency. In this section,

is to handle the temporal coupling of parts across frames.we rst brie y present this technique, and then introduce

This results in models that are highly inter-connected,(i.e our approach for video sequences.

loopy graphs with high tree-width) and are thus intractable

to perform inference on. Previous works have resorted to

approximate inference to address this issue. For instance, LetG= (V;E) denote a graph with verticdésand edges

the methods in{7, 29 use a sampling approach. Morere- E V V representing the structure of a human pose.

cent methods[0, 14] have used loopy belief propagation Each vertex corresponds to a body part (i.e., head, shoul-

instead. Such approaches typically come with high compu-ders, elbows, wrists), and each edge represents a connec-

tational costs for marginal improvements in performance in tion between two of these parts; see Figd(a). We de ne

general. Sappt al [24] propose a strategy where the model a posep with respect to this grap@ as a set of 2D coordi-

is represented as a convex combination of tree-structurechates representing the positions of the different bodyspart

graphs linked with dual variables, and solve it with a dual in an image as:

decomposition algorithm. It shows better performance over

other approximations, but remains computationally expen- p= p'=(x"y")2R*:8u2V

sive on long sequences. The formulation of B3] uses a mixture of body part mod-

Some of the earlier approaches detect a pose in a few . . :
- Is. Ever rt can [ with onévb ibl
frames, and track it in the rest of the sequengg P6). oS ery part can be associated with o fpossible

A few other methods adopt a tracking-by-detection scheme types’, and choosing a typg con guratlon_ determines the
t0 estimate Doses in videod 5. 12 16. 18 201, Speci - pose model. Thus, estimating the pose involves not only
call Ithe ch))m tel th\g osé[sﬁ so,me' (or"n azl.l thg) frlames choosing the part positioqs but also the type for each body

Y, they. put P In : ' part [33]. We use this framework in the paper, but omit the
and track it over time. Canonical posex] or part-level

segmentationsl, 16] have been used to extract the initial ;jige);alls in the following presentation to simplify the nota-
pose in a frame. A diverse set of poses![d] instead of one : . . Lo .
. . The single-image pose estimation problem is then for-
candidate in each frame has also been used. These meth- L . )
. . . . mulated as the minimization of the followirgpstC(l; p)
ods smooth the entire articulated pose over time using the . .
. . . for a posep and an imagé:
candidate(s), which are typically no more than a few hun- X X
dred in number. An alternative strategy is to track indiadu C(l:p) := I pY) + S ) (1
> . C(p): u(lip") uv (P P): (D)
parts, and to explore a set of poses, which is exponential in
the size of the candidate setd 15, 19. Ramakrishnaet
al. [19] present a top-down approach in this context. They where (I;p") is an appearance term for the body paatt
compute the optimal track for a part, and use it to condition the positiorp" inl, and ., (p* p") is a deformation cost

3.1. Pose Estimation in Single Images
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Figure 2. (a) Our graphical model for human pose in a single imageisrsiwith the body partshead,left andright shoulders elbows
andwrists) and their spatial connections. (b) The graphical model usech® ttee pose estimatp; in imagel: with a dummy pose: +1
(shown in solid blue lines), which contains only the wrist and the elbow paitsagel .1 . The temporal links between these two poses
are shown in green. (c) An illustration showing messages between ddaheetwdy parts.

for body partqu; v), which is often compared to the energy
model of a spring. Both, and ., have underlying linear
Iters that are learned by using a structured SVM formula-
tion. WhenG is a tree, the exact minimizer of) can be
found in polynomial time with dynamic programmingd].

3.2. Pose Estimation in Videos

mon to introduce temporal links between every pair of
framesl; andl+1 inthe sequence, in order to impose tem-
poral consistency in the estimation of the pose positions

between every pair of nod@s andpy,, , leading to the fol-
lowing cost function:
}( 1

C(ly;pr) +
t=1
where is a consistency term between the poses in two con-
secutive frames and; is a regularization parameter. We
measure the consistency betwggrandp;+; by compar-
ing pr+1 With p; adjusted with optical ow as follows:

fe(p)kz: (3)

C(lt;pr)+ 1 (PPl ) (2

Kpta PP

u2v

(Pesprea ;e lien ) =

wheref (p{') is the optical ow between framds andl ;+1
evaluated at the positiop'. Indeed, this approach is quite
natural and similar formulations have been proposed,
24]. Our work mainly differs from these approaches in the
way we address the problem of minimizing),( which is
intractable and requires some approximations.

