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SELECTION OF DISCRIMINATIVE REGIONS AND LOCAL DESCRIPTORSFOR GENERIC OBJECT CLASS RECOGNITIONGyuri Dorkó, Ph.D. dissertationInstitut National Polyte
hnique de Grenoble, 9 June 2006Obje
t 
ategory re
ognition is one of the most di�
ult problems in 
omputer vi-sion. It involves re
ognizing obje
ts despite intra-
lass variations, viewpoint 
hangesand ba
kground 
lutter. The goal of this thesis is to investigate robust invariantlo
al image des
ription and the sele
tion of dis
riminative features. We show that
lass-dis
riminative s
ale-invariant features a
hieve ex
ellent results for image-level
ategorization and obje
t lo
alization. We present solutions for two key problems:(i) we improve the quality of the image des
ription based on a novel s
ale-invariantkeypoint dete
tion method and (ii) we integrate feature �ltering te
hniques into ourobje
t models.Our novel s
ale-invariant dete
tor is based on the idea of a �maximally stable de-s
ription�, i.e., the des
riptor should be stable even in the presen
e of minor variationsof the dete
tor. The te
hnique performs s
ale sele
tion based on a region des
rip-tor, here SIFT, and 
hooses regions for whi
h this des
riptor is maximally stable,i.e., the di�eren
e between des
riptors extra
ted for 
onse
utive s
ales rea
hes a mi-nimum. This s
ale sele
tion te
hnique is applied to multi-s
ale Harris and Lapla
ianpoints. Experimental results evaluate the performan
e of our dete
tor and show thatit outperforms existing ones in the 
ontext of image mat
hing, 
ategory and texture
lassi�
ation, as well as obje
t lo
alization.To 
onstru
t obje
t models based on dis
riminative features, we �rst 
luster thes
ale-invariant des
riptors and obtain a set of �visual words�. We then estimatethe dis
riminative information of these 
lusters based on di�erent feature sele
tionte
hniques�several of whi
h are traditionally used in text retrieval. We dis
uss theirproperties�feature frequen
y, dis
riminative power, and redundan
y�and analyzetheir performan
e in the 
ontext of image 
lassi�
ation and obje
t lo
alization. Weshow that ea
h task has di�erent requirements, and indi
ate whi
h sele
tion te
hniquesare the most appropriate. Experimental results for re
ognition on 
hallenging largedatasets demonstrate the performan
e of the approa
h.





SÉLECTION DE RÉGIONS SIGNIFICATIVES LOCALES ET DE LEURSDESCRIPTEURS POUR LA RECONNAISSANCE DE CLASSES GÉNÉRIQUESD'OBJETSGyuri DorkóInstitut National Polyte
hnique de Grenoble, 9 June 2006La 
atégorisation d'objets est l'un des problèmes les plus di�
iles en vision par ordi-nateur. Le but est de re
onnaître des objets visuels malgré des variations intra-
lasse,des 
hangements de point de vue et un fort bruit de fond. L'obje
tif de 
ette thèse estd'investiguer un des
ripteur lo
al d'image et une méthode de séle
tion de 
ara
téris-tiques dis
riminatives. Nous montrons que des des
ripteurs dis
riminatifs invariantspar é
helle donnent d'ex
ellent résultats en 
atégorisation et en lo
alisation d'objet.Des solutions sont apportées aux deux problèmes fondamentaux suivants: (i) nousaméliorons la qualité de la des
ription des images grâ
e à un nouveau déte
teur depoints d'intérêts invariant par é
helle et (ii) nous intégrons des te
hniques de �ltragede des
ripteurs dans nos modèles d'objets.Notre nouveau déte
teur invariant par é
helle est basé sur l'idée de �région stablemaximale�, 
'est-à-dire le fait que la position du point d'intérêt est stable même enprésen
e de variations mineures du déte
teur. La méthode séle
tionne une é
helle àpartir d'un des
ripteur lo
al � dans notre 
as SIFT � et 
hoisit les régions pourlesquelles la stabilité du des
ripteur est maximale, 
'est-à-dire la di�éren
e entre lesdes
ripteurs à deux é
helles 
onsé
utives atteint un minimum. Cette te
hnique deséle
tion d'é
helle est appliquée au déte
teur de Harris multi-é
helle et les points deLapla
e. Des résultats expérimentaux permettent d'évaluer les performan
es de notredéte
teur et montrent qu'il améliore les résultats de mise en 
orrespondan
e d'image,de 
lassi�
ation d'objets et de texture et la lo
alisation d'objets.A�n de 
onstruire des modèles d'objets basés sur des fa
teurs dis
riminatifs, les de-s
ripteurs invariants par é
helle sont 
lassés dans des 
lusters et donne un ensemble de�mots visuels�. Ensuite, nous estimons l'information dis
riminative 
ontenue dans 
es
lusters en utilisant di�érentes te
hniques de séle
tion dis
riminatives � Plusieursd'entre elles sont traditionnellement utilisées en re
her
he d'information textuelle.Nous dis
utons leurs propriétés � fréquen
e, pouvoir dis
riminatif et redondan
e �et analysons leur performan
es dans le 
ontexte de 
lassi�
ation et de lo
alisationd'objet. Nous montrons que 
haque ta
he a ses parti
ularités et indiquons quellete
hnique de séle
tion est la plus appropriée. Des résultats expérimentaux de re
on-naissan
e d'objets sur des jeux de données di�
iles montrent les bonnes performan
esde la méthodologie proposée.
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First ChapterIntrodu
tion
O

bje
t re
ognition is a 
hallenge that 
omputer vision resear
hers, psy
hologistsand resear
hers from other �elds have been trying to understand for more than 40years. After many years of resear
h arti�
ial vision is still far behind human vision.People are able to see, to re
ognize, and to 
ategorize obje
ts in the world. However,for 
omputers this is not an easy task. The ability, for example, to see a 
hair from alldi�erent viewpoints and to understand and know that it is the same 
hair are extremely
ompli
ated tasks. The 2-D appearan
e of the same obje
t 
an be very di�erent whenthe viewpoint 
hanges. Furthermore, due to our generalization 
apability, people are
apable of �nding a 
hair, even if they have not seen that parti
ular instan
e before.Creating 
ategories, �nding shared properties, generalizing appearan
e are 
hallengingtasks for 
omputers, mainly due to a potentially high intra-
lass varian
e a
ross obje
tinstan
es.1.1 ContextWhile obje
t re
ognition is a large �eld, in this thesis we fo
us on visual obje
t 
lass
ategorization and lo
alization. Figure 1.1 illustrates some of the di�
ulties of re
og-nizing obje
t 
ategories. Intra-
lass variations among instan
es of a 
lass is only one
(a) (b) (
) (d) (e)Figure 1.1: Five di�erent bi
y
les illustrate the 
hallenge for obje
t 
lass re
ognition.Di�erent viewpoints, o

lusion, noise, and 
luttered ba
kground make it hard to re
-ognize the obje
ts. Intra-
lass variation (shape and 
olor) a
ross the di�erent bi
y
les
hallenges the generalization 
apabilities of 
omputer vision systems.
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(a) (b) (
) (d)Figure 1.2: Examples of wild
ats.

(a) (b) (
) (d) (e) (f)Figure 1.3: Examples of butter�ies.of the 
hallenges: obje
t parts 
an have di�erent geometri
al stru
ture, 
olor or 
an be
ompletely missing. In Figure 1.1 bi
y
les (a) and (e) are di�erent in 
olor, while bi
y-
le (b) has di�erent geometri
al proportions. Many appli
ations require obje
ts to befound in prede�ned pose and orientation, su
h as re
ognizing pro�les of fa
es, or side-views of 
ars. Others, like the bi
y
le example, are less restri
ted and therefore moredi�
ult: bi
y
les (d) and (e) are viewed from di�erent viewpoints, and (a) and (b) areimaged at di�erent s
ales (magni�
ation). Robustness to o

lusions and missing partsare usually additional requirements for state-of-the-art appli
ations; e.g., bi
y
le (a)has a missing (
overed) seat. O

lusions may be 
aused by the environment, or evenby the obje
t itself: the spokes of the �rst tire are o

luded on (d). Everyday obje
ts,su
h as bi
y
les, often appear together with other obje
ts or on 
luttered ba
kground.This additional data, so 
alled 
ontext, 
an distra
t our system and needs in generalto be dis
arded. Note that it 
an also help to re
ognize the obje
t 
lass. An exampleis a tra�
 
ontrol system dete
ting 
ars. In su
h a system the re
ognition of roads isprobably useless be
ause they o

ur in all images. However, the shadow of the 
ar (onthe road) is probably a useful dis
overy.1.2 Our Approa
hInstan
es of an obje
t 
ategory often share some visual appearan
e, and our maingoal is to �nd these 
ommon features. The examples in Figure 1.2 and Figure 1.3show two di�erent obje
t 
ategories. The sele
tion of 
ommon dis
riminative obje
tparts is relatively easy, be
ause almost any set of features (of adequate size) separateswild
ats from butter�ies. However, if Figure 1.2 itself are de�ned to 
ontain two
ategories�
heetahs (a),(b), and jaguars (
),(d)�dis
riminative features are mu
h



1.2 Our Approa
h 15harder to �nd. Furthermore, if we assume that examples in Figure 1.3 are from two
ategories, then butter�y experts would immediately noti
e that (a) and (b) are bla
kswallowtails, while (
)-(f) are monar
hs. Those who have less experien
e with inse
tswould probably say that (a)-(d) are open while (e)-(f) are 
losed butter�ies. So wesee that 
ommon features are not always dis
riminative, and a

ording to the task theuseful features are di�erent. To dis
over dis
riminative obje
t parts we use� lo
al or semi-lo
al representations of images to des
ribe obje
t parts,� a way to measure their usefulness, and sele
t dis
riminative features.Sparse lo
al representations are typi
ally 
omputed on a set of interest pointlo
ations. Their aim is to des
ribe the regions by keeping distin
tive information, andat the same time providing robustness to small translations and noise. Lo
al repre-sentation of images o�er a solution to deal with o

lusion and 
luttered ba
kground:individual des
riptors only store information of the lo
al 
ontent, and therefore they arenot distra
ted by other parts of the image. The in�uential work of S
hmid and Mohr(1997) is the �rst that uses interest points for 
ontent based obje
t re
ognition. In-terest points are automati
ally dete
ted image lo
ations, su
h as 
orners or 
enters ofblobs. They allow to 
reate a sparse lo
al representation of images by sele
ting regionswhi
h keep distin
tive information, and at the same time provide robustness to smalltranslations and noise. In the last few years these points be
ame invariant to variousimage transformations, like 
hanges in viewpoint and s
ale. At the time of writing atleast a dozen of these dete
tors exist all sele
ting regions by di�erent 
riteria. The
ombination of interest points dete
tors and lo
al des
riptors allows sparse and robustrepresentation of obje
t, s
enes, or textures. Rotated obje
ts, s
enes from di�erentviewpoints or with illumination 
hanges are 
hallenges that 
an be solved already atrepresentation level, i.e., there is no need to learn those by examples.State of the art methods provide relatively good solutions for re
ognizing spe
i�
obje
ts, su
h as a given bi
y
le or 
ar, by mat
hing lo
al appearan
e. However, de-te
tion of obje
t 
ategories requires additional generalization 
apabilities to deal withintra-
lass variability. Dis
riminative feature sele
tion methods 
an guide obje
tre
ognition to �nd 
ategory-dis
riminative obje
t parts and to dis
ard unne
essaryba
kground features. These methods are re
ent tools in 
omputer vision adopted fromthe text literature. Lo
al representation of images and standard learning te
hniques,su
h as ve
tor quantization, have built a bridge between 
omputer vision and textre
ognition. Our images be
ome visual do
uments and the quantized lo
al des
riptorsbe
ame visual words. Owing to a huge availability of do
uments, the text 
ommunityhas early realized the need for dis
riminative feature sele
tion. For example, to indexnews dire
tories or web pages, relevant information has to be sele
ted to train 
las-si�ers to re
ognize di�erent 
ategories. In the last few years, the growing number ofexamples (Internet) dire
ted resear
hers to improve 
lassi�
ation e�
ien
y and a

u-ra
y. One essential topi
 of this resear
h is feature sele
tion. In this thesis we apply
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tionthese te
hniques to 
omputer vision. In obje
t 
ategory re
ognition, lo
al representa-tion and feature sele
tion together help to develop high performan
e automati
 toolsfor obje
t and texture re
ognition, 
ategorization and dete
tion, for s
ene analysis,and for image indexing.1.3 ContributionsIn this thesis we dis
uss and o�er solutions for re
ent problems of image representationand obje
t dete
tion. The key 
ontributions are the following:Interest Point Dete
tion by Maximally Stable Lo
al Image RepresentationMany interest point dete
tors and lo
al des
riptors have been developed during thelast few years. Their quality depends on the task. For example, some perform wellfor image mat
hing while others are better for obje
t re
ognition. Their behavior 
anbe explained by the di�erent ways they sele
t image regions and in
orporate variousfeature properties. As an examples, image 
lassi�
ation or image retrieval may onlymat
h the lo
al regions purely by appearan
e, i.e., ignoring their s
ales, lo
ations, andspatial organization. For other appli
ations, su
h as image mat
hing or 
amera 
alibra-tion, these properties are very important, and many times their estimation is unstableor noisy. Consequently, the quality of interest point dete
tors is not straightforwardto measure, sin
e di�erent methods should be used depending on the 
ontext. Ourexperien
e has shown that one of the weakest properties of s
ale-invariant dete
torsis the s
ale estimation. This thesis proposes a novel method to determine (sele
t) the
hara
teristi
 s
ales for interest point dete
tors. Our idea is to use an appropriately
hosen des
riptor to sele
t regions for whi
h this des
riptor is maximally stable. Exper-imental results show that our new 
riterion improves performan
e for image mat
hingin 
hallenging environments, su
h as variation in illumination 
onditions. Due to amore stable appearan
e-based representation, texture 
ategorization on popular setsshows 3 − 10% improvement with the new dete
tors.Feature Sele
tion for Lo
al des
riptorsIn this thesis we adapt and 
ompare several te
hniques from the text literature, mostof whi
h are new in vision. We analyze several feature properties in
luding featurefrequen
y, i.e., how often a feature appears, dis
riminative power to separate obje
tfrom ba
kground, and redundan
y. Di�erent trade-o�s between properties are pointedout, and sele
tion methods are distinguished (grouped) a

ordingly. By the 
orre
t
ombination of these properties, i.e., by 
hoosing the sele
tion method wisely for agiven task, we show how to a
hieve good re
ognition performan
e with many or just asparse set of features. Our experiments evaluate 
lass-dis
riminative feature sele
tionfor invariant lo
al features.



1.4 Appli
ations 17Improved Obje
t Class Re
ognition via Feature Ranking and Sele
tionWe have 
hosen obje
t 
ategory 
lassi�
ation and lo
alization to demonstrate theperforman
e of dis
riminative feature sele
tion. A simple 
lassi�
ation frameworkdemonstrates that dis
overing dis
riminative features 
an dire
tly be used for obje
tre
ognition. Sele
tion methods on di�erent types of features are 
ompared and dis-
ussed for three di�erent tasks: Obje
t feature retrieval tries to re
all features provid-ing the best obje
t 
overage, while keeping the ba
kground featureless or very sparse.Appearan
e-based obje
t 
lassi�
ation uses dis
riminative features to de
ide about thepresen
e of an obje
t 
lass in images. Obje
t 
lass lo
alization aims to determine theexa
t position of unseen obje
t instan
es in test images. For lo
alization we extendan existing state-of-the-art method by in
orporating feature ranks. This leads to afaster system with improved performan
e. We additionally extend the framework forrotation invariant training and dete
tion.1.4 Appli
ationsAdvan
es su
h as dis
riminative feature sele
tion and s
ale-invariant lo
al represen-tations, dis
ussed in this thesis, help to analyze and improve state-of-the-art imagerepresentation and obje
t re
ognition te
hniques. In the following we list a few exam-ples among a wide range of possible appli
ations.Surveillan
e and Se
urityOne of the most useful appli
ations of obje
t re
ognition are surveillan
e systems.Re
ent se
urity systems based on photography or CCTV (Closed Cir
uit Television)use 
omputer vision to mat
h digital images taken from 
ameras with images stored in adatabase. Dis
riminative feature sele
tion may help to determine an important subsetof features in advan
e, and therefore in
rease the system quality and performan
e.Manufa
turing Pro
esses and Quality ControlImproved feature extra
tion and lo
al des
ription of images 
an help industrial ap-pli
ation to support manufa
turing pro
esses. Many quality 
ontrol methods employ
omputer vision. They are based on statisti
al analysis of dete
ted features, and aimto redu
e the amount of faulty produ
ts, in order to meet 
ustomer requirements.Autonomous Vehi
lesEven though autonomous driving 
ars are not yet available for the market, manufa
tur-ers have already demonstrated preliminary prototypes and driving systems. Learningand rapid dis
overy of useful features, su
h as parts of other 
ars or obsta
les, 
anguide or help the drivers in
reasing their safety. UAVs (unmanned aerial vehi
les) �rst
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tionwere used for surveillan
e, and nowadays, almost all major military have them. Theyare also used to monitor tra�
, dete
t 
ertain events, su
h as forest �res. Robust lo
alimage representation and fo
us of attention me
hanism (feature sele
tion) help thosevehi
les for better motion planning, navigation, s
ene analysis (to dete
t where it is),or improved SLAM te
hniques1.Web Sear
h and Content Based Image RetrievalDid you know that the verb google2 has been added to the New Oxford Ameri
anDi
tionary? The Internet sear
h engines have be
ome a part of our everyday life.Resear
hers from the text domain have implemented dis
riminative feature sele
tionso su

essfully that sear
h engines generate around 85% of the total web tra�
. Now itis our turn to index images. Many re
ent sear
h engines, su
h as Google, MSN, Ly
os,Yahoo, Altavista, and A9 support sear
h for images. However their algorithm is basedon purely textual information, su
h as �lenames, image meta-data, and surroundingHTML 
ontent. While many times this is su�
ient, indexing by image 
ontent wouldimprove 
urrent performan
e, as well as open new possibilities:� visual similarity between images helps to reje
t in
orre
t mat
hes, and in
reasethe re
all by dis
overing new 
orre
t ones,� queries 
an be based on images instead of text; e.g., we 
an look for a 
ertain
ar by its pi
ture, or �nd our 
opyright prote
ted images and identify fraud,� given an image or images of someone or something, e.g., a famous building or ana
tress, we 
an re
over its identity, su
h as its pla
e and name,� mixed text and image queries 
an provide a ri
her way of looking for information.In order to e�
iently index and rank images, the 
orre
t features have to be generatedand sele
ted. Dis
riminative feature sele
tion may help to develop domain spe
i�
sear
h engines, as well as to �nd the most informative features in general.Video IndexingDigital videos are now available not only for professionals but also for everyday people.DVD players and re
orders, re
ent digital 
ameras, and high speed Internet 
onne
-tions made indexing for videos as important as for images. Videos 
an be seen as asequen
e of images, and therefore many te
hniques from images 
an be applied without1In Simultaneous Lo
alization And Mapping (SLAM), the quality of the iteratively built map 
an be re�ned andtherefore improved by mat
hing dis
riminative lo
al features over time.2goo·gle |'go	ogUl| (also Goo·gle) · verb informal [ intrans. ℄ use an Internet sear
h engine, parti
ularly Google.
om:she spent the afternoon googling aimlessly. · [ trans. ℄ sear
h for the name of (someone) on the Internet to �nd outinformation about them: you meet someone, swap numbers, �x a date, then Google them through 1,346,966,000 Webpages. ORIGIN: from Google, the proprietary name of a popular Internet sear
h engine.
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ation. However, adding temporal information to the feature spa
e opensnew perspe
tives, su
h as sear
hing for 
ertain a
tions. Presently only preliminaryversions of video web sear
h are available on major sites (Google, Yahoo, Altavista,A9) and similarly to images, their indi
es are build on textual information only. Dis-
riminative feature sele
tion 
ould help to built domain spe
i�
 sear
h, e.g., lookingfor the appearan
e of an a
tor in a movie, or to determine the di�eren
e betweena
tions. S
ene analysis 
an guide professionals when editing movies, or 
an identifyviewers preferen
es (e.g., improve TiVo suggestions).1.5 OverviewThe manus
ript is organized as follows. Chapter 2 introdu
es a sparse lo
al imagerepresentation with interest point dete
tors and lo
al des
riptors. In Se
tion 2.2 wedes
ribe our new s
ale sele
tion method. Evaluation and 
omparison with existingte
hniques are 
arried out for image mat
hing (Se
tion 2.3), obje
t and texture 
las-si�
ation (Se
tion 2.4 and Se
tion 4.1.3), and obje
t lo
alization (Se
tion 4.2.2).Chapter 3 introdu
es di�erent sele
tion and ranking te
hniques. In Se
tion 3.3 webuild the link between image representation and features by 
reating visual words, andexperimentally 
ompare the introdu
ed sele
tion te
hniques for obje
t feature retrieval.Chapter 4 integrates feature sele
tion into a framework for obje
t re
ognition. First weshow an appli
ation to re
ognize the presen
e or absen
e of obje
ts in images (image
lassi�
ation), and 
ompare the results of di�erent features and sele
tion methods. InSe
tion 4.2 we show how to improve obje
t lo
alization by 
lass-dis
riminative featureranking.
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Se
ond ChapterLo
al Image RepresentationS
ale Sele
tion via Maximally Stable Lo
al Des
ription
L
o
al photometri
 des
riptors 
omputed at keypoints have demonstrated ex
ellentresults in many vision appli
ations, in
luding obje
t re
ognition (Fergus et al.,2003; Opelt et al., 2004), image mat
hing (S
ha�alitzky and Zisserman, 2002), andsparse texture representation (Lazebnik et al., 2003). Re
ent work has 
on
entratedon making these des
riptors invariant to image transformations. This requires 
on-stru
ting invariant image regions whi
h are then used as support regions to 
omputeinvariant des
riptors. In most 
ases a dete
ted region is des
ribed by an independently
hosen des
riptor. It would, however, be advantageous to use a des
ription adapted tothe region. For example, for blob-like dete
tors whi
h extra
t regions surrounded byedges, a natural 
hoi
e would be a des
riptor based on those edges. However, thoseadapted representations may not provide enough dis
riminative information for theregion, and 
onsequently, a general purpose des
riptor (e.g. wavelets, shape-
ontext,SIFT, et
.) might be a better 
hoi
e. Many times this leads to better performan
e,yet less stable representations: small 
hanges in s
ale or lo
ation 
an alter the des
rip-tors signi�
antly. Our experiments have shown that the most sensitive 
omponent ofkeypoint-based s
ale-invariant dete
tors is the s
ale sele
tion. This motivated us todevelop a novel dete
tor whi
h uses the des
riptor 
hosen for the given task to sele
tthe 
hara
teristi
 s
ales. Our feature dete
tion approa
h 
onsists of two steps. We�rst apply an interest point dete
tor on multiple s
ales to determine informative andrepeatable lo
ations. For ea
h position we then apply a s
ale sele
tion algorithm toidentify maximally stable representations, i.e., a s
ale for whi
h a lo
al des
riptor isthe most stable. The lo
al des
ription 
an be any measure that 
an be 
omputedon a pixel neighborhood, su
h as 
olor histograms, steerable �lters and wavelets. Forour experiments we 
hose the S
ale-Invariant Feature Transform (SIFT) (Lowe, 2004),whi
h has proven ex
ellent performan
e for obje
t representation and image mat
h-ing (Mikolaj
zyk and S
hmid, 2004a).Our new method for s
ale-invariant keypoint dete
tion and image representationhas the following properties:
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al Image Representation� Our s
ale sele
tion method guarantees more stable des
riptors than state-of-the-art te
hniques by expli
itly using des
riptors during keypoint dete
tion. Thestability 
riterion is developed to minimize the variation of the des
riptor for asmall 
hange in s
ale.� Repeatable lo
ations are provided by interest point dete
tors (e.g. Harris), andtherefore they have ri
h and salient neighborhoods. This 
onsequently helps to
hoose repeatable and 
hara
teristi
 s
ales. We verify this experimentally, andshow that our sele
tion 
ompetes favorably with the best available dete
tors.� The dete
tor takes advantage of the properties of the lo
al des
riptor. This 
anin
lude invarian
e to illumination or rotation as well as robustness to noise. Ourexperiments show that the lo
al invariant image representation extra
ted by ouralgorithm leads to signi�
ant improvement for obje
t and texture re
ognition.Related WorkFor sele
ting lo
al invariant regions, many di�erent s
ale- and a�ne-invariant dete
-tors exist in the literature. Harris-Lapla
e (Mikolaj
zyk and S
hmid, 2004b) dete
tsmulti-s
ale keypoint lo
ations with the Harris dete
tor (Harris and Stephens, 1988)and the 
hara
teristi
 s
ales are then determined by the Lapla
ian operator. Lo
a-tions based on Harris points are very a

urate. However, s
ale estimation is oftenunstable on 
orner-like stru
tures, be
ause it depends on the exa
t 
orner lo
ation,i.e., shifts by one pixel may modify the sele
ted s
ale signi�
antly. The s
ale-invariantLapla
ian dete
tor (Lindeberg and Garding, 1994) (LoG) sele
ts the extremal valuesin lo
ation-s
ale spa
e. The Di�eren
e of Gaussian (DoG) dete
tor developed by Lowe(2004) approximates the Lapla
ian, and therefore it similarly sele
ts s
ale-spa
e max-ima to �nd blob-like stru
tures. Blobs are well lo
alized stru
tures, but due to theirhomogeneity, the information 
ontent is often poor in the 
enter of the region. Triggs'dete
tor (Triggs, 2004) extends the Förstner-Harris approa
h to general motion modelsand robust template mat
hing by �nding regions whi
h 
an be a

urately self-mat
hedunder various similarity or a�ne transformations. This dete
tor extra
ts fewer butvery stable keypoints. For instan
e, the rotation invariant dete
tion reje
ts point-likestru
tures, sin
e they 
annot be well-lo
alized (self-mat
hed) under image rotation,i.e., they have no 
hara
teristi
 orientation. The method of Kadir et al. (2004) ex-tra
ts 
ir
ular or ellipti
al regions in the image as maxima of the entropy s
ale-spa
eof region histograms. This is also a blob dete
tor, but has been shown to provide a morerobust appearan
e based representation for some obje
t 
ategories (Kadir et al., 2004).Mikolaj
zyk et al. (2005b) showed that it performs poorly for image mat
hing, whi
hmight be due to the sparsity of their s
ale quantization. Presumably performan
e issuesprohibit them for more extensive sear
h in s
ale-spa
e. The Intensity-Based Regiondete
tor (Tuytelaars and Van Gool, 2004) sele
ts multi-s
ale lo
ations at extremal in-tensity values and determines the 
orresponding neighborhood by dis
overing sudden



23nearby intensity 
hanges. The edge-based region dete
tor (Tuytelaars and Van Gool,2004) �nds quadrangular segments with a 
orner dete
ted by the multi-s
ale Harrisoperator and sides determined by near edges. The obje
t-part dete
tor of Jurie etal. (Jurie and S
hmid, 2004) sele
ts 
ir
ular regions with the most salient 
onvex ar-rangement of lo
al edges extra
ted by the Canny-Deri
he operator. Sin
e the dete
tedregions are surrounded by edges, they proposed a lo
al image representation based onthis stru
ture. These des
riptors are however not as dis
riminative as other availablerepresentations, sin
e it only en
odes information of the surrounding edges. Due to thehomogeneity of the sele
ted regions it su�ers from the same problems as other blob-likemethods. The Maximally Stable Extremal Regions (MSER) dete
tor (Matas et al.,2002) de�nes extremal regions as image segments where ea
h inner-pixel intensityvalue is less/greater than a 
ertain threshold t, and all intensities around the bound-ary are greater/less than the same t. An extremal region is maximally stable when thearea (or the boundary length) of the segment 
hanges the least with respe
t to t. Thisdete
tor works parti
ularly well on images with well de�ned edges, but is less robustto noise and not adapted to texture-like stru
tures. It usually sele
ts relatively fewregions.Viewpoint invarian
e is sometimes required to a
hieve reliable image mat
h-ing, obje
t or texture re
ognition. A�ne-invariant dete
tors (Kadir et al., 2004;Matas et al., 2002; Mikolaj
zyk and S
hmid, 2004b; Tuytelaars and Van Gool, 2004)expli
itly estimate the a�ne shape of the regions to allow pre-normalization ofthe pat
h prior to the des
riptor 
omputation. The a�ne extension of Harris-Lapla
e (Mikolaj
zyk and S
hmid, 2004b) is similar to the one �rst used byLindeberg and Garding (1997) for shape-from-texture. It applies the a�ne kernel onlyto �xed points to redu
e the 
omplexity of the entire a�ne-spa
e. This is one of themost widely used approa
hes; Lazebnik et al. (2003) use a similar te
hnique for theLoG dete
tor to perform texture 
lassi�
ation under a�ne transformations. However,note, that their adaptation pro
edure is a post-pro
essing step of the s
ale-invariantdete
tion based on the s
atter matrix of image gradients at keypoint lo
ations.Mikolaj
zyk et al. (2005b) evaluated several a�ne-invariant dete
tors.MSER (Matas et al., 2002) performed best, 
losely followed by Hessian- andHarris-Lapla
e. Moreels and Perona (2005) also �nd that Harris- and Hessian-Lapla
eperform best for obje
t re
ognition. Their study shows poor performan
e of theMSER dete
tor for 3D environments. Mikolaj
zyk et al. (2005a) experimentally
ompared the performan
e of re
ently proposed dete
tors and des
riptors for 
ategoryre
ognition, and found Hessian-Lapla
e (Mikolaj
zyk and S
hmid, 2004b) and theentropy dete
tor (Kadir et al., 2004) to be the most suitable.OverviewThis 
hapter is organized as follows. In Se
tion 2.1 we present the interest pointdete
tors and lo
al des
riptors that are used in this 
hapter. Se
tion 2.2 presents our
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PSfrag repla
ementsH-LapH-Lap-A�COMBENTR PSfrag repla
ementsH-LapH-Lap-A�COMBENTR PSfrag repla
ementsH-LapH-Lap-A�COMBENTR(a) (b) (
)Figure 2.1: Harris 
orner dete
tion. (a) the original image, (b) the Harris image, (
)the lo
al maxima of the Harris image marked on the original image.new s
ale sele
tion te
hnique Maximally Stable Lo
al SIFT Des
ription and introdu
estwo new dete
tors, Harris-MSLSD and Lapla
ian-MSLSD. We then 
ompare theirperforman
e to Harris-Lapla
e and the Lapla
ian dete
tors. In Se
tion 2.3 we evaluatethe performan
e for image mat
hing using a publi
ly available framework. Se
tion 2.4reports results for obje
t-
ategory and texture 
lassi�
ation. Finally, in Se
tion 2.6 we
on
lude.2.1 Ba
kgroundThis se
tion provides a detailed des
ription of the interest point dete
torsof (Mikolaj
zyk and S
hmid, 2004b; Lowe, 2004; Triggs, 2004; Lindeberg, 1998;Matas et al., 2002), and the S
ale-Invariant Feature Transform des
riptor (Lowe,2004). Our aim is not to 
over the full theory of s
ale-invariant dete
tors and lo-
al representation, but to provide su�
ient ba
kground information for the te
hniquesthat are used later in this 
hapter. Our experiments will 
ompare our s
ale sele
tionto several existing te
hniques in the literature.2.1.1 Interest Point Dete
torsHarris Points � a 
orner dete
torThe s
atter matrix (or se
ond moment matrix) of lo
al image gradients, ∫ ∇IT∇I dx,is often used for feature dete
tion, and it is given as

µ(x, σI , σD) = σ2
Dg(σI) ∗

[
I2x(x, σD) IxIy(x, σD)

IxIy(x, σD) I2y(x, σD)

]
. (2.1)Image derivatives Ix and Iy are 
omputed by 
onvolution of Gaussian �lters withs
ale σD (derivation s
ale), and lo
ally averaged by Gaussian smoothing with s
ale

σI (integration s
ale). The eigenvalues of this matrix represent the two prin
ipal
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PSfrag repla
ementsH-LapH-Lap-A�COMBENTR PSfrag repla
ementsH-LapH-Lap-A�COMBENTR PSfrag repla
ementsH-LapH-Lap-A�COMBENTR(a) (b) (
)

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR (d)Figure 2.2: Extra
tion of multi-s
ale Harris points. (a) shows the multi-s
ale imagepyramid, (b) the 
omputed Harris images at ea
h s
ale, and (
) the image pyramidwith the multi-s
ale Harris points. (d) shows the dete
tions proje
ted ba
k to theoriginal image. The radii of the 
ir
les 
orrespond to the s
ale (2σ).
urvatures of a point x. Corner-like stru
tures 
an be extra
ted at points whereboth of these 
urvatures are signi�
ant in orthogonal dire
tions. The Harris dete
-tor (Harris and Stephens, 1988) is based on this prin
iple. The Harris 
ornerness
ombines the determinant and tra
e of this matrix and de�ned by
det(µ(x, σI , σD)) − αtrace2(µ(x, σI , σD)). (2.2)The keypoints are determined as lo
al maxima of this value. Figure 2.1 shows aHarris image, i.e., the 
ornerness for ea
h point, and the keypoints on an exampleimage. S
hmid et al. (2000) show that the Harris dete
tor is superior to other methods(Cottier, 1994; Heitger et al., 1992; Horaud et al., 1990).Multi-S
ale Interest PointsAmulti-s
ale representation of images is 
ru
ial for many appli
ations. A typi
al exam-ple is mat
hing s
enes or obje
ts with di�erent s
ales. Many state-of-the-art methods
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al Image Representationare based on the Gaussian kernel. A multi-s
ale representation 
onsists of a set of im-ages at di�erent dis
rete levels of s
ale (Witkin, 1983). Koenderink (1984) showed thats
ale-spa
e satis�es the di�usion equation for whi
h the solution is a 
onvolution witha unique Gaussian kernel (Babaud et al., 1986; Lindeberg, 1990; Flora
k et al., 1992).Images on 
oarse s
ales are obtained by smoothing images on �ner s
ales with an ap-propriate Gaussian kernel. An implementation 
an sample the 
oarser s
ale image bythe 
orresponding s
ale fa
tor to a

elerate the 
omputation and this representationis often referred as the s
ale-spa
e image pyramid.When an interest point operator is applied on multiple s
ales we 
all the dete
tionsmulti-s
ale interest points. Even though they are 
alled points, they 
an be interpretedas regions�points and their neighborhood�as they are parameterized by a lo
ation
x, and a s
ale σ. 1 As for the Harris operator, Dufournaud et al. (2000) proposeda s
ale adaptive extension, where the points are dete
ted at the lo
al maxima ofthe Harris images 
omputed at di�erent s
ales. Figure 2.2 illustrates the multi-s
aleHarris interest points. Figure 2.2(a) shows the original image pyramid, and (b) the
orresponding Harris images. Figure 2.2(
) marks the dete
tions, i.e., the maximaof (b) on the original images (a), and �nally on (d) we show all the dete
tions with
ir
les 
orresponding to the dete
tion s
ale. Note, that for illustration purposes, weomit some s
ale levels from the pyramids (a), (b), and (
).S
ale-Invariant Interest PointsInstead of extra
ting interest points for every s
ale level, automati
 s
ale-sele
tionte
hniques determine one or a few 
hara
teristi
 s
ales at ea
h lo
ation. These de-te
tions are 
alled s
ale-invariant interest points be
ause they mark the same points(x,σ) on images taken at di�erent resolutions. There are two main advantages of se-le
ting s
ales. First, the number of interest points is redu
ed by intelligent reje
tionof unne
essary s
ales, and se
ond, the s
ale be
omes a new 
hara
teristi
 property ofthe dete
tion. Many appli
ations, su
h as the one in Se
tion 4.2, rely on this propertyto perform s
ale-invariant learning and re
ognition.One of the �rst s
ale-invariant interest point dete
tors is the Lapla
ian-of-Gaussian(LoG) developed by Lindeberg (1998). It is based on the Gaussian s
ale-spa
e (su

es-sive smoothing with Gaussian kernels), and it sele
ts 3D lo
al extrema of the Lapla
ian�ltered images. Dete
tions are obtained on blob-like image stru
tures. Figure 2.3(b)shows an example dete
tion of LoG. To demonstrate the multi-s
ale behavior, i.e.,LoG without s
ale sele
tion, Figure 2.3(a) shows the lo
al extrema of the Lapla
ian1In several multi-s
ale dete
tors that are based on se
ond moment matrix 
omputa-tions, we distinguish between two s
ale parameters, the derivation s
ale (σD) and theintegration s
ale (σI) (
f.Se
tion 2.1.1). Usually, a 
onstant fa
tor is used between σDand σI to balan
e the size of the area used to 
al
ulate the statisti
s of lo
al gradientvariations.
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PSfrag repla
ementsH-LapH-Lap-A�COMBENTR PSfrag repla
ementsH-LapH-Lap-A�COMBENTR(a) multi-s
ale (b) s
ale-invariantFigure 2.3: The LoG dete
tor. (a) shows all extrema of the 2D LoG fun
tion onmultiple s
ales. (b) LoG 3D maxima in lo
ation-s
ale spa
e. Note for illustrationpurposes we omit some s
ales from (a).on ea
h s
ale. As before, the radii of the 
ir
les indi
ate the s
ale. We 
an observethat while the LoG (Figure 2.3(b)) dete
tor sele
ts only blob-like features, the 2D LoGmaxima (Figure 2.3(a)) in
ludes also dete
tions near 
orners and edges.Mikolaj
zyk and S
hmid (2001) evaluate di�erent s
ale sele
tion 
riteria for s
ale-invariant image mat
hing environments. Apart from the Lapla
ian they study thesquared image gradients, the Di�eren
e-of-Gaussians (Lowe, 2004) (the di�eren
e ofthe Gaussian �lter responses between two 
onse
utive s
ales), and the Harris fun
tion(2.2). Their evaluation shows that the Lapla
ian fun
tion sele
ts the highest per
ent-age of 
orre
t 
hara
teristi
 s
ales, and as a result they introdu
e the s
ale-invariantHarris-Lapla
e (H-Lap) dete
tor, whi
h 
ombines the stable Harris dete
tor with theLapla
ian s
ale-sele
tion. Unfortunately, their evaluation of s
ale sele
tion fun
tionsare 
arried out in general, i.e., for ea
h pixel in the image. While it is a reasonableassumption to transfer the results to Harris points, they did not verify the quality ofs
ale sele
tion spe
i�
ally on keypoint lo
ations. Even though, they did not sear
hfor the Harris maxima in s
ale spa
e, we �nd it interesting to investigate the Harriss
ale sele
tion on Harris points, and in
lude the Harris-Harris (H-Har) dete
tor inour experiments.Triggs (2004) generalizes the Förstner-Harris approa
h to general motion modelsand o�ers a new 
hara
teristi
 s
ale sele
tion te
hnique. In
luding s
ale as a (non-translational) motion parameter for
es the dete
tions to be a

urately self-mat
hed notonly in lo
ation but also in s
ale-spa
e. Sin
e this is a more generalized Harris dete
tor,we 
all it Harris-Gen (H-Gen) in our experiments. Noti
e the di�eren
e between Harris-Harris and Harris-Gen. The former 
omputes the 2D Harris images for stable lo
ationsand 
hooses the maxima of 
ornerness in s
ale-spa
e, while Harris-Gen optimizes theHarris keypoints for mat
hing pre
ision in higher dimensional (not only translational)
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PSfrag repla
ementsH-LapH-Lap-A�COMBENTR PSfrag repla
ementsH-LapH-Lap-A�COMBENTR(a) Harris-Lapla
e (b) Harris-Harris
PSfrag repla
ementsH-LapH-Lap-A�COMBENTR PSfrag repla
ementsH-LapH-Lap-A�COMBENTR(
) Harris-Gen (d) Harris-MSLSDFigure 2.4: S
ale-Invariant Harris points. The example shows the points with their
hara
teristi
 s
ales for ea
h s
ale sele
tion method. For illustration we omited dete
-tions with σ < 2.spa
e. In our experiments Harris-Gen is used with rotation stability enabled, so themotion model a
tually in
ludes 4 parameters2 (lo
ation+s
ale+rotation). Exampledete
tions for the various Harris-based dete
tors 
an be found in Figure 2.4. Figure 2.4(d) also shows results of our s
ale sele
tion approa
h introdu
ed in Se
tion 2.2.Maximally Stable Extremal Regions (MSER) (Matas et al., 2002) dire
tly opti-mizes the region shape for stability. The algorithm determines a small subset ofall regions, the so-
alled extremal regions, where ea
h inner-pixel intensity value isless/greater than a 
ertain threshold t, and all intensities around the boundary isgreater/less than t. Among these extremal regions they sele
t the ones that arethe most stable in shape. Stability is measured by the 
hange in region area (orboundary length) with respe
t to t. The MSER dete
tor has been shown to performwell (Mikolaj
zyk and S
hmid, 2004b) for mat
hing s
enes with signi�
ant viewpoint
hanges.2In our experiments we do not in
lude other stability properties, e.g., a�ne trans-formations, illumination, et
, into H-Gen; the dete
tor is 
onsistently used with thesame 
riteria. Note, that we have tried to add other parameters, but the results werealways inferior to using lo
ation+s
ale+rotation.
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8−bin orentation