The temporal edges introduce loops in the graph, which
leads to an intractable inference problem. It would be pos-
sible to use an approximate method like loopy belief prop-
agation, whose complexity is exponential in the size of the
maximal clique in the graphl[/]. We have found such a
strategy too slow to be practical for pose estimation. In-
stead, we propose a two-stage approach.

The rst step consists of generating a set of candidate
poses in each frame. We achieve this by minimizing an
approximation of 2) in combination with the n-best algo-
rithm [18]. Speci cally, we build on the approach of §] by
introducing frame-frame temporal smoothness among some
of the body parts. In the second step, we decompose the
candidate poses into limbs, and generate limb sequences
across time. We then recompose the complete, accurate
pose my mixing these body-part sequences. This strategy
shows a better performance than simply optimizigjgoyver
the candidate poses as ihd] because it explores a larger

3.3. Generating Candidate Poses

In this step, we focus on generating a seKotandidate
poses in each franmle. One approach for this task is to use
the costC(l; pt) in (1) for estimating poses in the franhg
and compute th& bestand diverse solutions, as proposed
in [18]. In other words, we nd diverse pose con gurations
that yield low cost in each frame independently, regardless
of the temporal smoothness. We have observed that this
strategy tends to be inaccurate for parts that are dif qult t
estimate, such as wrists, as shown in Secfion

We propose a method to re ne the estimation of a pose
p; in a single image framkg using adummyposep;+; that
contains only the wrist and elbow parts in the frahpg .

We de ne this task as optimizing the following cost func-
tion:

ft(p;‘)kz;
(4)

whereW V represents the left and right wrists and el-

bows, 3 is a regularization parameter. The c@sis de-

ned as C in (1), except that only terms corresponding to

wrists and elbows are considered, i.e., it contains the ap-

pearance terms, for these parts and the deformation costs
uv between them.

X
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Candidate single poses Spilt poses into limbs Optimize over limb sequences Recombine limbs top-down to create pose

Figure 3. lllustration of our limb recombination scheme. From left to rigHbcB-A: An image and four candidate poses, where only
a part of each pose is well-aligned with the person. Block-B: We dividd eandidate pose into limb parts. Block-C: We allow the
recombination of limbs from different pose candidates with constrairtisdes two limbs that have a joint in common. Block-D: An

example where recombination builds an accurate pose, which is not inigireabcandidate set. See text for more details.

In Figure2(b) we show the graphical model correspond- vyielding a new seP; that is exponentially larger tha®;.
ing to this step. It contains two isolated loops—a setting We will then minimize b) approximately oveP;. Before
where exact inference can be performed with loopy belief going into details, we start by sketching our approach. As
propagation $2]. This algorithm proceeds as a sequence shown in Figure3: (A) We break each posg in P; into
of message passing steps. In each step, a mesdéggs limbs 1YY = (pY;p"), where(u;Vv) is in E. (B) We de-
passed from node to nodev in the graph. Itis then used compose %) into a sum of costs for every limb sequence.
to update the message fronto other nodes it is connected (C) We allow the recombination of limbs from different
to. This procedure is repeated for all the nodes until con- poses as follows: consider two limb§’ = (p“;p') and
vergence, i.e., none of the messages change after an updaté" = (p¥;p®) obtained respectively from two posps
iteration is performed. On our graph, we begin by sending andp®in P;. The two limbs share the same body part
messages from the leaf nodes to the root, and then from theand thusp” should be close tp¥, such that the two indi-
root node to the rest. After convergence, we assign eachvidual limbs can be considered as a good approximation of
node to the label corresponding to the minimum marginal the combinatior{p"; p*; p®). This is achieved by adding a
at that node. This procedure can be implemented ef ciently pairwise cost (1" ;IVW) = ,kp' p¥k3 to our formula-
on our graph with the distance transform technigi]e [ tion, which can be interpreted as attaching a spring between
As shown in the experiments, our approach for gener- the two limbs (Figurg-C). (D) We nally estimate the pose
ating candidate poses by minimizing) (nstead of simply by recombining limbs in a top-to-bottom fashion, approxi-
minimizing C(l; p;) performs better with no signi cantin-  mately minimizing the resulting objective function.
crease in computational cost. Formally, the above approach consists of approximating

. . . . . the objecti b f cost the limbs:
3.4. Recombining Limbs with Variable Splitting @ objective §) by a sum of costs over the limbs