histogram

a Cell

4

4PSfrag repla
ementsH-LapH-Lap-A�COMBENTRFigure 2.5: The SIFT des
riptor 
omputed on a 4x4 grid with 8-bin orientation his-tograms.2.1.2 Lo
al Des
ription: S
ale-Invariant Feature TransformLo
al image representations are typi
ally a set of ve
tors 
omputed on image pat
hesat various lo
ations. Possible 
hoi
es of image des
riptors are raw image intensities,
olor histograms (Swain and Ballard, 1991), wavelets (Grossmann and Morlet, 1984),steerable �lters (Freeman and Adelson, 1991), moment invariants (Van Gool et al.,1996), di�erential invariants (Koenderink and van Doom, 1987), 
omplex �l-ters (S
ha�alitzky and Zisserman, 2002), shape 
ontext (Belongie et al., 2002), spinimages (Lazebnik et al., 2003), s
ale-invariant feature transform (SIFT) (Lowe,2004), and its variants (Ke and Sukthankar, 2004; Lazebnik et al., 2005;Mikolaj
zyk and S
hmid, 2004a). Mikolaj
zyk and S
hmid (2004a) 
omparedsome of these des
riptors and show that SIFT (Lowe, 2004) features performsbetter than others. Evaluation of Moreels and Perona (2005) also found SIFT andshape-
ontext to perform best for obje
t re
ognition. Based on their results we alwaysuse SIFT as a lo
al image representation.Figure 2.5 illustrates the 
omputation of SIFT on an image pat
h 
entered onkeypoint lo
ations (x) and using a window size related to its s
ale (σ). The pat
h isdivided by an ISxIS grid, where IS is the index size, and is set to 4. For ea
h 
ellan OS-bin histogram of lo
al orientations (weighted by the gradient magnitudes) is
omputed (OS = 8), leading to a 
on
atenated, 4∗4∗8 = 128 dimensional real ve
tor.These parameters were suggested by Lowe (2004), and are �xed for our experiments.For robust des
ription, histograms are 
omputed with a Gaussian weighting fun
tion(σ = half window size) and a trilinear interpolation is used to distribute the value ofea
h gradient sample into adja
ent histogram bins (ea
h orientation falls to 23 = 8bins). The SIFT des
riptor is normalized to unit length, providing invarian
e to s
alar
hanges in image 
ontrast. Sin
e the des
riptor is based on gradients, it is also invariantto additive 
onstant 
hanges in brightness. SIFT was originally proposed to be rotationinvariant, whi
h is a
hieved by an e�
ient dominant gradient 
omputation, whi
h 
andire
tly be used to normalize the gradients for the orientation histograms.
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al Image RepresentationPra
ti
ally, many times s
ale-invariant interest point dete
tions are followed by anormalization to obtain a regular region before the 
omputation of the des
riptors.This may in
lude an ellipti
al or an irregular shape normalization to unit square or arotation of pat
hes to a pre-
omputed 
hara
teristi
 orientation. In our experiments wealso follow this prin
iple, however, rotation invarian
e is only applied when indi
ated,i.e., in general the SIFT des
riptors are 
omputed in a non-rotation invariant way.2.2 S
ale Sele
tion by Maximally Stable Lo
al Des
riptionIn this se
tion we propose a new method for sele
ting 
hara
teristi
 s
ales for keypointdete
tors and dis
uss the advantages and properties of the new approa
h. We addresstwo key features of interest point dete
tors: repeatability and des
ription stability.Repeatability determines how well the dete
tor sele
ts the same region under variousimage transformations, and is important for image mat
hing. In pra
ti
e, due tonoise and obje
t variations, the 
orresponding regions are never exa
tly the samebut their underlying des
riptions are expe
ted to be similar. This is what we 
allthe des
ription stability, and it is important for image representation and appearan
ebased re
ognition.The two properties, repeatability and des
riptor stability, are in theory 
ontradi
-tory. A homogeneous region provides the most stable des
ription, whereas its shapeis in general not stable. On the other hand, if the region shape is stable, for exampleusing edges as region boundaries, small errors in lo
alization will often 
ause signi�-
ant 
hanges of the des
riptor. Our solution is to apply the Maximally Stable Lo
alDes
ription algorithm to interest point lo
ations only. These points have repeatablelo
ations and informative neighborhoods. Our algorithm adjusts their s
ale param-eters to stabilize the des
riptions and reje
ts lo
ations where the required stability
annot be a
hieved. The 
ombination of repeatable lo
ation sele
tion and des
riptorstabilized s
ale sele
tion provides a balan
ed solution. In Se
tion 2.3 we show that ournew method provide 
omparable performan
e to Harris-Lapla
e and LoG for imagemat
hing. Moreover, due to additional robustness (whi
h is dis
ussed later in thisse
tion) they outperform their 
ounterparts.S
ale-invariant MSLSD dete
torsTo sele
t 
hara
teristi
 lo
ations with high repeatability we �rst apply an interestpoint dete
tor at multiple s
ales. We 
hose two widely used 
omplementary meth-ods, Harris (Harris and Stephens, 1988) and the Lapla
ian (Blostein and Ahuja, 1989;Lindeberg, 1998) dete
tors. The se
ond step of our approa
h sele
ts the 
hara
teristi
s
ales for ea
h keypoint lo
ation. We use des
ription stability as 
riterion for s
alesele
tion: the s
ale for ea
h lo
ation is 
hosen su
h that the 
orresponding representa-tion (in our 
ase SIFT (Lowe, 2004)) 
hanges the least with respe
t to s
ale. Figure 2.6illustrates our sele
tion method for two Harris points. The two graphs show how the
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Figure 2.6: Two examples of s
ale sele
tion. The left and right graphs show the 
hangeof the lo
al des
ription as a fun
tion of s
ale for the left and right points respe
tively.The s
ales for whi
h the fun
tions have lo
al minima are shown in the image. Thebright thi
k 
ir
les 
orresponds to the global minima.des
riptors 
hange as we in
rease the s
ale (the radius of the region) for the two key-points. To measure the di�eren
e between SIFT des
riptions we use the Eu
lideandistan
e as in (Lowe, 2004). The minima of the fun
tions determine the s
ales wherethe des
riptions are the most stable; their 
orresponding regions are depi
ted by 
ir-
les in the image. Our algorithm sele
ts the absolute minimum (shown as bright thi
k
ir
les) for ea
h point, yet in 
ases of extreme s
ale 
hanges we re
ommend 
hoosingall minima and dis
overing multiple sparse sele
tions of s
ales per keypoint lo
ations.Multi-s
ale points whi
h 
orrespond to the same image stru
ture often have the sameabsolute minimum, i.e., result in the same region. In this 
ase only one of them is keptin our implementation. To limit the number of sele
ted regions an additional threshold
an be used to reje
t unstable keypoints, i.e., if the minimum 
hange of des
riptionis above a 
ertain value the keypoint lo
ation is reje
ted. For ea
h point we use aper
entage of the maximum 
hange over s
ales at the point lo
ation, set to 50% in ourexperiments.Our algorithm is in the following referred to as Maximally Stable Lo
al SIFT De-s
ription (MSLSD). Depending on the lo
ation dete
tor we add the pre�x H for Harris
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al Image Representationand L for Lapla
ian, i.e., H-MSLSD and L-MSLSD.Illumination and Rotation Invarian
eOur new dete
tors are robust to illumination 
hanges, as our s
ale sele
tion is based onthe SIFT des
riptor. Re
all, that the SIFT des
riptor is invariant to a�ne illumination
hanges.Many appli
ations require representations that are invariant to similarity transfor-mations in
luding rotation. This is either a
hieved by a rotation invariant des
rip-tor (Lazebnik et al., 2003), or, as we dis
ussed when we introdu
ed SIFT, by theextra
tion of a dominant orientation. In 
ase of SIFT, if dete
ted keypoints havepoorly de�ned orientations, the resulting des
riptions may be
ome unstable and noisy.(This is not the 
ase if the dete
ted regions have a 
entered 
ir
ular texture or they are
ompletly homogenious.) In our algorithm, we orient the pat
h in the dominant dire
-tion prior to the des
riptor 
omputation for ea
h s
ale. Maximal des
ription stabilityis then found for lo
ations with well de�ned lo
al gradients. In our experiments a -Rsu�x indi
ates rotation invarian
e. Experimental results in Se
tion 2.4 show that ourintegrated estimation of the dominant orientation 
an signi�
antly improve results, in
ontrast to other dete
tors la
king this type of stability.A�ne invarian
eThe a�ne extension of our dete
tor is based on the a�ne adaptationin (Lindeberg and Garding, 1994; Baumberg, 2000), where the shape of the ellipti
alregion is determined by the se
ond moment matrix of the intensity gradient. However,unlike other dete
tors (Lazebnik et al., 2003; Mikolaj
zyk and S
hmid, 2004b), we donot use this estimation as a post-pro
essing step after s
ale sele
tion, but estimate theellipti
al region prior to the des
riptor 
omputation for ea
h s
ale. When the a�neadaptation is unstable, i.e., sensitive to small 
hanges of the initial s
ale, the des
rip-tor 
hanges signi�
antly and the region is reje
ted. This improves the robustness ofour a�ne-invariant representation. In our experiments an -A� su�x indi
ates a�neinvarian
e. Full a�ne invarian
e requires rotation invarian
e, as the shape of ea
h el-lipti
al region is transformed into a 
ir
le redu
ing the a�ne ambiguity to a rotationalone. Rotation normalization of the pat
h is, therefore, always in
luded when a�neinvarian
e is used in our experiments.Illustration of S
ale Sele
tionTable 2.1 shows the number of extra
ted interest points for the motorbike image fromFigure 2.6 (640x480). On the left, Harris and Lapla
ian interest points are extra
tedon ea
h s
ale. Note that the number of multi-s
ale dete
tions depends on the multi-plier between neighboring s
ales of the image pyramid (1.2 in our 
ase). On the right,we show the redu
ed number of points by the 
hara
teristi
 s
ale sele
tion. The �rst
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Dete
tor # of pointsMulti-S
ale Harris 2228Multi-S
ale Lapla
ian 4893

S
ale-invariant dete
tor # of pointsHarris-Lapla
e 1011Harris-Harris 283Harris-Gen 66Our H-MSLSD 1225LoG 2862Our L-MSLSD 1261Table 2.1: The number of interest points extra
ted for the image in Figure 2.6. Onthe left we shows multi-s
ale points with 1.2 multiplier between s
ales. On the rightwe show the results after s
ale sele
tion with Harris-Lapla
e and Harris-Harris, Harris-Gen, our new H-MSLSD, and for LoG and our new L-MSLSD. See text for details.
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Figure 2.7: Number of sele
ted points with gradually in
reased multi-s
ale points.Sele
tion Ratio is de�ne in (2.3) See text for dis
ussion.line shows the Harris-Lapla
e dete
tor (Mikolaj
zyk and S
hmid, 2001) followed bythe other Harris-based dete
tors in the next three rows. The last two rows show s
alesele
tions on Lapla
ian points. In pra
ti
e, to further limit the number of sele
tedregions an additional threshold 
an be used to reje
t unstable keypoints. Apart from



34 Chapter 2. Lo
al Image RepresentationLoG and Harris-Harris dete
tors, two separate thresholds 
an be set, one for the lo
a-tion and one for the s
ale fun
tion. Please also note that rotation invarian
e, whi
h isenabled in these examples, further redu
ed the numbers of points found by Harris-Gen,H-MSLSD, and L-MSLSD.Using a �xed image pyramid we de�ne the s
ale sele
tion ratio as
Selection Ratio =

Scale Invariant Points

Multi Scale Points
(2.3)Table 2.1 shows that H-Lap, H-MSLSD, LoG and L-MSLSD provide su�
ient amountof dete
tions, yet at the same time, their s
ale sele
tion ratio is relative high, i.e., theykeep many of the multi-s
ale points.Figure 2.7 analyzes how mu
h the dete
ted number of points depends on the s
ale-spa
e pyramid. We gradually 
hange the s
ale multiplier between 1.5 and 1.03 andplot the number of s
ale-invariant points as a fun
tion of multi-s
ale points. Sin
ethe absolute number of points for ea
h dete
tor may easily be altered by a threshold,the interesting part of the 
urves are their shapes. One would expe
t that after a
ertain level adding intermediate new layers in the pyramid should not in
rease thenumber of dete
tions. Surprisingly, the H-Lap dete
tor (almost straight line) alwayssele
ts a 
ertain ratio of multi-s
ale points. This 
ould be 
aused by noise or impre
iseLapla
ian s
ale sele
tion on Harris points. The sele
tion ratio of H-Har dete
tor beginsas expe
ted, but after 3000 multi-s
ale points it a
tually starts to in
rease. H-Gen andH-MSLSD both demonstrate the expe
ted des
ending shape. In 
ase of the Lapla
ian-based dete
tors (Figure 2.7 se
ond line), we draw similar 
on
lusions, MSLSD stopsin
reasing the number of dete
tions after a 
ertain limit. The expe
ted behavior ofour MSLSD implementation is probably due the smoothing fa
tor introdu
ed in ourimplementation during the 
omputation of des
riptor di�eren
es. It expli
itly removeshigh frequen
y noise from the s
ale sele
tion fun
tion. Also note that our s
ale sele
tionalways uses a �ner s
ale-step then the multi-s
ale initialization.2.3 Evaluation for image mat
hingThis se
tion evaluates the performan
e of the new dete
tors for image mat
hing basedon the evaluation framework in (Mikolaj
zyk et al., 2005b). 3 We 
ompare our resultsto H-Lap, H-Har, H-Gen and LoG respe
tively. The two main evaluation 
riteria ofthe framework we also applied are repeatability and mat
hing rates.The repeatability rate measures how well the dete
tor sele
ts the same s
ene regionunder various image transformations. Ea
h sequen
e has one referen
e image and �veimages with known homographies to the referen
e image. Regions are dete
ted forthe images and their a

ura
y is measured by the amount of overlap between the3The evaluation s
ript may be downloaded fromhttp://www.robots.ox.a
.uk/∼vgg/resear
h/a�ne/evaluation.html.
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e image images from the sequen
eFigure 2.8: Image sequen
es used in the mat
hing experiments. (a) and (b) aresequen
es with viewpoint 
hange, while (
) 
ontains illumination 
hange. The�rst 
olumn shows the referen
e image, the other images are examples whi
h ho-mography is known to the referen
e. These sequen
es may be downloaded fromhttp://www.robots.ox.a
.uk/∼vgg/resear
h/a�ne/index.html.dete
ted region and the 
orresponding region proje
ted from the referen
e image withthe known homography. Two regions are mat
hed if their overlap error is su�
ientlysmall:

1 − Rµa
∩ R(HT µbH)

Rµa
∪ R(HT µbH)

< ǫOwhere Rµ is the ellipti
 or 
ir
ular region extra
ted by the dete
tor and H is thehomography between the two images. The union (Rµa
∪R(HT µbH)) and the interse
tion(Rµa

∩R(HT µbH)) of the dete
ted and proje
ted regions are 
omputed numeri
ally. Asin (Mikolaj
zyk et al., 2005b) the maximum possible overlap error ǫO is set to 40% inour experiments. The repeatability s
ore is the ratio between the 
orre
t mat
hes andthe smaller number of dete
ted regions in the pair of images.The se
ond 
riterion, the mat
hing s
ore, measures the dis
riminative power of thedete
ted regions. Ea
h des
riptor is mat
hed to its nearest neighbor in the se
ond im-age. This mat
h is marked as 
orre
t if it 
orresponds to a region mat
h with maximumoverlap error 40%. The mat
hing s
ore is the ratio between the 
orre
t mat
hes and



36 Chapter 2. Lo
al Image Representationthe smaller number of dete
ted regions in the pair of images. See (Mikolaj
zyk et al.,2005b) for more detailed dis
ussion of the pro
edure.2.3.1 Viewpoint ChangesThe performan
e of our dete
tors for viewpoint 
hanges is evaluated on two di�erentimage sequen
es with viewpoint 
hanges from 20 to 60 degrees. Figure 2.8(a) showssample images of the gra�ti sequen
e. This sequen
e has well de�ned edges, whereasthe wall sequen
e (Figure 2.8(b)) is more texture-like.Figure 2.9 shows the repeatability rate and the mat
hing s
ores as well as the num-ber of mat
hes for di�erent a�ne-invariant dete
tors. The ordering of the dete
tors isvery similar for the 
riteria repeatability rate and mat
hing s
ore, as expe
ted. In thefollowing we fo
us on the 
omparison of H-MSLSD-A� to the other Harris based dete
-tors, and L-MSLSD-A� to LoG-A� respe
tively. On the gra�ti sequen
e (Figure 2.9,�rst row) the original Harris-Lapla
e (H-Lap-A�) dete
tor performs better than theother Harris dete
tors. On this sequen
e the new H-MSLSD-A� are outperformedby H-Lap-A� and H-Har-A�. On the wall sequen
e, a more natural s
ene, resultsfor H-MSLSD-A� are slightly better than for H-L-A�. This shows that the Lapla-
ian s
ale sele
tion provides good repeatability mainly in the presen
e of well de�nededges. In 
ase of the Lapla
ian our dete
tor (L-MSLSD-A�) outperforms the originalone (LoG) for both sequen
es. This 
an be explained by the fa
t that LoG-A� dete
tsa large number of unstable (poorly repeatable) regions for nearly parallel edges, seeFigure 2.10. A small shift or s
ale 
hange of the initial regions 
an lead to 
ompletelydi�erent a�ne parameters of LoG-A�. These regions are reje
ted by L-MSLSD-A�,as the varying a�ne parameters 
ause large 
hanges in the lo
al des
ription over 
on-se
utive s
ale parameters. Note that in 
ase of a�ne divergen
e all dete
tors reje
tthe points. This example 
learly shows that des
ription stability may lead to morerepeatable regions. In 
ase of natural s
enes, as for example the wall sequen
e, this ad-vantage is even more apparent, i.e., the di�eren
e between L-MSLSD-A� over LoG-A�is higher than for the gra�ti sequen
e.We 
an observe that we obtain a signi�
antly higher number of 
orre
t mat
heswith our L-MSLSD. This is due to a larger number of dete
ted regions. This 
ouldin
rease the probability of a

idental mat
hes. To ensure that this did not bias ourresults�and to evaluate the e�e
t of the dete
ted region density�we 
ompared theperforman
e for di�erent Lapla
ian thresholds for the L-MSLSD dete
tor. Note thatthe Lapla
ian threshold determines the number of dete
tions in lo
ation spa
e, whereasthe s
ale threshold reje
ts unstable lo
ations and remains �xed throughout the thesis.Figure 2.11 shows that as the number of 
orre
t mat
hes gradually de
rease, the qualityof the des
riptors (mat
hing s
ore) stays the same. Consequently, we 
an 
on
lude thatthe quality of the dete
tions does not depend on the density of the extra
ted regions.Figure 2.12 shows that in 
ase of small viewpoint 
hanges the s
ale-invariant ver-sions of the dete
tors perform better than the ones with a�ne invarian
e. It also allows
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Figure 2.9: Comparison of dete
tors on viewpoint invariant sequen
es. The repeata-bilities, mat
hing s
ores and the number of mat
hes are 
omputed on the gra�ti (�rstrow) and on the wall (se
ond row) sequen
es. See text for dis
ussion.
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tion on a part of a gra�ti image. On the left, theoutput of the standard LoG dete
tor whi
h is at the same time the input (initialization)of the a�ne adapted LoG (middle). On the right, the output of the new L-MSLSD-A�ne. See text for dis
ussion.
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Figure 2.11: L-MSLSD results on the wall sequen
e while the threshold of the dete
toris gradually in
reased (20, 25, 30, 35). Higher threshold implies fewer dete
tion and
onsequently a smaller number of absolute mat
hes (se
ond 
olumn).to 
ompare the s
ale-invariant dete
tors. On the gra�ti images the original H-Lap andH-Gen performs better than its a�ne adapted version until 30◦ of viewpoint 
hange.For our dete
tor this transition o

urs later around 40◦. In the 
ase of L-MSLSDand LoG the 
urves 
ross around 35◦ and 40◦ respe
tively. Interestingly, H-Har-A�performs better on this sequen
e than H-Har. On the wall sequen
e it is almost neverhelpful to use the a�ne adaptation, s
ale invarian
e is su�
ient until 55 − 60◦. We
an 
on
lude that the use of a�ne invarian
e is not ne
essary unless the viewpoint
hanges are signi�
ant, and that it is more helpful in 
ase of stru
tured s
enes. We
an also observe that the s
ale-invariant versions H-Lap and H-MSLSD give 
ompara-ble results for the gra�ti sequen
e, whereas in the 
ase of a�ne invarian
e H-Lap-A�outperforms H-MSLSD-A�. In the other 
ases, our s
ale-invariant dete
tors outper-form their standard versions. In addition, the improvement of our dete
tors over thestandard versions is more signi�
ant for s
ale invarian
e than for a�ne invarian
e, inparti
ular for the Lapla
ian and the wall sequen
e.
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Figure 2.12: Comparison of using invariant dete
tors with and without a�ne estima-tion on the gra�ti (�rst row) and the wall (se
ond row) sequen
es. First 
olumn showresults with the Harris, while the se
ond is with the Lapla
ian-based dete
tors. Seetext for dis
ussion.2.3.2 Changes in IlluminationSe
tion 2.2 motivated that our s
ale sele
tion method o�ers robustness to propertiesprovided by the underlying representation, in this 
ase to illumination 
hanges bySIFT. In this se
tion, experiments are 
arried out for the Leuven sequen
e (Figure 2.8(
)), i.e., images of the same s
ene under gradually redu
ed 
amera aperture. Fig-ure 2.13 shows that the repeatability rate and mat
hing s
ore are signi�
antly higherfor our Harris- and Lapla
ian-based dete
tors than for the other Harris-based andLoG dete
tors respe
tively. This 
on�rms that our s
ale sele
tion is robust to lighting
onditions as it is based on the SIFT des
riptor whi
h, re
all, is invariant to a�neillumination 
hanges.2.3.3 Overall Performan
eMikolaj
zyk et al. (Mikolaj
zyk et al., 2005b) reported MSER (Maximally Stable Ex-tremal Regions (Matas et al., 2002)) as the best a�ne-invariant dete
tor on the threeimage sequen
es used here. Figure 2.14 
ompares the mat
hing s
ore of our dete
tors



40 Chapter 2. Lo
al Image RepresentationLeuven Sequen
e PSfrag repla
ementsH-LapH-Lap-A�COMBENTRPSfrag repla
ementsH-LapH-Lap-A�COMBENTRPSfrag repla
ementsH-LapH-Lap-A�COMBENTRPSfrag repla
ementsH-LapH-Lap-A�COMBENTRPSfrag repla
ementsH-LapH-Lap-A�COMBENTRPSfrag repla
ementsH-LapH-Lap-A�COMBENTR
 0

 20

 40

 60

 80

 100

 1  1.5  2  2.5  3  3.5  4  4.5  5

re
pe

at
ab

ili
ty

 %

decreasing light

PSfragrepla
ementsH-LapH-Lap-A�COMBENTR
 0

 20

 40

 60

 80

 100

 1  1.5  2  2.5  3  3.5  4  4.5  5

m
at

ch
in

g 
sc

or
e 

%

decreasing light

PSfragrepla
ementsH-LapH-Lap-A�COMBENTR
0 

1k

2k

3k

4k

 1  1.5  2  2.5  3  3.5  4  4.5  5

nu
m

be
r 

of
 m

at
ch

es

decreasing light

H-Lap
H-MSLSD

H-Gen
H-Har

PSfragrepla
ementsH-LapH-Lap-A�COMBENTR

 0

 20

 40

 60

 80

 100

 1  1.5  2  2.5  3  3.5  4  4.5  5

re
pe

at
ab

ili
ty

 %

decreasing light

PSfragrepla
ementsH-LapH-Lap-A�COMBENTR
 0

 20

 40

 60

 80

 100

 1  1.5  2  2.5  3  3.5  4  4.5  5

m
at

ch
in

g 
sc

or
e 

%

decreasing light

PSfragrepla
ementsH-LapH-Lap-A�COMBENTR
0 

1k

2k

3k

4k

 1  1.5  2  2.5  3  3.5  4  4.5  5
nu

m
be

r 
of

 m
at

ch
es

decreasing light

LoG
L-MSLSD

PSfragrepla
ementsH-LapH-Lap-A�COMBENTR
Figure 2.13: Dete
tor performan
e on the Leuven sequen
e(illumination 
hange). Seetext for dis
ussion.Gra�ti Wall Leuven
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Figure 2.14: Comparison of the mat
hing s
ores obtained for our dete
tors, H-MSLSD-A� and L-MSLSD-A�, and MSER.to the performan
e of MSER on these sequen
es. Note that our results are dire
tly
omparable to the other dete
tors reported in (Mikolaj
zyk et al., 2005b), as we usethe same dataset and evaluation 
riteria. We 
an observe that L-MSLSD outper-forms MSER on the wall sequen
e and that H-MSLSD performs better than MSERon the Leuven sequen
e. MSER gives better results than other dete
tors on the graf-�ti images. Note that due to the image stru
ture of the gra�ti s
enes MSER sele
tssigni�
antly fewer keypoints than the other dete
tors.



2.4 Evaluation for image 
ategorization 41Dete
tor Calte
h databases TUGraz1 databasesMotorbikes Airplanes Bi
y
les PeopleH-Lap 98.25 97.75 92.0 86.0H-Har 97.25 97.75 86.0 78.0H-Gen 97.75 97.00 88.0 72.0H-MSLSD 98.5 99.25 94.0 86.0LoG 98.75 98.75 90.0 78.0L-MSLSD 98.75 98.75 92.0 80.0MSER 98.5 91.5 84.0 72.0Fergus 96.0 94.0 n.a. n.a.Opelt 92.2 90.2 86.5 80.8Table 2.2: Obje
t 
lass re
ognition results using seven di�erent features sets andfour di�erent databases. Classi�
ation rates are reported at EER and 
ompared toFergus et al. (2003); Opelt et al. (2004).2.4 Evaluation for image 
ategorizationIn this se
tion we evaluate our new dete
tors for obje
t and texture 
ategoriza-tion. In both 
ases we perform image 
lassi�
ation based on the bag-of-kepointsapproa
h (Csurka et al., 2004). Images are represented as histograms of visual wordo

urren
es, where the visual words are 
lusters of lo
al des
riptors. The histogramsof the training images are used to train a linear SVM 
lassi�er. In the 
ase of obje
t
ategorization the output of the SVM determines the presen
e or absen
e of a 
ate-gory in a test image. For multi-
lass texture 
lassi�
ation we use the 1-vs-1 strategy.Vo
abularies are 
onstru
ted by the K-Means algorithm separately for ea
h ea
h 
lass.The number of 
lusters is �xed for ea
h 
ategory, i.e., does not depend on the dete
tor(400 for motorbikes and airplanes, 200 for bi
y
les, 100 for people, 1120 for Brodatz,and 1000 for KTH-TIPS). In all experiments we 
ompare H-L to H-MSLSD and LoGto L-MSLSD and our representation is always SIFT.Evaluation for 
ategory 
lassi�
ationThe experiments are performed for four di�erent datasets. Motorbikes and airplanes ofthe CalTe
h dataset (Fergus et al., 2003) 
ontain 800 images of obje
ts and 900 imagesof ba
kground. Half of the sets are used for training and the other half for testing. Thesplit of the positive sets is exa
tly the same as (Fergus et al., 2003). The TUGRAZ-1dataset (Opelt et al., 2004) 
ontains people, bi
y
les, and a ba
kground 
lass. We usethe same training and test sets for two-
lass 
lassi�
ation as (Opelt et al., 2004).
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lassi�
ation rate at the EER4 for four databases and sevendi�erent dete
tors. The last rows 
olumns give results from the literature. We 
anobserve that in most 
ases our dete
tors give better results when 
ompared to theirstandard versions. In the remaining 
ases the results are exa
tly the same. Thisdemonstrates that the lo
al des
ription based on our dete
tors is more stable andrepresentative of the data. Comparison to other dete
tors are reported in Se
tion 4.1.3.



2.4 Evaluation for image 
ategorization 43Database H-Lap-R H-Har-R H-Gen-R H-MSLSD-R LoG-R L-MSLSD-RBrodatz 88.3±0.6 34.5±1.0 81.6±0.5 92.0±0.5 90.5±0.5 95.8±0.4KTH-TIPS 83.9±1.1 42.5±2.2 52.5±1.2 88.4±0.9 71.2±1.5 81.1±1.2Table 2.3: Multi-
lass texture 
lassi�
ation for two di�erent datasets. Columns showresults for di�erent dete
tors, here their rotation invariant versions. Random 
lass-assignment would give 10% on KTH-TIPS (10 
lasses) and 0.9% on Brodatz (112
lasses). See text for more dis
ussion.Evaluation for texture 
lassi�
ationExperiments are 
arried out on two di�erent texture databases: Brodatz (Brodatz,1966) and KTH-TIPS (Hayman et al., 2004). The Brodatz dataset 
onsists of 112di�erent texture images, ea
h of whi
h is divided into 9 non-overlapping sub-images.The KTH-TIPS texture dataset 
ontains 10 texture 
lasses with 81 images per 
lass.Images are 
aptured at 9 s
ales, viewed under three di�erent illumination dire
tionsand three di�erent poses. Our training set 
ontains 3 sub-images per 
lass for Brodatzand 40 images per 
lass for KTH-TIPS. Ea
h experiment is repeated 400 times usingdi�erent random splits and results are reported as the average a

ura
y on the foldswith their standard deviation over the 400 runs. Table 2.3 
ompares the results of ourdete
tors H-MSLSD-R and L-MSLSD-R to H-Lap-R, H-Har-R, H-Gen-R and LoG-R.Note that we use the rotation invariant version here, as rotation invarian
e allows togroup similar texture stru
tures. We 
an observe that our s
ale sele
tion te
hnique,MSLSD, improves the results signi�
antly in all 
ases. The poor performan
e of H-Haris due to the small number of dete
ted features, for example on the Brodatz datasetH-Har did not dete
ted any points in 285 images from 46 
lasses. This agrees with the
on
lusion of Mikolaj
zyk (2002, p.52 and p.58) that the Harris fun
tion rarely attainsmaxima in s
ale spa
e.Table 2.3 show result for a rotation invariant SIFT representation, for whi
hthe pat
h is rotated in the dire
tion of the gradient orientation. Depending on thedatabase, rotation invarian
e may help to group similar stru
tures together and im-prove the 
lassi�
ation a

ura
y. On the other hand making des
riptors more similar,i.e., impose additional invarian
e, may result in performan
e drop. Consequently thefollowing set of experiments, results reported in Table 2.4, analyzes the in�uen
e of ro-tation invarian
e on the representation. Results for the state-of-the-art dete
tors are,with one ex
eption (LoG on the Brodatz dataset), better without, whereas results forour dete
tors are always better with rotation invarian
e. Noti
e that our improvement4The Equal-Error-Rate is a standard way to 
ompare re
ognition results of Re
eiverOperation Chara
teristi
 
urves. It 
orresponds to the point where the 
lassi�
ationerrors on the positive and negative examples are equal, i.e., p(TruePositives) = 1 −
p(FalsePositives).
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al Image RepresentationBrodatzDete
tor no rot.inv. rot.inv.(-R)H-Lap 89.2±0.6 ^ 88.3±0.6H-Har 36.9±1.0 ^ 34.5±1.0H-Gen 84.0±0.5 ^ 81.6±0.5H-MSLSD 91.5±0.6 _ 92.0±0.5LoG 90.1±0.5 _ 90.5±0.5L-MSLSD 94.2±0.5 _ 95.8±0.4

KTH-TIPSDete
tor no rot.inv. rot.inv.(-R)H-Lap 85.8±1.1 ^ 83.9±1.1H-Har 43.8±3.0 ^ 42.5±2.2H-Gen 61.3±1.3 ^ 52.5±1.2H-MSLSD 88.1±1.2 _ 88.4±0.9LoG 73.1±1.5 ^ 71.2±1.5L-MSLSD 80.9±1.3 _ 81.1±1.2(a) (b)Table 2.4: Classi�
ation a

ura
y with and without rotation invarian
e. Results for(a) Brodatz and (b) KTH-TIPS datasets and di�erent dete
tors.may also be a
hieved on databases, su
h as Brodatz, where textures are not rotated.In our opinion, the poor performan
e of the existing dete
tors is due to an unstableestimation of the orientation leading to signi�
ant errors/noise in the des
riptions.Note, that the orientation of the pat
h is estimated after the region dete
tion. Inour MSLSD method rotation estimation is integrated into the s
ale sele
tion 
riterion(
f. Se
tion 2.2) whi
h implies that only regions with stable dominant gradients aresele
ted, and it therefore improves the quality of the image representation.Table 2.4 shows the results for both Brodatz and KTH-TIPS texture datasets.Surprisingly, results for the state-of-the-art dete
tors are in general better withoutrotation invarian
e, whereas results for our method are improved by the additionalnormalization. The only ex
eption is LoG on the Brodatz dataset, that shows a smallimprovement using rotation invariant des
ription. The poor performan
e of the ex-isting dete
tors is due to unstable orientation estimation whi
h leads to signi�
anterrors/noise in the des
riptor. In our MSLSD method rotation estimation is in
ludedinto the s
ale sele
tion 
riterion whi
h implies that only regions with stable dominantgradients are sele
ted, and therefore it improves the quality of the texture representa-tions. Noti
e that improvement may also be a
hieved on databases, su
h as Brodatz,where textures are not rotated.2.5 Implementation DetailsIn this se
tion we present implementation details and the parameters used in ourexperiments.Interest Point Dete
torsHarris-Gen and MSER. In the 
ase of these two dete
tors, we use the implementa-tion provided by their authors (Triggs, 2004; Matas et al., 2002) with default



2.5 Implementation Details 45parameters. For the Harris-Gen dete
tor we use the lo
ation+s
ale+rotation(4D) stability 
riteria.Harris-Lapla
e. Our implementation is based on the PhD thesis of Mikolaj
zyk (2002).First, we build a multi-s
ale pyramid, with a s
ale fa
tor of 1.3, and apply theHarris 
orner dete
tor with a threshold of 300 for every s
ale. Then, a s
alesele
tion algorithm veri�es if the Lapla
ian fun
tion has a lo
al extremum onea
h dete
ted Harris points. If the s
ale sele
tion 
riterium is not ful�lled, or theabsolute value of the Lapla
ian is below a 
ertain threshold (3.0), the keypointis reje
ted.Harris-Harris. This dete
tor is implemented very similarly to Harris-Lapla
e. We builda multi-s
ale pyramid using the same parameters, i.e., a s
ale fa
tor of 1.3, and
ompute Harris images for ea
h s
ale. The di�eren
e is that here we use theHarris fun
tions for s
ale sele
tion. For ea
h keypoint point we ensure that ithas a maximum 
ornerness w.r.t. it neighbors both in lo
ation and s
ale spa
e.For the Harris fun
tion we additionally used a threshold of 300, similarly toHarris-Lapla
e.LoG. The implementation of this keypoint dete
tor starts similarly as the two previousdete
tors, but for ea
h image in the muli-s
ale pyramid we 
ompute 2D Lapla
ianimages. Keypoints in lo
ation spa
e are sele
ted by thresholding these imageswith the value of 15. For ea
h 
andidate lo
ations, we then verify if its Lapla
ianhas an extrema on s
ale spa
e. Otherwise, the keypoint is reje
ted.H-MSLSD and L-MSLSD. We start by building a multi-s
ale pyramid. For ea
h s
ale,we 
ompute Harris or Lapla
ian images a

ordingly. The potential keypoint lo-
ations are sele
ted on ea
h s
ale using the same 
riteria as for Harris-Lapla
eor LoG (see above): the thresholds are also the same, 300 for Harris, and 15 forthe Lapla
ian. For ea
h 
andidate lo
ations, we optimize the des
riptor stability
riterion in fun
tion of s
ale. During this optimization the 
hange of des
riptionis 
omputed for a denser s
ale-spa
e with a s
ale fa
tor of 1.05, in 
ontrast to
1.3, whi
h is used only in the initialization phase, i.e., determine possible 
hara
-teristi
 lo
ations. The absolute minimum of des
riptor 
hange on the smoothed(Gaussian σ = 3) des
riptor-
hange fun
tion is then the sele
ted 
hara
teristi
s
ale. It may happen that 
andidates that are 
lose by, or that on di�erent s
ales
orrespond to the same image stru
ture, have the same absolute minimum in our�nal sele
tion, i.e., after optimization they result in the same region. In this 
aseonly one of them is kept in our implementation. To limit the number of sele
tedregions, and to impose higher stability, an additional threshold is used to reje
tunstable keypoints. In our implementation this is a threshold relative to themaximum 
hange in des
ription, 50% in our experiments.



46 Chapter 2. Lo
al Image RepresentationIn general all keypoint dete
tors are applied to the images without any prepro
ess-ing. In our experiments all points dete
ted below s
ale 2 are omitted, as they havetoo little information to 
ompute appearan
e des
riptors.Invarian
esRotation invarian
e is a
hieved by estimating the dominant orientation, and by pre-rotating the pat
h before des
riptor 
omputation. For the dominant orientation weuse the gradient dire
tion in the 
enter of the pat
h estimated with the appropriateGaussian kernel a

ording to the dete
tion s
ale.The a�ne adaptation for all dete
tors is based on the se
ond moment matrix of theintensity gradient, and it is identi
al for all the above dete
tors, but MSER. Rotationinvarian
e is always in
luded when a�ne invarian
e is used. For the MSER dete
toran ellipse is �tted on the dete
ted region to determine the a�ne shape of the region.The keypoint lo
ation is the 
enter of the ellipse.Lo
al Des
riptorsBefore 
omputing the des
riptors, regions are normalized to obtain the required in-varian
e. We map ea
h neighborhood to a standard 
ir
ular region, with smoothing inthe 
ase of downs
aling. For all experiments in this thesis we use the SIFT des
riptorwith a 4x4 grid (index size), and with 8 bin orientation histograms. The resulting di-mension of the des
riptor is 128. The des
riptor is �rst normalized to unit length, thenbin values larger than 0.2 are trun
ated, and the ve
tor is renormalized. S
ales of key-points dete
ted by Harris-Lapla
e, Harris-Harris, Harris-Gen and LoG are multipliedby a fa
tor of 2 prior to des
riptor 
omputation.Image Mat
hing ExperimentsThese experiments are 
arried out with the publi
ly available evaluation framework ofMikolaj
zyk et al. (2005b). We use a�ne invariant dete
tors (
f. -A�) for viewpoint
hanges, and rotation and s
ale invariant ones otherwise.Image Categorization ExperimentsFor ea
h image database the two 
lass 
ategorization experiments use separate vo-
abularies built by kmeans. The number of 
lusters, and therefore the number ofbins in the histogram is 400 for motorbikes, 200 for bi
y
les, 100 for people, 1120for Brodatz textures, and 1000 for KTH textures. These numbers are 
hosen manu-ally, a

ording to the size of the database. For the 
lassi�
ation we use linear SVM(SVMlight (Joa
hims, 1999) implementation) with the trade-o� between training errorand margin, c = 0.005.



2.6 Con
lusions 472.6 Con
lusionsThis 
hapter has introdu
ed an approa
h for sele
ting 
hara
teristi
 s
ales based onthe stability of the lo
al des
ription. We experimentally evaluated this te
hnique forthe SIFT des
riptor, i.e., Maximally Stable Lo
al SIFT Des
ription (MSLSD). A newkey property for interest points dete
tors, lo
al des
ription stability, has been intro-du
ed and dis
ussed. We also demonstrated how a stable estimate of a�ne regions andorientation 
an be integrated in our method. Results for MSLSD versions of Harrisand Lapla
ian points outperformed in many 
ases their 
orresponding state-of-the-artversions with respe
t to repeatability and mat
hing, in parti
ular under 
halleng-ing 
onditions su
h as highly textured s
enes and under di�erent lighting 
onditions.For obje
t 
ategory 
lassi�
ation MSLSD a
hieved better or similar results for fourdatasets. In the 
ontext of texture 
lassi�
ation our approa
h always outperformedthe standard versions of the dete
tors.
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Third ChapterDis
riminative Feature Sele
tion forObje
t Class Appearan
e
T he sele
tion of dis
riminative features is typi
ally used to either improve 
lassi�-
ation performan
e or to redu
e the size of the feature set. If the goal is a higherre
ognition rate, appropriate sele
tion methods eliminate unimportant features, thusredu
ing the noise prior to 
lassi�
ation. On the other hand, if the method is usedto redu
e the size of the feature set, the 
onstru
ted sparse representation 
an signi�-
antly de
rease pro
essing time as well as required resour
es.Due to the re
ent popularity of lo
al image representation and the in
reasing sizeof datasets, feature sele
tion has be
ome important in 
omputer vision. Many learn-ing methods are unable to handle the huge feature sets produ
ed by dense multi-s
alerepresentations. Although s
ale-invariant interest point dete
tors dramati
ally redu
ethis amount, dis
overing dis
riminative features 
an further improve the feature set.Sele
ting dis
riminative features helps to separate obje
ts from ba
kground, and there-fore 
an be used dire
tly for 
lassi�
ation or to support and improve more 
omplexlearning methods.Figure 3.1 illustrates the importan
e of dis
riminative feature sele
tion. The twos
ale-invariant regions in Figure 3.1(a) have very similar appearan
e. However, oneof them lies on the ba
kground and the other on the obje
t (bi
y
le). This regionis therefore not dis
riminative for the bi
y
le 
lass. Non-dis
riminative des
riptorstypi
ally o

ur with small tubular or transparent parts, and with �donut-like� pat
hes.Figure 3.1(b) shows dis
riminative features of the bi
y
le 
lass determined by one ofour sele
tion methods.Related WorkIn the following we present a state-of-the-art on dis
riminative feature sele
tion. Manyof the methods were originally developed and used in text 
lassi�
ation. In do
ument
ategorization, the 
hallenge raised by the large number of features, i.e., the num-
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(a) (b)Figure 3.1: Illustration of feature sele
tion. (a) Two similar regions whi
h 
annot beused in a purely appearan
e based system to distinguish between the bi
y
le and theba
kground. (b) The most dis
riminative features of the bi
y
le determined by ourmethod.ber of words, has made experts realize the need for feature sele
tion. Te
hniques to
hoose dis
riminative features, i.e., features whi
h are parti
ular for a given 
lass, hasbeen extensively studied for do
ument retrieval. Many of the methods dis
ussed inthis 
hapter are motivated by appli
ations from text 
lassi�
ation; some have alreadybeen used, while others are applied here for the �rst time for 
omputer vision. Intext 
ategorization among many available methods the most basi
 te
hniques in
ludedomain spe
i�
 stop word removal to avoid uninformative features, stemming1, andthe ex
lusion of overly 
ommon words. A number of feature s
oring methods havebeen used in �lters, among whi
h mutual information and odds ratios are the mostpopular. Filtering methods 
ompute a s
ore for ea
h feature a

ording to a 
hosensele
tion metri
, then take the best n features as a �nal representation. Re
ent stud-ies (Forman, 2003; Mladeni�
 et al., 2004) show that standard 
lassi�ers, su
h as naïveBayes or k-Nearest-Neighbor, 
an expli
itly pro�t from su
h sele
tions: using a sub-set of features signi�
antly improves their 
lassi�
ation performan
e, parti
ularly for
lasses with limited training examples. Linear Support Ve
tor Ma
hines impli
itlysele
t the useful features, therefore, they are more robust to insigni�
ant data. Ex-periments of Mladeni�
 et al. (2004) show that the SVM does not improve with featuresele
tion, but it yields better performan
e when the redu
ed feature spa
e allows alarger set of training examples. Joa
hims (1998) states that SVMs eliminate the needfor feature sele
tion and experimentally shows that 
lassi�ers built on the low-rankedfeatures still perform better than random. Findings of Gabrilovi
h and Markovit
h(2004) are similar to Joa
hims (1998) with respe
t to the latter, however, they foundthose low-utility features redundant rather than irrelevant. They show that using out-1Stemming algorithms, or stemmers, have been developed to redu
e a word to itsstem or root form. This linguisti
 normalization is 
ommonly used to redu
e thenumber of words (e.g., in sear
h engines), however, it is 
onsidered feature engineeringrather than sele
tion.
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ount�a measure estimating feature redundan
y by outlier analysis�for orderingdatasets re�e
ts the degree to whi
h a dataset 
an be des
ribed by only a few features.They also de�ne a 
lass of problems where feature sele
tion 
an signi�
antly improvethe a

ura
y of linear SVMs. Forman (2003) introdu
es Bi-Normal Separation as afeature s
oring method and shows improvement with SVM host 
lassi�ers.Our study mainly fo
uses on �ltering te
hniques, however there also exists an-other large group of sele
tion methods, the wrappers (John et al., 1994). Exam-ples of wrappers are sequential forward and ba
kward sele
tion or geneti
 sear
h.Wrapper methods evaluate all possible subsets of the features by repetitively 
allingthe indu
tion algorithm (
lassi�er) as a bla
k-box, and 
hoose the subset with thehighest performan
e. Comparisons �nd that wrapper methods are superior to �l-ters (Kohavi and John, 1997), although those studies are limited to lower dimensionalrepresentation. For large s
ale problem these NP-hard methods are impra
ti
al, and�lter methods are used instead. A valuable empiri
al study of �lter methods for text
lassi�
ation is written by Forman (2003).In the domain of text 
lassi�
ation feature sele
tion is typi
ally applied on do
-uments represented as bag of words (Sebastiani, 2002), i.e., by histograms built ono

urren
es of words. The 
onstru
tion of feature sets (visual vo
abularies) are more
omplex in 
omputer vision. They are two widely used approa
hes: feature sets area set of des
riptors 
omputed on lo
al regions (Viola and Jones, 2001; Opelt et al.,2004), or are the result of a ve
tor quantization algorithm applied on the des
riptorspa
e (Agarwal et al., 2004; Weber et al., 2000b; Willamowski et al., 2004). In thelatter 
ase feature extra
tion (
onstru
tion) is usually a
hieved by a 
lustering algo-rithm. Cluster 
enters 
an be interpreted as visual words (Sivi
 and Zisserman, 2003),and image representations based on o