. . X - AU):U . U
After generating a set d candidate poses for every guv (|l115?':T )+ (|f YY) (8)
frame (denoted by; for framel), a simple strategy is to (U )2E t=1
optimize our global objective functior2) over this set as: v , v uv
X 1 wherel{; represents a limb sequen@g" ;:::;17"), the
min  C(l1:pr)+ Clep)+ ; el : function is the cost de ned in the previous paragraph, and
P 2P ¢;8t (Iripr) =1 (P o (PP ilili) pa(u) represents the parent node of the body pairt the
(5) tree. Note that to simplify the notation, we associate the

This can be solved ef ciently with dynamic programming head to a limk(h; h) with pah) = h, whereh in V is the
in O(TK 2) operations, as done in§] for example. How-  root of the tree. The scor8“V (I}'; ) for a limb (u;v)
ever, we have observed that the constrgin2 P is an contains all the pairwise terms i)(involving pi' andpy, as
important limitation of such a strategy. On the one hand, well as all the terms involving}''s only. To further simplify
it has the positive effect of making) tractable, but on the  the computations and improve the speed of the procedure,
other hand, having onlit different possible poses in every we approximate the non-temporal terms involvisiy and
frame can be problematic. TH& may contain a “good” p' p! by the cosC(l:;p:) computed in Sectio.3,
candidate pose, but the method is unable to deal with sit- We then proceed in a top-to-bottom fashion; we start
uations where it is not the case, thus motivating us to pro-by estimating the head sequence, which is usually the
pose an approximate scheme exploring a larger set of posesost reliable body part in pose estimation, by minimiz-
thanPy. ing the corresponding functioB™" over the set of head
Our main idea is to allow the recombination of limbs candidates. This can be done@{K T) operations with
from candidate poses iR; in order to create new poses, dynamic programming. In the next step, we estimate



the limbs connelgted to the head by minimizing the cost 500 frames) for testing. All the frames are annotated with
st atvoy+ 0 T (1P YY) Again, thisisdone  the following body parts: torso, shoulders, elbows, wrists
in O(K %T) operations. We proceed recursively until the We follow the evaluation scheme of7], i.e., test on the

wrists are estimated. 17 sequences from the Friends TV series and compare the
The procedure is approximate, but turns out to be effec- results for localizing elbows and wrists.
tive in practice, as shown in Sectidnltimproves upon®)  \ipj| Cooking Activities. This dataset was proposed

by exploring a larger sé®, instead ofP. in [21] for recognizing cooking activities in video se-

guences. It contains approximately 1071 frames from 13
video clips, where each frame is annotated with upper-body

We now present a few simple variations of our model that payts The frames are captured with a static camera, and all
have shown to improve the quality of our pose estimation. e sequences are recorded in the same kitchen.

Temporal Regularization along Dense Limb Positions.  Poses in the Wild. We introduce a challenging dataset
The joint positions are typically suf cient to entirely cha  named Poses in the Wild It contains 30 sequences,
acterize a posp, but temporal regularization can be added with about 30 frames each, extracted from the Hollywood
to different points along the limbs to make the estimation movies “Forrest Gump”, “The Terminal”, and “Cast Away".
more robust. We use this strategy, and de ne a set of We manually annotated all the frames with upper-body
three equidistant positiorpy~ along the limbs in ourimple-  poses. In contrast to the VideoPose and Cooking Activi-
mentation. We add the corresponding regularization termsties datasets, it contains realistic poses in outdoor sgene
(Pt 5 Pisr s 1 141 ) for these additional keypoints to the  with background clutter, severe camera motion and body-

cost function §), sharing the same regularization parame- part occlusions. The dataset is publicly availablelt [
ter. We compute the maximum optical ow withinl2 12

patch around each of these positions as well as the keypointé-2- Implementation Details
to obtain a robust estimate of the ow. Training. The main components of the pose model are
. . ) . . the appearance term for each body part and the deforma-
Enriched Wr|st Model. Wrists be_lng the most d_|f cult _ tion cost between a pair of parts(and . in (1) respec-
part to estimate, we have found it useful to enrich their ey e learn the underlying Iters for these terms wgin
model by using a motion a priori. In many cases the wrist s method of 9 for estimating poses in single images, as
|'S moving, I.e., It is ri.:,lre that a person'S arms ar'e not in mo- described in SectioB.1. FOIIOWing [33]’ we augment our
tion. We_ can use th|s_fact tp encourage the allgnment of aget of parts (keypoints) with keypoints corresponding io: (
part position to a region with h'?lﬁ'PmOt_'on' leading t0 an yhe midpoints of the lower and upper arms, (ii) the center of
additional regularization term, s g wlft(PI inthe 40 tors0, and (iii) the midpoint between the head and the
objective §). Here,f((p{") is the ow of the wrist and  center of the torso. Thus, we have a 13-part body model,
the additional keypoints between the wrist and the elbow where each part is associated with one of the eight HOG
(see above), ané; is the maximum absolute ow between templates in the mixture modet ).
(It;1t+1) used for normalization. For our experiments on VideoPose dataset we train our
model on the VideoPose training set usedif, [24]. For
our experiments on the Cooking Activities and the Poses in
the Wild datasets, the model is trained with all the images
annotated with upper-body parts (about 4.5K) in the FLIC
dataset]”]. This dataset contains a larger diversity of poses
than VideoPose.