urren
e histograms are 
alled bag of featuresor bag of keypoints (Willamowski et al., 2004). Some re
ent methods 
ombine featuresele
tion and lo
al representation for obje
t re
ognition. Viola and Jones (2001) ex-tra
t re
tangular Haar-like features to represent lo
al parts of fa
es. They build afast and reliable fa
e re
ognition framework by the linear 
ombination of 
lassi�ersbased on individual features using Adaboost. Chen et al. (2001) also use boosting to
onstru
t 
omponents by lo
al non-negative matrix fa
torization. Opelt et al. (2004)apply Adaboost for individual lo
al des
riptors to learn a lo
al feature-
lassi�er fordetermining the presen
e or absen
e of obje
ts in images. Torralba et al. (2004) de-velop a framework for sharing features between obje
t 
lasses. They use multi-
lassboosting to e�
iently sele
t the 
ommon features to improve generalization, as wellas to redu
e the �nal 
omputation 
ost. Mahamud and Hebert (2003) sele
t dis
rim-inative obje
t parts and develop an optimal distan
e measure for nearest neighborsear
h. Rikert et al. (1999) use a mixture model that retains only dis
riminative 
lus-ters, and S
hmid (2001) sele
ts signi�
ant texture des
riptors in a weakly supervisedframework. Both Rikert et al. (1999) and S
hmid (2001) sele
t features based on theirdis
riminative s
ore. The former uses the term strength (
lass 
onditional probabil-ity), while the latter uses the normalized likelihood ratio 
omputed on the training
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eimages. Ullman et al. (2001) use image fragments and 
ombine them with a lineardis
riminative type 
lassi�
ation rule. Their sele
tion algorithm is based on mutual in-formation. Fleuret (2004) uses 
onditional mutual information to sele
t dis
riminativeedge-based features for fa
e re
ognition. He dis
usses and 
ompares his method with
k-NN, naïve Bayes, and SVM host 
lassi�ers. The study of Vidal-Naquet and Ullman(2003) shows that linear 
lassi�ers 
an be learned using only a small set of featuresif they are informative. Their method uses a greedy integrative algorithm based onmutual information to sele
t features for 
lassi�
ation of 
ars. There are a few re
entappli
ations using linear SVM based sele
tion. Jurie and Triggs (2005) has experimen-tally evaluated visual vo
abularies 
reated by di�erent 
lustering algorithms togetherwith ranking methods based on linear SVM, mutual information and odds ratio. Theyobserved that the SVM sele
tion is superior to the others. Fan and Lu (2005) integrateSVM dis
riminative feature sele
tion in a multi-
lass framework to e�
iently 
lassifyfa
es from di�erent viewpoints. They have shown signi�
ant speed-up in re
ognitionwithout major degradation in 
lassi�
ation performan
e.OverviewThis 
hapter studies dis
riminative lo
al feature sele
tion for 
omputer vision. InSe
tion 3.1 we �rst introdu
e a probabilisti
 notation and then in Se
tion 3.2 des
ribedi�erent s
oring te
hniques as well as dis
uss their various properties. Se
tion 3.3shows how to build a visual vo
abulary, as well as demonstrates and 
ompares sele
tionte
hniques on real images. Experiments in Se
tion 3.3.2 evaluate individual feature
lassi�
ation, whi
h de
ides whether a feature lies on the obje
t or not. In Chapter 4we integrate the rankings into an obje
t dete
tion and lo
alization framework.3.1 Probabilisti
 InterpretationThis se
tion de�nes the probabilisti
 notation used in Se
tion 3.2 to introdu
e di�erents
oring te
hniques. Our notation is based on a given set of features F = {f1, f2, . . . , fk},and a set of measurements xj . In our experiments the features are based on visual words(
f. Se
tion 3.3.1), and the measurements are lo
al invariant des
riptors presented inthe previous 
hapter. fi is a binary variable indi
ating the existen
e of visual word
i. x⊕ and x⊖ are positively and negatively labeled lo
al des
riptors (image pat
hes).In the 
ase of weakly supervised data, as in Se
tion 3.3.2, positive labels may notne
essary mean positive des
riptors, but instead unlabelled des
riptors from positiveimages. Pat
hes from negative images always have negative (⊖) labels. This se
tiondoes not detail the generation of the feature set F; it assumes the probabilities P (fi|xj)are given for all features fi and des
riptor xj .Let N⊕ and N⊖ be the total number of positively and negatively labeled xj . Inour experiments they 
orrespond to the number of des
riptors extra
ted from positiveand negative images respe
tively. We 
an then introdu
e the following notations:
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P (⊕) is the probability that a randomly drawn xj is from a positively labeled image.

P (⊕) =
N⊕

N⊕ + N⊖
.

P (⊖) is the probability that a randomly drawn xj is from a negatively labeled image.
P (⊖) =

N⊖

N⊕ + N⊖
.

P (fi) is the average probability that a randomly drawn xj belongs to feature fi, and
an be estimated by
P (fi) =

∑
j P (fi|xj)

N⊕ + N⊖
.

P (f̄i) is the average probability that a randomly drawn xj does not belong to feature
fi.

P (f̄i) =

∑
j P (f̄i|xj)

N⊕ + N⊖
.

P (fi,⊕) is the joint probability that a des
riptor belongs to feature fi and is in apositively labeled image:
P (fi,⊕) =

∑N⊕

j=1 P (fi|x⊕
j )

N⊕ + N⊖
.It 
an be interpreted as the probability of true positives on our measurement set

{xj}.Joint probabilities P (fi,⊖), P (f̄i,⊕), and P (f̄i,⊖) are de�ned similarly, and they
orrespond to the probability of false positives, false negatives, and true negativesrespe
tively.
P (fi|⊕) is the 
onditional probability that a des
riptor from a positively labeled im-age belongs to feature fi. It is interpreted as the true positive rate and estimatedby

P (fi|⊕) =

∑N⊕

j=1 P (fi|x⊕
j )

N⊕
.Conditional probabilities of false positive rate (P (fi|⊖)), false negative rate (P (f̄i|⊕)),and true negative rate (P (f̄i|⊖)) are de�ned similarly.Several sele
tion 
riteria are based on how many des
riptors are assigned to agiven feature on obje
t and ba
kground images. For visualization ea
h feature 
an berepresented as a point in a 2D frequen
y diagram, see Figure 3.2 for an example. The



54 Chapter 3. Dis
riminative Feature Sele
tion for Obje
t Class Appearan
e

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350

Frequency on object images

Frequency Diagram

Fr
eq

ue
nc

y 
on

 b
ac

kg
ro

un
d 

im
ag

es

Non−Disc
rim

inative
 Components

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

Figure 3.2: 2D frequen
y diagram for the features of the bi
y
les dataset. There are
200 features, regions are dete
ted with ENTR dete
tor. We show a representativeregion for six example 
lusters.
x and y axes indi
ate respe
tively the frequen
y that des
riptors of a feature appearsin obje
t and ba
kground images. Note that normalizing the axes by 
onstant fa
tor
N⊕ and N⊖, delivers exa
tly the same diagram with P (fi|⊕) and P (fi|⊖) on the xand y axes respe
tively. Des
riptors of non-dis
riminative features are equally frequentin positive and negative images, and therefore they lie 
lose to the dashed diagonalline. Features 
lose to the bottom-right 
orner are dis
riminative for the obje
ts, whilethose 
lose to the top-left are good for the ba
kground.3.2 Feature S
oring Te
hniquesIn this se
tion we introdu
e and dis
uss possible s
oring te
hniques for feature ranking.We also show theoreti
al frequen
y diagrams for ea
h method to demonstrate whi
hfeatures they tend to sele
t.Freq: Frequen
y is one of the simplest methods; it measures how many times a featureappears in the data set {xj}N⊕+N⊖

j=1 . More frequent features have a higher 
han
eto appear on the unseen images, and thus, a sparse representation should �ndthem useful. Frequen
y rank is de�ned as
R(Freq) = P (fi) = P (fi,⊕) + P (fi,⊖).The frequen
y diagram for R(Freq) is shown in Figure 3.3. We 
an observe thatthis sele
tion method does not take into a

ount the dis
riminative power. Thefrequen
y s
ore peaks at the most frequent and the least dis
riminative top-right 
orner. However, R(Freq) is often used to reje
t rare features. For example
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Frequen
y Measure

Figure 3.3: Sele
tion by Frequen
y (R(Freq)). Darker regions 
orrespond to highers
ores. Iso
ontours indi
ate the same value a
ross the plot. See the text for dis
ussion.Weber et al. (2000b) ignore small 
lusters (i.e., rare obje
t parts) to redu
e the
omputational 
omplexity of their method for learning a joint spatial model.More sophisti
ated sele
tion algorithms that 
ombine frequen
y and dis
rimi-native information (su
h as Mutual Information or Chi-Square, see below), areshown to be superior to Frequen
y (Yang and Pedersen, 1997)2.OR: The Odds Ratio is one of the most popular s
oring methods. It is de�ned asthe odds that a feature is labeled as positive normalized by the odds that it islabeled as negative.
R(OR) =

P (fi|⊕) (1 − P (fi|⊖))

(1 − P (fi|⊕)) P (fi|⊖)
=

P (fi,⊕) P (f̄i,⊖)

P (fi,⊖) P (f̄i,⊕)
.The 
orresponding diagram 
an be found in Figure 3.5 (b). This measure iswidely used in text 
lassi�
ation (Caropreso et al., 2001; Mladeni�
 et al., 2004;Ruiz and Srinivasan, 1999) for relevan
e ranking. Mladeni�
 and Grobelnik (1999)report the best performan
e with Odds Ratio for multinomial naïve Bayes. Thesigni�
ant improvement�a

ording to them�was due to the fa
t that this se-le
tion method is �
ompatible� with the 
lassi�
ation algorithm. Odds Ratio isa very intuitive method and dire
tly related to the dis
riminative power of thefeatures, yet surprisingly it is not often used in 
omputer vision. One explana-tion is that the Likelihood Ratio (R(LIK)) is better motivated by probabilitiesand o�ers similar properties as Odds Ratio.LIK: The Likelihood ratio (or probability ratio (Forman, 2003)) is basi
ally the ratio(odds) of the probabilities if a random pat
h whi
h belongs to feature fi being2What we 
all Mutual Information is 
alled Information Gain byYang and Pedersen (1997).
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Figure 3.4: Likelihood s
ores for the 2D frequen
y diagram. Darker regions 
orrespondto higher s
ores. Iso
ontours indi
ate the same value a
ross the plot. �Spe
i�
� featureshave low frequen
y on the obje
t images as well as 
lose to zero frequen
y on theba
kground images.labeled positive or negative. It is de�ned as
R(LIK) =

P (fi|⊕)

P (fi|⊖)
.In our earlier work (Dorkó and S
hmid, 2003) as well as in (S
hmid, 2001) itdemonstrated very good performan
e. Intuitively, ranking by likelihood ratio iswell suited for 
lassi�
ation and dete
tion purposes be
ause it performs sele
-tion based on the 
lassi�
ation rate. This is 
on�rmed by our experiments inSe
tion 3.3.2 and in Se
tion 4.1. This method is robust to 
hanges in parametersettings and over�tting of the estimated pdf of the data. On the other hand,

R(LIK) and R(OR) typi
ally prefer very �spe
i�
� features with near-zero values inthe denominator. Even though these rare parts have individually low re
all rates,
ombinations of them 
an provide su�
ient re
all with ex
ellent pre
ision. Fig-ure 3.4 shows the likelihood s
ores for the 2D frequen
y diagram. Darker regionsindi
ate higher likelihood s
ores. Features in the bottom right 
orner re
eive thehighest values, sin
e they are the most dis
riminative obje
t features. We 
analso observe that �spe
i�
� features, lo
ated at the bottom of the diagram, alsohave high s
ores.The 
omputed s
ores (feature ranks) 
an be used, in many 
ases, within a re
og-nition framework. It is often ne
essary to bound or to provide probabilisti
explanation for these values. Sin
e the likelihood ratio is the ratio of the 
orre
t-and mis-
lassi�
ation rates, the often used relationship between odds and prob-
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R̂(LIK) =

R(LIK)

1 + R(LIK)
=

P (fi|⊕)

P (fi|⊕) + P (fi|⊖)
,whi
h is now bounded between 0 and 1. Noti
e, that in 
ase of equal priors,

R̂(LIK) is the posterior of a positively labeled image given the feature fi. S
hmid(2001) uses this measure to determine the signi�
an
e of 
lusters. Our experi-ments in Se
tion 4.2 use R̂(LIK) s
ores for obje
t lo
alization. Noti
e, that R̂(LIK)provides the same ordering of the features as R(LIK).CHI: Chi-Square is a well-known statisti
al test measuring the divergen
e from an ex-pe
ted distribution, or in our 
ase, the la
k of independen
e between the featureand the 
lass label. Sin
e we have binary variables, the formulation of Chi-Squarehas only four terms, as a typi
al 
ase for problems set out in a fourfold table:
R̂(CHI) = t(P (fi,⊕), P (fi)P (⊕)) + t(P (f̄i,⊕), P (f̄i)P (⊕)) +

+ t(P (fi,⊖), P (fi)P (⊖)) + t(P (f̄i,⊖), P (f̄i)P (⊖)),where t(x, y) =
(x − y)2

y
. After some basi
 algebra, the simpli�ed 
omputation(whi
h is often used in s
ienti�
 
al
ulators) is

R̂(CHI) =
[P (fi,⊕) P (f̄i,⊖) − P (fi,⊖) P (f̄i,⊕)]2

P (fi) P (f̄i) P (⊕) P (⊖)
.Note, that we used probabilities in the previous formulation. In order to retrievethe Chi-Square value in terms of feature frequen
y, similarly to the probabilities,a 
onstant multiplier, the total number of des
riptors 
an be applied:

R(CHI) =
(N⊕ + N⊖)[P (fi,⊕) P (f̄i,⊖) − P (fi,⊖) P (f̄i,⊕)]2

P (fi) P (f̄i) P (⊕) P (⊖)
.

R(CHI) has a value of zero when the feature and the 
lass labels are independent.Figure 3.5 (g) shows the R(CHI) values in the 2D frequen
y diagram. R(CHI) usesboth the frequen
y and the dis
riminative power of the features.Comparative experiments of Yang and Pedersen (1997) have reported R(CHI) tobe one of the most e�e
tive sele
tion fun
tions for text re
ognition. Motivated bytheir study many others (Galavotti et al., 2000; Sebastiani, 2002; Zheng et al.,2004) adapted it, and as a 
onsequen
e it has be
ome very popular in thatdomain.
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(g) (h)Figure 3.5: The sele
tion s
ores for various ranking methods. Darker regions 
orre-spond to higher s
ores. Iso
ontours indi
ate the same value within the plot. See thetext for dis
ussion. Symmetri
 measures on the right; their 
oresponding �positiveonly� equivalent on the left.
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hniques 59CC: The Correlation Coe�
ient (also 
alled NGL 
oe�
ient) was given by Ng et al.(1997) as
R(CC) =

√
N⊕ + N⊖[P (fi,⊕) P (f̄i,⊖) − P (fi,⊖) P (f̄i,⊕)]

√
P (fi) P (f̄i) P (⊕) P (⊖)

.As Ng et al. (1997) point out and we demonstrate on Figure 3.5 (g), R(CHI)is a symmetri
 measure giving equal importan
e to the positive and negativefeatures. While for a typi
al two 
lass problem this 
an be useful, in many tasksit 
an be a drawba
k. If one of the 
lasses is under-represented, e.g., in the 
ase ofan obje
t-ba
kground problem, we 
annot expe
t representative sele
tion of itsfeatures. While R(CC)2 = R(CHI), i.e., it keeps many properties of R(CHI), R(CC)is de�ned to prefer positive 
orrelation between the feature and the positive 
lasslabel. Experiments of Ng et al. (1997) show that R(CC) is superior to R(CHI).S
ores of R(CC) are shown in Figure 3.5 (h).MI: Mutual InformationIf the main purpose of our system is to produ
e a sparse obje
t 
lass represen-tation, it is best to sele
t a few dis
riminative and �general� features. Besides
R(CHI) our other option is to use the mutual information (Papoulis, 1991) 
rite-rion, whi
h ranks features based on their information 
ontent for separating thenegative from the positive 
lass. The mutual information between the label set
L = {⊕,⊖} and feature Fi = {fi, f̄i} (as two random variables) is de�ned as

I(Fi; L) = H(L) − H(L|Fi),where H(·) and H(·|·) are Shannon's entropy (Shannon, 1948) and 
onditionalentropy respe
tively. Using our notation the R(MI) rank is de�ned as
R(MI) =

∑

l∈{⊕,⊖}

∑

f∈{fi,f̄i}

P (f, l) · log
P (f, l)

P (f) P (l)
.Figure 3.5 (e) shows the de
ision surfa
e for R(MI). We 
an observe that R(CHI)(see Figure 3.5 (e)) and R(MI) have similar patterns of s
ores, and likewise inour experiments (Se
tion 3.3.2) they show similar behavior, yet we found that

R(MI) usually outperforms R(CHI). The positive non-spe
i�
 but dis
riminativefeatures are lo
ated in the rightmost part of the lower triangle in the diagrams.The s
ore pattern of R(MI) and R(CHI) indi
ate that more features are 
hosenfrom that area 
ompared to R(OR) (Figure 3.5 (d)) and R(LIK). This 
learlydisplays the preferen
e for more �general�, i.e., frequent, features.GSS: The GSS 
oe�
ient is a s
oring method motivated by R(CC). Galavotti et al.(2000) suggested removing the 
onstant fa
tor √N⊕ + N⊖ as well as the denom-inator leading to
RGSS = P (fi,⊕) P (f̄i,⊖) − P (fi,⊖) P (f̄i,⊕).



60 Chapter 3. Dis
riminative Feature Sele
tion for Obje
t Class Appearan
e

 0  10  20  30  40  50  60  70  80  90  100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Fr
eq

ue
nc

y 
on

 b
ac

kg
ro

un
d 

im
ag

es

Frequency on object images

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

̂
I

F1-Measure

 0  10  20  30  40  50  60  70  80  90  100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Fr
eq

ue
nc

y 
on

 b
ac

kg
ro

un
d 

im
ag

es

Frequency on object images

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR
Bi-Normal Separation

Figure 3.6: Sele
tion by (a) F1-measure and (b) Bi-normal separation. Darker regions
orrespond to higher s
ores. Iso
ontours indi
ate the same value a
ross the plot. Seethe text for dis
ussion.In R(CC) the √P (fi) P (f̄i) in the denominator emphasizes rare features, andtherefore R(GSS) prefers even more frequent features than R(CC). While this 
anbe an advantage when the number of features is very large, it is not ne
essar-ily useful for present 
omputer vision appli
ations. The frequen
y diagram inFigure 3.5 (d) shows the modi�ed surfa
e.F1: The F1-measure (van Rijsbergen, 1979) is de�ned as a harmoni
 mean of pre
isionand re
all. It is often used to 
ompare re
all-pre
ision 
urves, and therefore, it isone of the most used measures in dete
tion frameworks and information retrieval.This motivates the dire
t appli
ation of this measure to feature sele
tion. Usingprobabilisti
 notations R(F1) is de�ned as
R(F1) =

2 P (fi|⊕) P (fi,⊕)

P (fi|⊕) P (fi) + P (fi,⊕)
=

2 P (fi,⊕)

2 P (fi,⊕) + P (fi,⊖) + P (f̄i,⊕)
.Its 
orresponding frequen
y diagram is shown on Figure 3.6 (left).BNS: Bi-normal separation is de�ned by Forman (2003) as

R(BNS) =
∣∣F−1(P (fi|⊕)) − F−1(P (fi|⊖))

∣∣ ,where F is the Normal 
.d.f. An alternative interpretation of R(BNS) is motivatedby ROC threshold analysis. It measures the separation between two standardNormal 
urves where their relative positions�the 
enter of the 
urves�are pre-s
ribed by P (fi|⊕) and P (fi|⊖). Their study shows improvement for SVM host
lassi�ers using the R(BNS) feature sele
tion. Its frequen
y diagram shows that
R(BNS) neither 
uts o� features in the top-right and bottom-left 
orners as dras-ti
ally as R(MI), nor keeps the overly spe
i�
 features like R(OR) and R(LIK).



3.2 Feature S
oring Te
hniques 61All �lter methods that we have introdu
ed so far rank features a

ording to theirindividual power. Sele
tion based on these rankings 
an lead to redundant and thusless informative sets if we limit the number of sele
ted features. The three additionalmethods that we dis
uss in the following addresses this problem and sele
t features
onditionally on the others.AB: Adaboost (Freund and S
hapire, 1996a,b) 
ombines several 
lassi�ers (weak learn-ers) into an a

urate (strong) 
lassi�er by an in
remental voting pro
edure. Inour framework the strong 
lassi�er labels an image x and is de�ned as
s(x) =

T∑

t=1

R
(AB)
t ht(x),a linear 
ombination of weak learners ht(x). ht(x) is de�ned as a presen
e (+1)or absen
e (−1) of feature f̂i. f̂i is a binary feature and in our 
ase it is presenton an image if there are at least θi des
riptors of feature fi, where θi is setduring training to maximize the mutual information between the feature f̂i andthe image labels Y ∈ {−1, 1}. The weight of ea
h weak learner is R

(AB)
t and 
anbe used as a rank for the features. T is the number of iterations. At ea
h step tthe Adaboost algorithm sele
ts a weak learner that minimizes the weighted error

ǫj :
ht(x) = arg min

hj∈H

ǫj =

K∑

i=1

Dt(i)[yi 6= hj(xi)].

Dt(i) are the weights for ea
h training image in step t, whi
h are initialized to
1/K, where K is the number of features. The weight for the 
hosen 
lassi�er isthen set to

R
(AB)
t =

1

2
log

(
1 + rt

1 − rt

)

,

rt =

K∑

i=1

Dt(i)ht(xi)yi,and the weights for the data are updated
Dt+1(i) =

Dt(i) exp(−R
(AB)
t yiht(xi))

Zt

.