3.5. Practical Extensions

Limiting Spatial Dynamics. In a few situations, we have
observed the optical ow to be unreliable. For example,
when the ow is associated with a background object. To
prevent any large motion due to an inaccurate ow vector,
we have found it reasonable to encourage the posif¥ns
andpt,, to be close, and to add the regularization term

s Pl Pl 2 0 our objective function). Evaluation Metric. We use the keypoint localization er-
2 ror [24] to measure the accuracy of different methods.
4. Experiments Given the best pose estimation per frame, it measures the

percentage of keypoints localized within a given distance
‘from the ground truth per keypoint type. We show results
with distances in the 15-40 pixel range.

In this section, we rst describe the three datasets used
followed by the implementation details, and then present
our comparison with the state of the art.

Hyperparameters. The hyperparameters are xed to the
4.1. Datasets same values for all the experiments and datasets. We set
VideoPose. This dataset was introduced ind] for evalu- ~; =10 #, which yields the same order of magnitude for
ating upper-body pose estimation in videos. It consist$of 2 the optical ow and the cost terms i), The hyperpa-
sequences ( 750 frames) for training and 18 sequences ( rameter 1 in (2) is set tol, giving the same importance to



Our variants Comparison with the state of the art
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Figure 4. The rst two columns compare the different steps of oura@ggh. SIP, ESIP: We estimate the pose in each frame independently.
ESIP is with the re nement using a dummy pos8.3, Figure2(b)) and SIP is withoutx3.1). SIP+Recomb, ESIP+No Recomb, ESIP +
Recomb: We estimate poses using temporal information. Recomb tefaus method for recombining limbs to nd accurate poses4).

In the last two columns we compare our best approach (ESIP + Reamithithe state of the art.

the image-based pose cost and the ow consistency between Dataset Shoulders  Elbows Wrists
poses in consecutive frames. The scalain (6) is set tob. VideoPose 84.0 54.2 67.4
The enriched wrist model is weighted by = 2, and the Cooking Activities 91.5 83.1 90.7
term 4 for limiting spatial dynamics is set @i 1. Poses in the Wild 62.7 57.0 54.3

. Table 1. Body-part localization accuracies for our full model (ESIP
4.3. Evaluating the Model Components + Recomb) with an error threshold of 15 pixels.

In Figure4, we evalugte the performance of various com- pixel error). In other words, using one of the two improve-
ponents of our method inthe rsttwo columns. We compare oo (SIP + Recomb, ESIP + NoRecomb) shows a simi-
the best pose produced by the single image pose (SIP) ®Sar performance (12% gain over baseline SIP), and combin-

timation algorithm of B3] against our extended single im- ing them together (ESIP + Recomb) gives an additional 4%
age pose (ESIP) model, which re nes the pose in a l‘ramegain

using the elbow and wrist locations in the next frame (Sec-

tion 3.3. We then evaluate variants of our temporal pose 4.4. Comparison with the State of the Art
recombination method (Recomb; Secti®d). The effect In the last two columns in Figur we compare our full

of using it with SIP (SIP + Recomb) and ESIP (ESIP + Re- model ESIP + Recomb to four recent pose estimation algo-
comb) are shown. In addition to this, we evaluate ESIP rithms for video sequences: Fragkiadakal. [17], Sappet
without using the recombination method (ESIP + No Re- al. [24], Park et al [18], and Rohrbactet al [21]. On
comb), i.e., using the entire poses in the candidate set withthe VideoPose dataset, we directly compare with the scores
temporal smoothing. reported in [2] for three of these methods ?, 18, 24]

The signi cance of our recombination scheme can be an- since we follow their experimental setup. On the other two
alyzed in the context of two pose models: SIP and the pro-datasets, we compare with the methodsif, [21]. We
posed ESIP. For example, on the Poses in the Wild datasete-implemented the temporal regularization scheme as de-
(Figure 4, row 3), recombination with SIP improves wrist scribed in [L8] using the publicly available components of
localization by 12% and with ESIP, which already shows the n-best algorithm. For the comparison withi]; we used
10% improvement on the SIP model, by a further 4% (15 an implementation provided by the authors.