Zt is a normalization fa
tor 
hosen so that Dt+1 is a distribution.Even though the purpose of Adaboost is to build a strong 
lassi�er, given asthe sign of s(x), it 
an be seen as a feature sele
tion 
riterion as well, sin
eweak learners (features) with higher weight have more in�uen
e the output ofthe strong 
lassi�er. In addition, we have not used the aggregation of the weaklearners s(x), only the ranks provided by the algorithm.
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riminative Feature Sele
tion for Obje
t Class Appearan
eCMIM: Conditional Mutual Information Maximization is used to sele
t a small sub-set of features that 
arries as mu
h information as possible. The mutual infor-mation for L and F̂i 
onditioned on F̂j is given as
I(L; F̂i|F̂j) = H(L) − H(L|F̂i, F̂j),where F̂i = {f̂i,

¯̂
fi} is a binary random variable. Our feature set {F̂} is 
on-stru
ted in the same way as in the previous se
tion (as for R(AB)). The idealsele
tion would minimize the entropy 
onditioned on the sele
ted subset of fea-tures

Ĥ(L|F̂ν(1), . . . , F̂ν(n)).However, as it is based on the joint entropy estimation as in (Yang and Moody,1999), it is intra
table with realisti
 sizes of training sets. Fleuret (2004) proposesan iterative solution where a new feature f̂ ⋆
i is sele
ted only if Î(L; f̂ ⋆

i |F) is largefor all F̂ that have been sele
ted before, i.e., f̂ ⋆
i 
arries information about thelabels L. Formally

ν(1) = arg max
n

Î(L; F̂n),i.e., the �rst feature is 
hosen by the original R(MI) 
riteria, and all the followingfeatures k + 1 are sele
ted by
ν(k + 1) = arg max

{
min
l<k

Î
(
L; F̂n|F̂ν(l)

)}
. (3.1)This solution does not solve the problem, but o�ers a trade-o� between individualpower and independen
e and redu
es the 
omputational time by two orders ofmagnitude. An e�
ient implementation is given in Fleuret (2004). Even thoughwe abbreviate this approa
h as R(CMIM), this method rather than assigning rank(
onsequtively de
reasing s
ore) to ea
h feature, only orders the feature set, andthus the value R(CMIM) itself 
annot be used as a rank. Fleuret (2004) uses

R(CMIM) with naïve Bayes 
lassi�er for fa
e re
ognition. Vidal-Naquet and Ullman(2003) proposes the 
riterion
ν(k + 1) = arg max

{
min
l<k

I
(
F̂ν(n), F̂ν(l)|L

)
− I

(
F̂ν(l); L

)}to iteratively sele
t features whi
h is equivalent to (3.1).SVM: Linear Support Ve
tor Ma
hines (SVM) were �rst used for feature sele
tion bySindhwani et al. (2001), then later by Brank et al. (2002). Mladeni�
 et al. (2004)generalized the idea for linear 
lassi�ers. SVM (Vapnik, 1995) is a 
lassi�er that



3.2 Feature S
oring Te
hniques 63�nds a maximal margin hyperplane separating two 
lasses of data. The predi
tedlabel for an unseen x is given by
H(x) = sgn[b +

∑

i

αiK(x,xi)],whi
h 
an be rewritten for the linear kernel K(·, ·) as
H(x) = sgn[b + wTx], where w =

∑

i

αixi.

w = (w1, . . . , wK) are the weights (the normal to the separating hyperplane)that are learned during SVM training, and 
an be a

essed dire
tly. Featureswith higher absolute weights have more in�uen
e on the SVM predi
tion, andtherefore 
an be used for feature sele
tion. Shih et al. (2002) also point out thathigh |wi| are more in�uential in determining the width of the margin.To train the SVM and obtain the weights for our features we use the the featureset {F̂}, as for R(CMIM) and R(AB). In our experiments R(SV M) indi
ates theranking by |wi|Frequent � Dis
riminative � RedundantSome of the measures presented in this 
hapter prefer frequent features while othersprefer more dis
riminative ones. R(Freq) does not take dis
riminative power into a
-
ount and R(LIK) only uses the dis
riminative power. R(MI), R(CHI), and R(BNS) useboth frequen
y and dis
riminative power. Choosing the appropriate measure for agiven task is not straightforward. First one should de
ide if it is ne
essary to prune,i.e., signi�
antly redu
e, the input spa
e. In those 
ases feature frequen
y should playan important role in the sele
tion. Another alternative for pruning the spa
e is toreje
t redundant features that do not provide additional dis
riminative information.
R(SV M), R(CC) and R(CMIM) are examples of su
h sele
tions. On the other hand, whena

ura
y is more important, a 
ombination of many rare but dis
riminative featuresoften gives better results. Furthermore, if the number of training examples are lim-ited, reje
tion of top ranked features 
an help to avoid side e�e
ts 
aused by outliers.The 
ompatibility between the learning framework (
lassi�er) and the feature sele
tionmethod is also important. Mladeni�
 et al. (2004) analyzed the relationship for meth-ods of naïve Bayes, per
eptron, SVM and for sele
tion methods R(MI), R(OR), and
R(SV M). They found R(SV M) to be superior to others, even for naïve Bayes, whi
h isthe most 
ompatible with R(OR). For further dis
ussion on 
ompatibility we refer toMladeni�
 et al. (2004).One-Sided or Two-SidedS
ores obtained for the frequen
y diagrams indi
ate that some of the s
oring te
h-niques are one-sided while others are two-sided. Two-sided te
hniques treat positive
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tion for Obje
t Class Appearan
eand negative features equally while one-sided do not. Among the presented methods
R(OR), R(LIK), R(CC), R(GSS), and R(F1) (even when inverted) are one-sided and se-le
t only positive features, and R(Freq), R(CHI), R(MI), R(BNS), R(CMIM), R(AB) and
R(SV M) are two-sided. In two-
lass re
ognition problems with fully supervised training,a two-sided measure 
an be a natural 
hoi
e espe
ially when the task is to dis
riminatebetween two obje
t 
lasses or two di�erent types of s
enes. On the other hand, whenone 
lass is the ba
kground, or our positive images 
ontain ba
kground 
lutter, sele
t-ing negative features 
ould be disadvantageous. Even though the presen
e of negativefeatures on positive images 
an be dis
overed by learning te
hniques used after fea-ture sele
tion, due to the la
k of su�
ient ba
kground examples the trained systemsbe
ome less transferable to new environments. Those systems might rely on parti
ularba
kground statisti
s, and therefore may only be used in spe
i�
 
ases. While Forman(2003) shows that all feature sele
tion methods degrade when they are 
onverted tobe one-sided, Ng et al. (1997) develops R(CC) from R(CHI) to have a one-sided mea-sure whi
h then outperforms its two-sided equivalent. Two-sided measures may easilymislead the user when two-
lass or multi-
lass experiments do not 
ontain a separateba
kground 
ategory. Assigning ex
lusive labels to images two-sided te
hniques maylead to ex
ellent performan
e without a
tually learning one of the 
ategories. Forexample, su

essful training of a linear SVM 
lassi�er (impli
it two-sided sele
tion by
R(SV M)) that separates images of 
ars and people, may not be used to dete
t peopleon any unseen images. It 
an easily happen that the trained 
lassi�er relies on theabsen
e of 
ars when it labels an image as people. We 
on
lude that to 
hoose whetherone- or two-sided te
hnique is more appropriate is task dependent. Sin
e our experi-ments always have a ba
kground 
ategory, we only use one-sided, obje
t features only,sele
tion. This type of sele
tion is also a key property for the lo
alization experimentsin Se
tion 4.2.Usually one-sided measures 
an easily be 
onverted into two-sided measures, andvisa-versa. Zheng et al. (2003) squares R(OR) and R(GSS) to introdu
e the two-sided
R(ORS) and R(GSSS). We turn symmetri
 measures, su
h as R(MI), R(BNS), R(AB), and
R(CMIM) one-sided by requiring

P (fi|⊕) > P (fi|⊖), (3.2)and therefore they only sele
t features informative for the obje
t 
lass and not forthe ba
kground. We de�ne R(SV M+) by using only the weights (wi), i.e. omitting theabsolute fun
tion (| · |) from R(SV M). (Note that all binary features f̂i are positive.)Figure 3.5 on the left 
olumn shows symmetri
 measures, and on the right their one-sided equivalents.Zheng et al. (2004) points out that it is di�
ult for two-sided measures to obtainthe optimal 
ombination of positive and negative features, espe
ially with unbalan
eddata. Forman (2003) solves this by balan
ing the training data, while Zheng et al.(2004) sele
t the two kinds of features separately and then expli
itly 
ombine them.



3.3 Sele
tion for Lo
al Features 65With this 
ombination R(CHI) performs similarly to R(CC) when the feature set is smalland the set is highly unbalan
ed.Multi-
lassSimilar problems appear in multi-
lass frameworks. Forman (2004) showed that thereis a pitfall in feature sele
tion methods performing independent s
oring whereby theyget distra
ted from sele
ting useful features for di�
ult 
lasses, in the 
ase when thereis a supply of strongly predi
tive features for easier 
lasses. To avoid su
h problemshe proposed a solution inspired by a round-robin s
heduling te
hnique. Fan and Lu(2005) integrate linear SVM feature sele
tion into a multi-
lass framework by appro-priately 
ombining the ranks of several one-vs-all problems. Their sele
tion methodoutperformed traditional kernel spa
e methods for appearan
e-based fa
e re
ognition.Combination of Di�erent Types of FeaturesRanking methods o�er an elegant way to 
ombine di�erent features, e.g., the outputof di�erent interest point dete
tors, or di�erent types of region des
riptors. If weassume that the sour
e of our features are independently distributed, we 
an 
reatetwo separate feature sets. To estimate the ranking s
ore for the features of the di�erentsets, we 
an adapt equations of di�erent ranking methods to multiple types of features:the 
onditional and joint probabilities are 
omputed for the 
orresponding sets, andare zero for the 
omponents of the other sets. The normalization fa
tors N⊕ and N⊖
orrespond to the total number of unlabeled and negative features over all types. Thisprovides 
omparable ranking values for features extra
ted using di�erent methods.Expanding the Feature SetWhile most �ltering te
hniques assume independen
e between features, feature sets 
anbe expanded by 
onstru
ting 
onjun
tive features or produ
ts of features. A featurethat is useless on its own 
an be useful when 
ombined with others (e.g. xor problem,
hessboard problem).3.3 Sele
tion for Lo
al FeaturesIn this se
tion we apply the sele
tion te
hniques introdu
ed in Se
tion 3.2 to images.First, we des
ribe our feature set and how we estimate the probabilities P (fi|xj). Wethen evaluate the s
oring methods by experiments whi
h retrieve obje
t features.3.3.1 Visual WordsOur feature set is based on lo
al pat
hes extra
ted from images. For our experiments,images are represented by lo
al des
riptors of interest points (Se
tion 2.1). In this
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e
hapter, our reports mainly use the dete
tor of Kadir and Brady (2001) (ENTR),together with the SIFT (Se
tion 2.1.2) representation. However, results that 
anbe obtained by other dete
tors would lead to similar 
on
lusions. A performan
eevaluation of di�erent dete
tors for obje
t re
ognition are presented in Chapter 4.For many vision appli
ations, due to the diversity and high dimensionality of thedes
riptors it is ne
essary to quantize them to generate the a
tual features. In ourapproa
h, these features, the visual words, are generated as the �rst step of our trainingphase by an unsupervised estimation of a Gaussian mixture model (GMM) (Bishop,1995) on all des
riptors from our training set. We employ a parametri
 estimationto model the distribution of our lo
al des
riptors. Our method is based on a GMM,whi
h is a linear 
ombination of Gaussian densities p(x|Ci)

p(x) =
K∑

i=1

p(x|Ci)P (Ci), (3.3)where K is the number of Gaussian 
omponents within the mixture, P (Ci) 
orrespondsto the mixing parameters and ∑K
i P (Ci) = 1. The individual Gaussian 
omponentsare of the form

p(x|Ci) = N(µi|Σi), (3.4)where µi is a d dimensional mean ve
tor and Σi is the d × d 
ovarian
e matrix for
omponent Ci. In our 
ase d = 128, 
orresponding to the dimension of the SIFTdes
riptors.The model parameters µi, Σi and P (Ci) of (3.3) and (3.4) are 
omputed with theexpe
tation-maximization (EM) algorithm (Bishop, 1995). EM is initialized with theoutput of k-means and at ea
h iterative M-step we update the parameters as follows:
µ

j
i =

∑N
n=1 P j−1(Ci|xn)xn

∑N
n=1 P j−1(Ci|xn)

, (3.5)
Σ

j
i =

N∑
n=1

P j−1(Ci|xn)(xn−µ
j
i )(x

n−µ
j
i )

T

∑N

n=1 P j−1(Ci|xn)
, (3.6)

P j(Ci) =
1

N

N∑

n=1

P j−1(Ci|xn), (3.7)where N is the number of unlabeled des
riptors xn. We limit the number of freeparameters in the optimization by using diagonal 
ovarian
e matri
es. This restri
tionhelps to prevent the 
ovarian
e matri
es from be
oming singular. The number ofGaussian mixture 
omponents K is 
hosen manually for ea
h 
lass based on the averagenumber of interest points in the 
lass. Based on our earlier experien
e, we sele
t thelargest possible K su
h that ea
h 
omponent 
ontains a su�
ient number of des
riptors
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tion for Lo
al Features 67to estimate the parameters. Larger values of K permit us to represent the distributionmore a

urately. In our experiments (Se
tion 4.1 and Se
tion 3.3.2) the number of
lusters K was 400 for motorbikes and airplanes, 200 for fa
es and bi
y
les, 100 forpeople and due to the small number of dete
tions only 25 for leaves. The number ofimages used for 
lustering is indi
ated for ea
h 
lass in the last 
olumn of Figure 3.7.Figure 3.7 displays for several obje
t 
lasses two of the ten highest ranked 
lusters;interest regions are dete
ted with ENTR (Kadir et al., 2004) and ranked with thelikelihood ratio des
ribed in Se
tion 3.2. We show example image regions whi
h aremost likely assigned to ea
h 
luster. We 
an observe that the 
lusters typi
ally 
ontainrepresentative obje
t parts or textures. In the 
ase of airplanes, the nose has a very
hara
teristi
 shape as does the tailplane (see Figure 3.7, �rst row). We also obtainedsigni�
ant 
lusters on the fuselage 
ontaining small passenger windows, and on thewing. In the 
ase of bi
y
les and motorbikes, tires, wheels and tubular parts are
learly grouped and distinguished. Fa
es give one of the most impressive results, asleft and right eyes, in
luding the eyebrows, are 
lustered separately. Sometimes, ifobje
ts have very 
hara
teristi
 textures, their 
orresponding des
riptors are 
lusteredtogether as is the 
ase for the wild
ats (see sample 
luster #1 in Figure 3.7).During features sele
tion (training), the probabilities P (fi|xj) introdu
ed in Se
-tion 3.2 are determined by their Gaussian 
omponent, and are therefore equivalent to
P (Ci|xj). However, to 
lassify a test feature y, we use a hard assignment. y is assignedto the 
omponent i∗ of the Gaussian mixture model with the highest probability:

i∗ = arg max
i

p(y|Ci)P (Ci).This rule de�nes a separation boundary for ea
h 
omponent of the mixture model.Figure 3.8 shows four examples of separation boundaries based on a GMM with K = 8
omponents. Note that the �gure is just an illustration, in pra
ti
e the number of
omponents is mu
h larger and our feature spa
e is high-dimensional (d = 128). Wemark the n 
omponents with the highest rank as positive and 
onstru
t a �nal 
lassi�er.A des
riptor is 
lassi�ed as positive if its 
losest 
omponent (Maximum A Posteriori)is marked positive.3.3.2 Retrieving Obje
t FeaturesHere, we evaluate how well the des
riptors of sele
ted features 
orrespond to the obje
t
lass on test images.Experimental Set-UpFor the following set of experiments we have used the bi
y
les 
ategory from theGraz1 dataset available at http://www.emt.tugraz.at/~pinz/data/GRAZ_01. Forthe separation of training and test images we have used the same images as Opelt et al.

http://www.emt.tugraz.at/~pinz/data/GRAZ_01
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eDatabase Sample 
luster #1 Sample 
luster #2 # of imagesAirplanes

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR
PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

200Motorbikes

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR
PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

200Leaves

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR
PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

46Wild
ats

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR
PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

50Fa
es

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR
PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

109Bi
y
les

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR
PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

100People

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR
PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

50Figure 3.7: Illustration of the 
lustering. We show 2 of the 10 best 
lusters for ENTRregions and likelihood ranking (see Se
tion 3.2). The last 
olumn indi
ates the numberof images used for the 
lustering (i.e. the half of the training set).(2004). Training is weakly-supervised, i.e., training images are annotated as positiveor negative, but the obje
ts in the positive images are not marked. All obje
t images
ontain a large amount of ba
kground. We have divided the training set into twohalves: the 
lustering and the ranking set. The GMM is estimated on the 
lustering set,and the feature sele
tion is performed on the ranking set. The n top ranked 
omponents
orrespond to positive, while the others to negative features. In the following weevaluate how many of the positively 
lassi�ed points lie on the obje
t. To 
reate theground truth we use hand-segmented test images. We 
onsider a sele
ted feature astrue positive if its 
enter is lo
ated on the obje
t.For R(SV M) and R(CMIM) we used the implementation of SVMlight (Joa
hims, 1999)and Fleuret (2004) respe
tively.Performan
e EvaluationFigure 3.9 shows the re
all-pre
ision 
urves for the ENTR dete
tor and for di�erentranking methods. The 
urves are generated by 
hanging n, the number of positive



3.3 Sele
tion for Lo
al Features 69

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR PSfrag repla
ementsH-LapH-Lap-A�COMBENTRPSfrag repla
ementsH-LapH-Lap-A�COMBENTR PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

Figure 3.8: Illustration of a GMM model with K = 8 
omponents in 2-dimensions. A
lassi�er is asso
iated with ea
h 
omponent. We only show separation boundaries for
4 
lassi�ers. Ranking Re
all0.2 0.4 0.6 0.8 1.0

R(LIK) 83 75 71 66 53
R(OR) 84 75 70 66 53

R(BNS+) 84 75 71 - -
R(CMIM+) 80 75 70 - -
R(MI+) 82 72 70 - -
R(CC) 82 72 70 66 53
R(GSS) 72 71 70 66 53
R(F1) 65 66 64 66 53

R(SV M+) 66 64 60 - -
R(AB+) 75 - - - -
R(Freq) 60 60 58 54 53Table 3.1: Pre
ision values at sele
ted re
all levels for di�erent ranking methods onthe bi
y
le images using ENTR dete
tor.features. The highest a

ura
y is a
hieved by R(LIK) and R(OR) 
losely followed by

R(BNS+). In the legend the ranking methods are listed in the order of their perfor-man
e, and Table 3.1 shows the pre
ision at some sele
ted re
all rates. R(OR) and
R(LIK) have very similar results, due to their related measures. When the positiveand negative set is unbalan
ed (whi
h is not the 
ase here) we prefer R(LIK) be
auseit performs a separate normalization for the two 
lasses. As we expe
ted, the worstresult is given by R(Freq) performing 
lose to 
han
e, sin
e it does not use the dis-
riminative information at all. Sele
tion methods mixing frequen
y and dis
riminative
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Figure 3.9: Pre
ision-Re
all 
urves for di�erent ranking methods on the bi
y
le im-ages using ENTR dete
tor. In the legend the ranking methods are ordered by theirperforman
e. The row below 
ompares three subsets of methods separately. On theleft, the ones that are based mostly on dis
riminative power; in the middle methods
ombining dis
riminative power with frequen
y; and on the right the three methodsthat redu
e feature redundan
y as well.power, have slightly lower a

ura
y, due to the reje
tion of rare �spe
i�
� features. Forfeature sele
tion, more quantitative experiments will be presented in the next 
hapter.Figure 3.10 shows the frequen
y diagrams built on the a
tual bi
y
le features. Thes
ores are smoothed over the extra
ted 
omponents, and therefore show whi
h parts
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(g) (h)Figure 3.10: The sele
tion s
ores for various ranking methods on the a
tual ENTRfeatures on the by
i
le dataset. Darker regions 
orrespond to lo
ations of features withhigh s
ores. The values are smoothed on the 200 features of the visual vo
abulary.Iso
ontours indi
ate the same value within the plot. See the text for dis
ussion.
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Figure 3.11: The top 10 sele
ted features (triangles) with R(SV M+), R(AB+), and
R(CMIM+) on the by
i
les dataset with ENTR features and K = 200. We also showthe distribution of all positive features.of the frequen
y spa
e have 
omponents and whi
h ones have high s
ores. Peaks alongthe horizontal axis show that R(LIK), R(OR), and R(BNS+) ((a),(
), and (e)) prefer rareand dis
riminative features (
f. Figure 3.10 (a)). On the other hand, the peak inthe bottom right 
orner indi
ates that frequen
y plays an important role for R(MI+),
R(CC), R(GSS), and R(F1) ((b), (d), (f), and (g)).Performan
e using Only a Few FeaturesWe have seen that with respe
t to a