Ours

N-best

VideoPose MPII Cooking Activities Poses in the Wild
Figure 5. Sample results comparing our method with the n-best algoritimHor each dataset, we show our result (ESIP + Recomb) in
the rst row and the result fromi[g] in the second row.

Method Elbows Wrists the Poses in the Wild dataset. On the Cooking Activities
Ours (ESIP+Recomb) 54.2 64.6 dataset, it reduced by 3% for both elbow and wrist localiza-
Tokolaet al. [2€] 49.0 37.0 tion. The only signi cant change is for estimating wrist lo-
Zuf etal [39] 52.0 42.0 cations on VideoPose, where the accuracy reduced by 16%

_ ) o (5% for estimating elbows). This is likely due to this datase
Table_ 2. Comparison of elbow ar_ld wrist localization accuracies being motion-stabilized, which results in high-motion re-
(15 pixel error threshold) on the VideoPose dataset. Note that Ourgions corresponding to body parts such as wrists (as en-
results are different to those in Takle which are shown on the couraged by our enriched wrist model). Note that the per-
version of VideoPose dataset used 1][ and has one sequence 9 y . . _ . P .
less than the version used it} and [25] formance on VideoPose without the practical extensions is

still better than {8, 24], and comparable td. ], which also

4.5. Discussion uses motion-based terms.

Our complete model (ESIP + Recomb) outperforms the
state-of-the-art method.] by nearly 12% on the Video-
Pose dataset for estimating wrists (15 pixel error). On the
Cooking Activities dataset, ESIP + Recomb shows 11% (el-

bows), 18% (wrists) and 12% (elbows), 23% (wrists) im- " ) .
) 6 ( ) o ( ) 0 ( ) single image pose model takes about 3 seconds per image,

provement over {¢] and [21] respectively. In the case of and our recombination scheme takes about 20 seconds for
the Poses in the Wild dataset, ESIP + Recomb is over 15% ; .
0100 frames in MATLAB with a 3.6GHz Intel processor us-

better than the baseline SIP model, and also shows 7% (el- :
bows), 14% (wrists) and 16% (elbows), 21% (wrists) im- ing a single core.

rovements overl[] and [21] respectively. The improve- .
%ents over 9], ;I{tr]lough[si]gni cznt (7%% 14%), a?e less 5. Conclusion . )
pronounced (compared to those on the Cooking Activities e presented a novel algorithm for human pose estima-
dataset), as the color-based trackinglif] works better on ~ tion in videos that ac_h|eves state-of-the-art accuracy at a
our dataset. Qualitative comparisons of our method with "éasonable computational cost. Our approach consists of
the n-best methodif] for the three datasets are shown in WO steps: (i) an extended single image pose model using
Figures. optical ow cues between consecutive frames, and (ii) a

We summarize the results of our complete model, ESIP + €Xible scheme for splitting poses into limbs, generating

Recomb, for shoulders, elbows and wrists (15 pixel error) in IMP séquences across time, and recomposing them to gen-
Table1. Table2 compares ESIP + Recomb with two recent €ate better poses. Furthermore, we proposed a new chal-
works [28, 35 on the VideoPose dataset, and shows that lenging dataset, Poses in the Wild, containing real-world
our model is signi cantly better at localizing wrists. We SCenarios unavailable in other datasets.

present a few more qualitative results on the Poses in the ] )

Wild dataset in Figuré, including two typical failure cases Acknowledgments. This work was supported in part by

which are due to background clutter and occlusion. the.European integrated project AXES, the MSR-Inria joint
We also analyzed the in uence of the practical exten- Project and the ERC advanced grant ALLEGRO. We thank

sions presented in Secti@h5. Removing the three exten- the authors of{1] for providing us their implementation.

sions from the objective functiorbl reduced the accuracy Lvarying K from 100 to 900, we observe an increase in accuracallo

of localizing elbows and wrists slightly by 3% and 2% on datasets until about K=600, where it saturates.

Computation Time. To achieve a fair balance between
ef ciency and accuracy, we use 300 poses in our candidate
sets for all the datasets, as it seems to contain many good
poses while yielding a low computational cost. Our re ned




(a) Correct detections (b) Background clutter (c) Occlusion

Figure 6. Sample results on the Poses in the Wild dataset with our appr8éehrERecomb. From left to right, we show: three examples
where we estimate an accurate pose and two typical failure cases. rEheweato: (i) background clutter, and (ii) occlusion, which is not
modeled in our framework.
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