ura
y of retrieving obje
t features (
f. Figure 3.9)
R(MI+) and R(CC) behave very similarly, while R(GSS) and R(F1) are worse. The realadvantage of these frequen
y based methods are illustrated in Figure 3.12, where weshow the F1-measure as a fun
tion of the number of sele
ted features. When ourpurpose is to build a very sparse representation these methods are preferred. On thebi
y
les dataset, R(GSS) performs the best when only a few 
omponents are sele
ted,while above 15 features R(CC) and R(GSS) swap pla
es several times. Sele
tion methodsthat reje
t redundant features have 
urves below these. The lower obje
t 
overage(re
all part of F1-measure) 
an indi
ate redundan
y, but on the other hand it 
analso 
orrespond to poorer features; this is veri�ed in Se
tion 4.1. The top 10 sele
tedfeatures for the bi
y
le 
ategory are shown in Figure 3.11.Figure 3.13 shows the sele
ted regions for di�erent sele
tion methods and varyingnumber n of 
omponents. As we expe
t the top n 
lassi�ers sele
t more regions withmethods that use frequen
y (R(MI+), R(CC), R(GSS) and R(F1)). This 
on�rms theresults obtained in Figure 3.12. Among the methods that 
onditionally rank features(R(SV M+), R(CMIM+), R(AB+)), R(CMIM+) sele
ted the most des
riptors in total. Thisagain indi
ates the expli
it preferen
e of frequent features using mutual information.Depending on the dataset and the visual vo
abulary, di�erent ranking methods maylead to similar ordering of the features, and therefore similar results. Using a di�erentdataset, the People set from Graz1, Figure 3.15 shows a situation when the limitednumber of training examples fail to provide frequent and su�
iently dis
riminative
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Figure 3.12: F1-measures in the sele
ted features for di�erent ranking methods on theby
i
le images using ENTR dete
tor. See text for details.features. Noti
e the la
k of points 
lose to the bottom right 
orner in the frequen
ydiagram (a). Figure 3.15 (b and 
) shows the R(LIK) and R(MI+) s
ores on the a
tualfeatures. The similar lo
ations of the peaks indi
ate that similar features are sele
tedand therefore similar performan
e 
an be expe
ted. We believe that in order to obtain�general� dis
riminative 
omponents for su
h a di�
ult 
lass as people, more trainingexamples are ne
essary.
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tion (with non-
onditional methods) for in
reasing n for thebi
y
le dataset. Regions are extra
ted with the ENTR dete
tor.
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2 points 8 points 26 points 46 pointsFigure 3.14: Feature sele
tion with 
onditional methods for in
reasing n for the bi
y
ledataset. Regions are extra
ted with the ENTR dete
tor.3.4 Dis
ussionIn this 
hapter, we have introdu
ed appearan
e-based 
lass-dis
riminative feature se-le
tion for obje
t re
ognition.Many di�erent ranking te
hniques have been 
ompared for sele
ting dis
rimina-tive parts and dominant textures of obje
t 
lasses. Comparisons have shown thatlikelihood and odds ratios are well suited for obje
t re
ognition and dete
tion, whilemethods 
ombining frequen
y with dis
riminative power, su
h as mutual informationand 
hi-square are more appropriate for sparse representation and for fo
us of atten-tion me
hanisms (rapid lo
alization based on a few 
lassi�ers). To further in
reasethe sparsity of our feature set we have shown methods that reje
t redundant features.However, the bene�ts of these methods for real appli
ations are yet to be evaluated (seeChapter 4). Table 3.2 summarizes the di�erent properties of the dis
ussed methods.In this 
hapter have also shown how to 
reate features (visual words) that aresuitable for the sele
tion task. Our 
onstru
ted visual features are based on lo
aldes
riptors, thus providing robustness to o

lusion and 
luttered ba
kgrounds. In outexperiments the lo
al des
riptors are partially labeled by marking their sour
e imagesas positive or negative, so the demonstrated sele
tion system is trained in a weakly-supervised fashion, while the learning of the parts (model estimation) is 
ompletely
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no points 1 point 6 points 30 pointsFigure 3.15: Feature sele
tion on the people dataset. Regions are extra
ted with theENTR dete
tor. The top plot shows the distribution of all features; the next row the
R(LIK) and R(MI+) sele
tions indi
ate that the best ranked features are similar; andthe last rows give an example image with in
reasing the number of sele
ted features,
n.
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ussion 77Ranking Method Two Sided Dis
r. Freq. Rej. Redu.Frequen
y X ✗ X ✗Odds Ratio ✗ X ✗ ✗Log Odds Ratio Squared X X ✗ ✗Chi Square X X X ✗Correlation Coe�
ient ✗ X X ✗GSS ✗ X X ✗Squared GSS X X X ✗

F1-measure ✗ X X ✗Likelihood ✗ X ✗ ✗Mutual Information X∗ X X ✗Bi-Normal Separation X∗ X X† ✗SVM hyperplane 
oe�
ients ✗ X ✗‡
XSVM hp. 
oef. (absolute value) X X ✗‡ XConditional Mutual Information X∗ X X XAdaboost X∗ X X XTable 3.2: Summary of ranking methods and their main properites. Two sided mea-sures sele
ts both negative and positive features.

∗Originally a two sided measure, however with the requirement in (3.2) 
an be usedto sele
t only positive features.
†BNS uses frequen
y, but in our experiments it still sele
ts rare features when theyare overly dis
iminative.
‡SVM hyperplane 
oe�
ients does not expli
itly use frequen
y, but many rarefeatures 
an be reje
ted be
ause of their redundan
y. The reje
tion of rare featuresalso depends on the generalization properties (
f. the c parameter) of linear SVMs.unsupervised.This 
hapter has already illustrated the importan
e of feature sele
tion and hasshown good results for des
riptor 
lassi�
ation. In the following 
hapter we integratethe introdu
ed framework into appearan
e-based obje
t 
lassi�
ation and obje
t 
lasslo
alization system.
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Fourth ChapterClassi�
ation and Lo
alization ofObje
t Classes
Obje
t 
lass re
ognition and lo
alization are 
hallenging problems in 
omputer vi-sion. The main di�
ulty is to design a method whi
h 
an e�
iently dete
t instan
esof a 
lass under various image transformations without responding to 
lutter. Di�erentinstan
es of the 
ategory often vary in appearan
e or 
an be observed under di�erentimaging 
onditions. O

lusions and highly textured ba
kground are also 
ommon fa
-tors in every day appli
ations. In existing approa
hes these di�
ulties are addressed bythe appropriate image representations and learning methods. In the last few years part-based representations have be
ome popular, sin
e they 
an deal with intra-
lass varia-tion and o

lusions. Some of these methods are limited to �xed size windows or requiremanually labeled parts (Mahamud and Hebert, 2003; Mohan et al., 2001). As we showin earlier 
hapters, interest point dete
tors (Kadir et al., 2004; Lindeberg and Garding,1994; Lowe, 2004; Matas et al., 2002; Mikolaj
zyk and S
hmid, 2004b) provide an ef-�
ient way to extra
t informative features of di�erent sizes and therefore, permit au-tomati
 sele
tion of information-ri
h parts for lo
al representations of images.In this 
hapter, we 
ombine lo
al features introdu
ed in Chapter 2 and feature se-le
tion methods dis
ussed in Chapter 3 with state-of-the-art learning te
hniques from
omputer vision to develop framework for obje
t 
lass 
lassi�
ation and lo
alization.Our main goal is to demonstrate and to evaluate the methods introdu
ed in the previ-ous 
hapters. In this 
hapter we dis
uss two di�erent tasks. The �rst one is obje
t 
lass
lassi�
ation, where the system aims to de
ide whether an instan
e of a 
lass is presentor absent in a test image. This task is often referred to image 
lassi�
ation. The se
ondtask is obje
t 
lass lo
alization, where feature sele
tion improves an existing methodestimating the exa
t lo
ation of 
lass instan
es within test images. The two di�erentsystems share a 
ommon 
ore: �rst we extra
t s
ale- and a�ne-invariant lo
al featuresfrom images and 
onstru
t a vo
abulary of visual words to train a model. Then featuresele
tion is used to order these visual words a

ording to their dis
riminative power.The 
lassi�
ation approa
h is �weakly supervised� in the sense that images are labeled



80 Chapter 4. Classi�
ation and Lo
alization of Obje
t Classesas positive and negative, but the obje
ts in the positive images are not marked orsegmented, and are present in arbitrary non-registered lo
ations in 
luttered s
enes.The introdu
ed system is invariant to viewpoint 
hanges, without requiring alignmentor pre-normalization of images. For the lo
alization framework we restri
t the invari-an
e only for similarity transformations and use full supervision: obje
t instan
es aremarked by their re
tangular bounding boxes on the positive training images. For boththe 
lassi�
ation and the lo
alization tasks, ea
h positive training image may 
ontainmultiple instan
es of the same obje
t 
lass in 
luttered ba
kground.Related WorkMany state-of-the-art methods perform an exhaustive sear
h on lo
ation and s
ale witha sliding window to determine the presen
e of an obje
t 
lass (Agarwal and Roth, 2002;Dalal and Triggs, 2005; Papageorgiou and Poggio, 2000; S
hneiderman and Kanade,2000; Viola et al., 2003). These methods have three main disadvantages. First, theyhave to deal with a huge number of negative windows, and thus have to be developedfor very low false positive rates. Furthermore, they usually require an additionalstep to reje
t multiple dete
tions for the same obje
t. And �nally, sear
hing theentire s
ale- and lo
ation-spa
e with a strong 
lassi�er 
an be ine�
ient, sometimesimpossible within a reasonable time. They not only require fast feature extra
tors,but also 
lassi�ers that 
an be evaluated very rapidly. The most popular 
lassi�ersare based on Support Ve
tor Ma
hines. Both Papageorgiou and Poggio (2000) andDalal and Triggs (2005) use SVM within a sliding window framework. The formeruses wavelets, and the latter uses histograms of oriented gradients as a representation.Some re
ent methods represent the obje
ts in a more �exible manner. Weber et al.(2000b) use lo
alized image pat
hes and expli
itly 
ompute their joint spatial prob-ability distribution, yet does not expli
itly deal with di�erent s
ales. Fergus et al.(2003) extend their model by learning the expli
it global stru
ture of obje
t 
lassesbased on s
ale-invariant image regions. While this method permits automati
 partdete
tion and obje
t lo
alization, the 
omplexity of its joint probability estimationslimits its appli
ability to a small number of parts. They only report results for image
lassi�
ation, and they are 
ompared to ours in Se
tion 4.1.3. Fei-Fei et al. (2003)introdu
e a Bayesian version of the previous model, whi
h by in
orporating priorspermits the method to be trained with a limited number (1 − 5) of example images.Felzenszwalb and Huttenlo
her (2000) manually build the spatial relations betweenparts whi
h are stored in a tree-based stru
ture rather than representing their fulljoint probability (Weber et al., 2000b; Fergus et al., 2003). Their e�
ient sear
h forglobal mat
hes in the re
ognition phase is re
ently used by Crandall et al. (2005) de�n-ing a simple probabilisti
 model with a similar performan
e to Fergus et al. (2003).Bou
hard and Triggs (2005) introdu
e a two-layered star-based hierar
hi
al model toallow rapid training and testing as well as soft intra-
lass variation of parts and sub-parts of obje
ts. Their model 
an pro�t from the large number of dete
ted features, and
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ularly useful for obje
ts 
aptured at high resolutions. Agarwal et al.(2004) learn a vo
abulary of parts, determine spatial relations for these parts, anduse them to train a Sparse Network of Winnows (SNoW) Learning Ar
hite
ture.Leibe and S
hiele (2004), learn a vo
abulary of lo
al appearan
e and relative spa-tial positions of individual parts. They use a voting s
heme to 
ombine these partsand probabilisti
ally segment unseen images. In Se
tion 4.2.1 we improve their votings
heme. We show that by integrating a dis
riminative feature sele
tion, the predi
tedlo
ation of the voting signi�
antly improves, owing to the elimination of votes of non-dis
riminative parts. Results are 
omparable to their full method (Leibe and S
hiele,2004) whi
h in
ludes veri�
ation by segmentation. Our approa
h does not 
ontain anyadditional veri�
ation step and therefore, does not require the segmentation map ofthe training images.A few re
ent methods using lo
al features are available for 
lassi�
ation tasks,i.e., de
iding about the presen
e of an obje
t 
lass instan
e in a test image. Theirmain advantage is that they 
an pro�t from, and often deliver ex
ellent results usingthe obje
t features together with 
ontextual information. Two of these approa
hes,Opelt et al. (2004) and Willamowski et al. (2004), have been mentioned in the pre-vious 
hapters. The bag of keypoints method (Willamowski et al., 2004) was usedas a baseline approa
h for evaluation in Se
tion 2.4. Winn et al. (2005) extend theprevious method by re�ning the visual vo
abulary. They automati
ally determinethe size of the vo
abulary by merging elements of an initially large di
tionary. Thispermits to produ
e a more 
ompa
t, yet still dis
riminative representation. The bag-of-keypoint representation is also used by Sivi
 et al. (2005). They represent obje
t
ategories by topi
s determined with probabilisti
 Latent Semanti
 Analysis (pLSA)and show that simple 
ategories su
h as fa
es, motorbikes, airplanes, and 
ars 
anbe separated automati
ally. Opelt et al. (2004) use AdaBoost to sele
t dis
riminativefeatures and build a strong 
lassifer for image 
lassi�
ation. We 
ompare our resultswith Willamowski et al. (2004) as well as Opelt et al. (2004) in Se
tion 4.1.3.OverviewIn Se
tion 4.1 we present an approa
h for obje
t 
lass 
lassi�
ation. We 
omparedi�erent interest point dete
tors and evaluate the sele
tion methods from Chapter 3.Se
tion 4.2 introdu
es an approa
h for obje
t lo
alization. We demonstrate how toimprove the performan
e of a state-of-the-art method by feature ranking and sele
tion.We show results on three di�erent, re
ently proposed and widely used datasets.4.1 Obje
t Class Classi�
ation with Dis
riminative FeaturesImage 
lassi�
ation�often used as evaluation 
riterion in the literature�de
ides if anobje
t is present or absent in an image. In this se
tion, we build a simple 
lassi�er
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Figure 4.1: The �nal 
lassi�er, a Gaussian mixture model with K = 8 
omponents,four of whi
h are sele
ted. See Figure 3.8 for the individual 
lassi�ers. The separationboundary indi
ates if a test feature is 
lassi�ed as positive (obje
t) or as ba
kground.based on di�erent feature rankings. This allows us (1) to show the e�
ien
y of dis-
riminative feature sele
tion and (2) to evaluate the dis
riminative quality for ea
hsele
tion method. Experiments in this se
tion are performed on two-
lass problems,i.e., obje
t vs. ba
kground. The extension to multi-
lass is straightforward; a set oftwo 
lass 
lassi�ers 
an be 
onstru
ted, where ea
h one is trained for a given obje
t
lass.4.1.1 Classi�er for Obje
ts Presen
eIn Chapter 3 we have built a 
lassi�er for ea
h feature (equivalent to a Gaussian 
om-ponent). We have seen that the ranking order of features re�e
ts their dis
riminativepower for a given 
ategory. By marking the n 
omponents with the highest rank aspositive (
f. Chapter 3), a �nal 
lassi�er (see Figure 4.1) 
an be 
onstru
ted. Ades
riptor is 
lassi�ed as positive if its 
losest 
omponent is marked positive. Notethat this 
lassi�er may a
t as an initial step for lo
alizing an obje
t (see Figure 4.2).However, to make a de
ision on the existen
e of an obje
t, an additional 
onditionis required. In the following we 
lassify an image as positive, if there are at least ppositive dete
tions, i.e., at least p regions assigned to the n sele
ted 
omponents. Thisnumber p is automati
ally determined from the training set and n is the only parame-ter of our method. The parameter p depends on the number of sele
ted 
omponents n,the feature type, and the appearan
e of the obje
t 
lass. If an obje
t 
lass 
ontains afew unique dis
riminative 
omponents, i.e., 
an be des
ribed by a few visual words, p islow. Examples are the fa
es and the leaves 
ategories. On the other hand, in the 
aseof texture-like obje
t 
lasses, su
h as wild
ats, the most dis
riminative 
omponentsare textons, whi
h appear multiple times on the obje
t, and therefore p is high.
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Figure 4.2: Feature sele
tion with R(LIK) for the dete
tors ENTR, H-Lap and H-Lap-A�. The top row shows the dete
ted interest regions. The bottom row displaysthe regions 
orresponding to the n highest ranked 
omponents. The parameter n is
hosen at the equal error rate point of the ROC 
urve. This example demonstratesthat feature sele
tion 
an a
t as an initial step step for re
ognition and lo
alization byidentifying dis
riminative obje
t parts.4.1.2 Experimental Set-UpFor our re
ognition experiments we have used seven 
ategories, see Figure 4.3. The
ategories airplanes, fa
es, motorbikes, and leaves are from the Calte
h dataset. Train-ing and test images are the same as in (Fergus et al., 2003; Weber et al., 2000a), butwe have added half of the ba
kground images to our training set. The Calte
h datasetmay be downloaded from http://www.robots.ox.a
.uk/∼vgg/data.html, and the wild-
ats are from the Corel Image Library. The 
ategories bi
y
les and people are fromthe Graz1 dataset and available at http://www.emt.tugraz.at/∼pinz/data/GRAZ_01.We use exa
tly the same training and test images as (Opelt et al., 2004). Note thatthis dataset is more 
hallenging than the Calte
h dataset, as it 
ontains signi�
ant
hanges in viewpoint and s
ale as well as large amounts of ba
kground 
lutter. Fur-thermore, the intra-
lass variation of people is high due to the 
hanges in 
lothing andpose.Note that there is a bias in the Calte
h dataset, as there are signi�
antly moreinterest points for images of motorbikes, airplanes, and fa
es as for their 
orrespondingCalte
h ba
kground. This potentially in�uen
es the 
lassi�
ation results. Appendix Aexamines the in�uen
e of the number of interest points on image 
lassi�
ation andshows that our method does not rely more than others on this bias.Let us re
all that the training is weakly-supervised, i.e., training images are anno-tated as positive or negative, but the obje
ts in the positive images are not marked.
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Figure 4.3: Images examples of the di�erent 
ategories used in our experiments.We have divided the training set into two sets: the 
lustering and the ranking set. TheGMM is estimated with the 
lustering set, and feature sele
tion is performed with theranking set. The minimum number of positive dete
tions p is also determined on theranking set. Half of the positive images are randomly assigned to the 
lustering set,the other half to the ranking set. All negative images are assigned to the ranking set.In general, we do not assign negative images to the 
lustering set, as the ba
kground
lutter in the positive images allows to form negative 
lusters. The only ex
eption isthe bi
y
les dataset where all negative images 
ontain people and the positive imagesdo not. In this 
ase we have added half of the negative training images to our 
luster-ing set. Note that the results are very similar if the entire training set is used for both
lustering and ranking.Re
eiver Operating Chara
teristi
 (ROC) 
urves measure the performan
e as therate of 
orre
t dete
tions with respe
t to the in
orre
t ones. To 
ompare ROC 
urveswe report their equal error rates, i.e., the points on the 
urve for whi
h the rate of
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riminative Features 85true positives and true negatives are equal: p(True Positive) = 1 − p(False Positive),where
p(True Positive) =

Correctly classified positive images

Total number of positive images
,and

p(False Positive) =
Incorrectly classified negative images

Total number of negative images
.4.1.3 Experiments: Image 
lassi�
ationIn the following we �rst evaluate the performan
e of the individual dete
tors and then
ompare the di�erent sele
tion 
riteria introdu
ed in Chapter 3. Finally, we 
ompareour approa
h to existing results in the literature. In this se
tion, for image 
lassi�
ationwe use the method des
ribed in Se
tion 4.1.1, and refer to it as our simple 
lassi�er.Comparison of dete
torsThe results for di�erent dete
tors are summarized in Table 4.1. We 
ompared themusing both our simple 
lassi�er and the bag of keypoints method. On average ournew dete
tor, H-MSLSD performs the best, 
losely followed by ENTR, L-MSLSD, H-Har, and H-Lap. Apart from the leaves dataset�whi
h we address later�these twoHarris-based dete
tors, not surprisingly, show similar behavior. On the other hand,H-Lap performs better than ENTR for three 
ategories, while ENTR is better thanthe Harris based dete
tors for four 
ategories. This 
on�rms that ENTR and H-Lapare 
omplementary. The performan
e of H-Lap-A� is similar to H-Lap, yet in mostof the 
ases slightly below. This 
an be explained by the relatively small viewpoint
hanges in our datasets, and by the instability of the a�ne adaption pro
ess.When further analyzing the results, the largest di�eren
e between ENTR and H-Lap dete
tors 
an be observed for leaves. The performan
e of H-Lap is ex
eptionallylow, as only a very few H-Lap points are dete
ted on the leaves, and most of thosedete
tions lie on the border of the obje
ts, i.e., the 
hara
teristi
 regions 
ontain asigni�
ant portion of ba
kground, see Figure 4.4 for an example. Figure 4.5 plots theequal error rate with respe
t to p for the two dete
tors showing the di�eren
e betweenH-Lap and ENTR.For the bi
y
les the ENTR dete
tor performs better than H-Lap, whi
h 
an beexplained by ENTR's good performan
e for the dis
riminative tire regions. Figure 4.6shows that ENTR dete
ts a large number of regions around the tire. For bi
y
les theresults for H-Lap-A� are signi�
antly worse than H-Lap, be
ause the a�ne estimationadjusts the ellipse on the ba
kground between the spokes or on ri
h texture right nextto the tire and other tubular parts.DoG and LoG dete
tors, apart from a few ex
eptions, have similar results. The twoblob-like dete
tors outperform on average H-Gen and MSER. Unfortunately the IBR



86 Chapter 4. Classi�
ation and Lo
alization of Obje
t ClassesClassi�
ation with estimated required parts (p)Dete
tor Airplanes Fa
es Motorbikes Wild
ats Leaves Bi
y
les People Avg.H-Lap 97.25 99.07 98.00 91 65.60 84 76 87.27H-Lap-A� 96.00 100 98.28 92 68.82 64 74 84.73H-Har 96.50 99.54 97.25 92 93.55 76 78 90.41H-Gen 94.00 91.71 96.00 79 65.59 74 60 80.04ENTR 96.00 96.77 98.50 80 98.92 90 80 91.46LoG 94.75 95.85 97.50 82 93.55 70 68 85.95DoG 95.00 99.08 97.00 84 86.02 72 74 86.73IBR - - - - - 84 66 75.00MSER 87.00 83.41 92.25 92 74.19 76 24 75.55H-MSLSD 98.25 99.08 97.75 93 93.55 84 78 91.94L-MSLSD 94.25 98.15 98.50 82 94.62 82 56 86.50Bag of KeypointsDete
tor Airplanes Fa
es Motorbikes Wild
ats Leaves Bi
y
les People Avg.H-Lap 97.75 100 98.25 92 77.42 92 86 91.92H-Lap-A� 96.25 100 98.00 92 80.65 88 78 90.41H-Har 97.75 100 97.25 94 93.55 86 78 92.36H-Gen 97.00 95.39 97.75 82 81.72 88 72 87.69ENTR 98.25 97.24 99.00 83 97.84 94 76 92.19LoG 98.75 98.16 98.75 86 92.47 90 78 91.73DoG 99.50 100 98.50 96 90.32 92 74 92.90IBR - - - - - 88 80 84.00MSER 91.50 85.32 98.50 93 82.80 84 72 86.73H-MSLSD 99.25 99.53 98.50 96 95.69 94 86 95.57L-MSLSD 98.75 99.08 98.75 86 95.70 92 80 92.90Table 4.1: Comparison of di�erent dete
tors. Equal-error-rates for likelihood ranking.Results are shown for two 
lassi�ers: the simple de
ision the estimated p (featuresele
tion), and the general bag of keypoints approa
h.
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H-Lap ENTRFigure 4.4: H-Lap and ENTR dete
tions for a leave image.
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y (true positive rate) at the equal-error rate for theleaves.
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Figure 4.6: Sele
tion results on the bi
y
le database. The ENTR dete
tor output isshown on the left, and the sele
ted dis
riminative features are shown on the right.dete
tor does not give any response on many images from the CalTe
h ba
kground set(due to their sizes), and therefore we have ex
luded it from those 
omparisons. On theGraz datasets IBR has not rea
hed the top rates, but 
ompares favorably with manyothers.We have veri�ed that results with estimated p are only slightly lower than the besta
hievable results, if p would have been estimated on the test set. This 
on�rms thatthe estimation of the parameter p is robust.Comparison of di�erent ranking methodsTable 4.2 
ompares feature rankings with di�erent methods introdu
ed in Chapter 3.The EER results are given for �ve best dete
tors (
f. Table 4.1). For the bi
y
les these



88 Chapter 4. Classi�
ation and Lo
alization of Obje
t ClassesRanking Bi
y
lesENTR H-Lap H-MSLSD IBR L-MSLSD RND
R(LIK) 90 84 84 84 82 80
R(OR) 90 84 84 84 82 80

R(BNS+) 88 82 84 82 84 70
R(CMIM+) 92 80 84 86 78 72
R(MI+) 80 80 70 84 78 46
R(CC) 80 80 72 86 60 64
R(GSS) 80 76 74 82 76 70
R(F1) 80 70 60 72 70 70

R(SV M+) 92 72 78 74 74 72
R(AB+) 92 78 76 82 84 76
R(Freq) 80 62 66 70 62 72Ranking PeopleENTR H-Har H-MSLSD H-Lap LoG RND

R(LIK) 80 78 78 76 68 84
R(OR) 80 78 78 76 68 84

R(BNS+) 74 78 82 74 66 84
R(CMIM+) 78 72 74 80 66 86
R(MI+) 82 76 82 76 64 84
R(CC) 76 76 82 78 64 84
R(GSS) 74 78 80 72 64 84
R(F1) 54 52 48 54 42 62

R(SV M+) 64 68 68 62 64 86
R(AB+) 76 74 74 76 56 80
R(Freq) 22 26 38 28 36 56Table 4.2: Comparison of di�erent ranking methods on the Graz1 dataset. Reportsare re
ognition rates at EER for 
lassi�ers with estimated p.are ENTR, H-Lap, IBR and the new dete
tors from Chapter 2, and for the peopledataset ENTR, H-Har, H-MSLSD, H-Lap and LoG. Ranking methods are listed (fromtop to bottom) based on their obje
t feature retrieval performan
e for the ENTRdete
tor for the bi
y
les database (
f. Figure 3.9). In overall, R(LIK) whi
h is the bestfor retrieval, performs also well for 
lassi�
ation. Large improvements 
ompared tothe experiments of Se
tion 3.3.2 
an be observed for R(SV M+), R(AB), and R(CMIM+).These sele
tion methods 
ompare favorably to R(LIK). This also 
lari�es and 
on�rmsthat these methods reje
t the dis
riminative features whi
h are 
onsidered redundantfor the dis
rimination task. We have two additional remarks 
on
erning these three
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riminative Features 89methods. First, these methods have not been 
ompared before, not even in the 
ontextof text 
lassi�
ation, and our test shows remarkably good performan
e for R(CMIM+).
R(CMIM+) always outperforms or gives the same results as the other two. Se
ond, thesemethods usually sele
t less features for 
omparable performan
e than R(LIK). However,this seems to be dependent on the number of features and the dataset. Several timesthe number of sele
ted 
omponents (n with �xed p) are similar to R(LIK), possiblyindi
ating no irrelevant dis
riminative features.In the last 
olumn of the tables we 
ompare the sele
tion methods on randomly
hosen points leading to similar 
on
lusions. Random points are an indis
riminativelysele
ted subset of 100 regions per image from the entire 
olle
tions of regions at alls
ales and lo
ations. As a surprise, random points on the people database performedbetter than ENTR, be
ause interest point dete
tors often miss important features onpeople. For better results on this dataset probably the dete
tor thresholds need to beadjusted. As a remark for the randomly sele
ted pat
hes, they may provide su�
ient
overage for appearan
e based bag of features like representation and re
ognition, butto further in
orporate them to use spatial relations, su
h as in Se
tion 4.2, is mu
hmore 
hallenging if not impossible.The dis
ussed feature sele
tion methods with linear SVM 
lassi�ers on these sevendatabases have never improved our results, i.e., without ex
eption we always a
hievedthe best performan
e when all features are used in the 
lassi�er. This is due to theimpli
it feature sele
tion of linear SVM (R(SV M)).Combination of dete
tors and 
omparison with existing methods.In this se
tion we perform image 
lassi�
ation experiments with the 
ombination oftwo 
omplementary dete
tors, H-Lap and ENTR. Table 4.3 shows the performan
e ofthe individual dete
tors as well as their 
ombination on the seven obje
t databases.As expe
ted, a 
ombination of dete
tors gives overall better performan
e than theindividual ones. For motorbikes, airplanes, fa
es, and people it improves the individualresults and for leaves it sele
ts features from the better dete
tor leading to the sameresults. First, we 
an observe that ENTR + H-Lap gives better results than ea
h of theindividual dete
tors, if H-Lap and ENTR perform about equally well and both have�good� dis
riminative 
omponents, see Figure 4.7. The 
ombination of dete
tors alsoshows redu
ed sensitivity to the 
hoi
e of p, and provides a useful prote
tion againstdete
tors that perform poorly on 
ertain databases. Figure 4.5 shows that the COMB
urve almost stri
tly follows the ENTR one, and in Table 4.3 COMB gives exa
tly thesame results as ENTR alone. However, 
ombining dete
tors does not always lead toimproved results. In some 
ases poor quality of dete
tion and additional noise mayresult in an overall performan
e in between the individual ones. An example is thewild
ats 
ategory, for whi
h the 
ombination performs worse than H-Lap, but betterthan ENTR.
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ation and Lo
alization of Obje
t ClassesTable 4.3: Equal-Error-Rates for H-Lap + ENTR (COMB) and likelihood ranking.Database R(LIK) ranking OthersIndividual COMBH-Lap ENTR p % %Databases with CalTe
h ba
kgroundAirplanes
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97.25 96.00 28 98.5
94.0 (Fergus), 88.9 (Opelt),

96.25 (Willamowski)Fa
es

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

99.07 96.77 29 99.53
96.8 (Fergus), 93.5 (Opelt),

100 (Willamowski)Motorbikes

PSfrag repla
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98.00 98.50 24 99.5
96.0 (Fergus), 92.2 (Opelt),

98 (Willamowski)Wild
ats
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91.0 80.0 13 87.0
90.0 (Fergus),

92.0 (Willamowski)Leaves

PSfrag repla
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65.60 98.92 8 98.92
84 (Weber),

80.65 (Willamowski)TU-Graz1 DatabasesBi
y
les

PSfrag repla
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84 90.0 14 88.0
86.5 (Opelt),

88.0 (Willamowski)People

PSfrag repla
ementsH-LapH-Lap-A�COMBENTR

76 80.0 13 88.0
80.8 (Opelt),

78.0 (Willamowski)To 
ompare our approa
h with existing methods, Table 4.3 also presents the re-sults reported by their authors (Fergus et al., 2003; Opelt et al., 2004; Weber et al.,2000a; Willamowski et al., 2004). Only in the 
ase of (Willamowski et al., 2004) wehave reimplemented the method to report 
omparable results on the same datasets.We 
an see that overall our method performs the best. However, we have run thebag-of-keypoints + linear SVM method (Willamowski et al., 2004) on exa
tly featuresand vo
abulary as our 
lassi�er, see Table 4.1 (bottom). This shows that SVM 
anoutperform our simple 
lassi�er. However, the di�eren
e is in general not very large,i.e., around 5 − 6%. It is also important to emphasize that our 
lassi�er only sele
tsobje
t features, while BoK uses a two-sided sele
tion me
hanism. We 
on
lude thatmany times, when only the de
ision whether an obje
t is present or absent is impor-tant, an SVM 
lassi�er is the best solution, and there is no need to pre
ede the learning
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(a) (b)Figure 4.7: On the left, the ROC 
urves of di�erent dete
tors for the motorbikes and�estimated p�. On the right, the equal-error-rate 
urves for varying p.by an additional feature sele
tion. However, when we plan to extend our system, anexpli
it sele
tion may still help to understand the features and improve performan
e.The next se
tion shows an example.4.2 Obje
t Lo
alization with Dis
riminative FeaturesIn this se
tion we address the problem of obje
t lo
alization, whi
h aims to determinethe presen
e and exa
t lo
ations of obje
ts. Even though feature rankings 
an often
orre
tly lo
alize pie
es of obje
ts, there is no straightforward way to �nd the bound-aries or bounding re
tangles around the obje
ts (
f. Figure 4.2 and 4.6). If we havemore supervision by marking the lo
ations on training images, spatial 
onstrains 
anbe learnt 
orresponding to the stru
ture of the obje
t 
lass. In this se
tion we show howto integrate feature sele
tion into an existing system proposed by Leibe and S
hiele(2004). Se
tion 4.2.1 brie�y des
ribes the approa
h, the integration, as well as an ex-tension for rotation invariant learning and lo
alization. Se
tion 4.2.2 dis
usses severalparameters, the e�e
t of sele
tion, and experimentally evaluates those on a popularben
hmarking dataset from Agarwal and Roth (2002), and on the bi
y
le dataset usedearlier in Se
tions 4.1.2, 2.4, and 3.3.2. Our results on the PASCAL Visual Obje
tClass Challenge (VOC2005) are summarized in Se
tion 4.2.3. Finally Se
tion 4.2.3validates our method on butter�ies taken under various viewpoints.4.2.1 The Lo
alization Approa
hIn this se
tion we des
ribe our approa
h for lo
alizing obje
t 
lasses. The method 
anbe divided into two parts: training and testing, pre
eded by the feature extra
tionstep, whi
h is detailed in Se
tion 3.3.1. In the following we dis
uss the training andthe lo
alization steps separately.
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(a) S
ale invariant (b) S
ale and rotation invariantFigure 4.8: At learning stage, for ea
h dete
ted part 4 properties are 
al
ulated a

ord-ing to the bouding box. (a) shows the properties in 
ase of s
ale invarian
e learning,while (b) assumes both s
ale and rotation invarian
e. See text form more detail.TrainingOur training 
onsists of three steps. First we learn a vo
abulary from the s
ale-invariant features (Se
tion 3.3.1) and similarly to the image 
lassi�
ation task weassign a rank to ea
h 
luster based on its dis
riminative power on the training data.Our 
riterion that we use in this se
tion is R̂(LIK). From Se
tion 3.2, re
all that theadvantage of using this s
ore over the 
lassi�
ation likelihood (R(LIK)) is that we 
aneasily integrate it into probabilisti
 systems be
ause its values lie within the range 0to 1. After the ranking we learn a spatial distribution of the obje
t positions and s
alesfor ea
h feature (
luster). For ea
h training image, we assign all des
riptors inside anobje
t bounding re
tangle to its feature (by MAP), and re
ord the 
enter (x,y) and thes
ale (width w and height h) of the re
tangle with respe
t to the related feature; seeFigure 4.8(a). This step is equivalent to (Leibe and S
hiele, 2004) with the di�eren
ethat we 
olle
t the width and height separately, and that we do not require nor storeany information of the �gure-ground segmentation of the obje
t.A straightforward way to impose rotation invarian
e during training would beto learn the spatial dire
tion of the 
enter relatively to a given dire
tion for the obje
t(e.g. the dire
tion of the head in the 
ase of people). To be able to handle rotatedobje
ts on test images, the distribution of the main dire
tion has to be learned addi-tionally for ea
h feature by taking into a

ount an estimated main gradient dire
tionfor ea
h pat
h. This would not only in
rease the dimension of our parameter spa
eto 5 (x, y, width, height and obje
t orientation) but also require additional labeling
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Figure 4.9: Three examples of 
lusters using 
ars as obje
t 
lass for training. Firstline shows example pat
hes of the 
hosen 
luster. The presen
e of these 
lusters onone training image is shown in the se
ond line. The third line plots the learneddistribution of the obje
t 
enters relative to the presen
e of the 
lusters (marked withan arrow in the middle of the graph). For the estimation we used many 
ar imagesand for visualization the density fun
tion was proje
ted (to two dimensions lower) tothe lo
ation spa
e by taking the maximum values over dimensions of obje
t width andheight.from the user. Unfortunately, in most of the rotation invariant appli
ations this mainobje
t dire
tion is not available. As an example Figure 4.13 shows some representativetraining data of butter�ies with simple bounding-boxes. Noti
e, that we do not haveany information about the orientation of the butter�ies within the bounding boxes.We therefore propose another solution. We 
ould 
all the following approa
h quasi-
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ation and Lo
alization of Obje
t Classesrotation invariant, but for the sake of simpli
ity, we refer to it as rotation invariant inthe rest of this 
hapter. Figure 4.8(b) illustrates the 4 dimensions (note same 
omplex-ity) of our parameter spa
e with rotation invarian
e. The relative 
enter position is stillnormalized by the s
ale (σ) of the des
riptor, and now we also transform it a

ordingto the dominant gradient estimated prior to the des
riptor 
omputation (marked witha bla
k solid arrow within the part dete
tion). In this 
ase the relative 
enter positionis des
ribed by ρ (relative dire
tion) and l (relative distan
e). The relative width andheight are additionally proje
ted on the line de�ned by the estimated gradient. (Weomited the proje
tion of the width from the �gure, sin
e it is too large, but it 
an bedone similarily to the height.)As a summary, the output of the training phase is a list of features with thefollowing properties:� the mean and varian
e representing the appearan
e distribution of the feature,� a probabilisti
 s
ore for its dis
riminative power,� and a spatial distribution of the obje
t positions and s
ales.Figure 4.9 shows examples from the output of our training pro
ess. Three examplefeatures were 
hosen for the 
ar 
lass. The �rst line shows sample pat
hes for thefeatures. On the se
ond line we marked some feature-members on a 
hosen trainingimage. In pra
ti
e, as the example shows, it often happens that we have multipledete
tions of a given feature on an image. Arrows pointed to the 
enter of obje
t,indi
ate that we used these relations to learn a density fun
tion displayed in the lastrow. For the density estimate we use several 
ar images with multiple dete
tions ofthose features.Testing by Probabilisti
 Hough VotingThe lo
alization pro
edure on a test image is similar to the initial hypothesis gen-eration of Leibe and S
hiele (2004). The di�eren
e here is that we in
orporate thedis
riminative s
ore into the voting s
heme. First, we allow only the most dis
rimina-tive 
lusters to parti
ipate in the de
ision of predi
ted obje
t lo
ations, and se
ond,we integrate our probabilisti
 s
ore in the voting s
heme. These steps allow better
on�den
e estimations for the di�erent hypotheses. Our algorithm is the following.The extra
ted s
ale-invariant des
riptors of the test image are assigned to the 
losestvisual world (
odebook entry) by appearan
e (MAP). Then, the 
hosen feature pla
esits votes to possible obje
t lo
ations and s
ales (4D spa
e). In pra
ti
e we simpli�edthe voting s
heme from (Leibe and S
hiele, 2004) by only allowing one feature perdes
riptor to vote, and extended their formulation by weighting ea
h vote with thedis
riminative s
ore obtained from R̂(LIK). Furthermore, to eliminate votes of non-dis
riminative features, we limit the voting only for the ones that re
eived the top
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n highest s
ores. The predi
ted obje
t lo
ations and s
ales are found as maxima inthe 4D voting spa
e using the Mean-Shift (Comani
iu and Meer, 1999) algorithm witha s
ale-adaptive balloon density estimator (Comani
iu et al., 2001). The 
on�den
elevel for ea
h dete
tion is determined by the peak value of the kernel density estimate.4.2.2 Evaluation of Di�erent ParametersExperimental SetupIn this se
tion we evaluate the in�uen
e of di�erent parameters of our system usinga popular and publi
ly available 
ar database, as well as the bi
y
le set from Graz1that we have used in the previous 
hapters. For the 
ars, we train our system ons
ale-invariant features extra
ted from 50 images with hand-segmented 
ars (boundingboxes only). This training set has been introdu
ed by Leibe and S
hiele (2004). Werun the lo
alization pro
ess on the UIUC test II (Agarwal and Roth, 2002) datasetwhi
h 
onsists of 108 images 
ontaining 139 
ars of di�erent sizes. Test images areof di�erent resolutions often with highly textured ba
kground and in
lude instan
esof partially o

luded 
ars and 
ars with low 
ontrast 
ompared to their ba
kground.Noti
e, that our training and test sets are 
ompletely independent datasets, whi
hallows us to even better evaluate the generalization 
apabilities for 
ars.As for the bi
y
les, we use the same setup as earlier in Se
tions 4.1.2, 2.4, and 3.3.2.For the training and the evaluation we naturally use bounding-boxes instead of thepixel-wise segmentation from Se
tion 3.3.2. The Graz1 bi
y
les dataset was originally
olle
ted for image 
lassi�
ation by the authors, and therefore, several images are notvery suitable to evaluate obje
t lo
alization (e.g. large number of multiple bi
y
leinstan
es overlap in a parking lot). Even though, we have marked these images asgood as possible, and have kept the same training and testing set as before, we expe
treasonable, yet a bit lower performan
e on this set.For a test image, the output of our method is a list of possible lo
ations of theobje
t 
lass together with a 
on�den
e level, obtained as the value of the kernel densityestimate. A lo
ation is given by a bounding box B = (ci, cj, w, h) with the positionof the 
enter, and the width and height of the obje
t. To be 
onsidered a 
orre
tdete
tion, the area of the overlap ι between the predi
ted (Bp) and the ground truth(Bg) lo
ations must ex
eed 50% spe
i�ed as:

ι =
area(Bp ∩ Bg)

area(Bp ∪ Bg)Furthermore, we only a

ept one 
orre
t dete
tion per obje
ts and 
ount ea
h addi-tional predi
ted bounding boxes as false dete
tions on the same obje
t.The false and 
orre
t dete
tions are 
ounted for ea
h 
on�den
e level to draw there
all-pre
ision 
urve, where
Recall =

# correct detections

# objects
; Precision =

# correct detections

# detections
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ation and Lo
alization of Obje
t ClassesThere are several ways to 
ompare two re
all-pre
ision 
urves. In this 
hapter weused the same as Everingham et al. (2005), the average pre
ision (AP). It is used byTReC and is de�ned as the arithmeti
 mean of 11 interpolated pre
ision p̃(r) valuesdetermined on thresholds of re
all r ∈ {0, 0.1, . . . , 0.9, 1}. The interpolated pre
ision
p̃(r) is de�ned as the maximum pre
ision for whi
h the 
orresponding re
all is greaterthan or equal to the threshold r. We used this measure in order to be 
omparablewith the results of the PASCAL 
hallenge in Se
tion 4.2.3.Performan
e of Di�erent Feature Dete
torsThe following experiments use three of the most popular dete
tors and the new onesintrodu
ed in Chapter 2. H-Lap has ex
ellent repeatability in lo
ation (
f. Se
tion 2.3)and its extra
ted regions are very ri
h in stru
tures. On the other hand, the dete
ted
orner-like stru
tures often lie on the boundary of the obje
ts, and thus, the extra
tedfeatures are less reliable for re
ognition of obje
ts parti
ularly with small sizes. Blobsextra
ted by LoG and DoG are well lo
alized stru
tures, but due to their homogen-ity, the information 
ontent 
an be poor in the 
enter of the region. To enri
h thisinformation, a 
ommon pra
ti
e is to enlarge the neighborhood by a fa
tor of 2 or 3,as we also did in our experiments for H-Lap, LoG, and DoG dete
tors. Due to thedi�erent nature of these dete
tors it is interesting to 
ompare them in our obje
t 
lasslo
alization approa
h. Figure 4.10 shows the results of our system trained on di�erenttypes of features using the setup des
ribed in above. For the 
ars LoG performs thebest, followed by our new dete
tors. H-Lap and and DoG 
ome last. This 
an beexplained by, �rst, on average a larger per
entage of dete
ted points (> 35%) lie onthe 
ars, while in the 
ase of the other two dete
tors this ratio is slightly lower ( 30%).Furthermore, LoG and L-MSLSD also dete
t larger number of points whi
h 
ould leadto better de�ned peaks in the voting spa
e. Apart from the DoG and L-MSLSLDdete
tors' improved performan
e, the dete
tors perform similarly on the bi
y
les. Dueto the di�
ulty of this dataset the best result (L-MSLSD) is lower than the one onthe 
ar set. For both datasets, we also believe that the poor performan
e of somedete
tors 
an also be 
aused by the impre
ise estimation of s
ales whi
h is often un-stable on e.g. 
orner-like stru
tures like Harris points. In our s
ale-invariant approa
hthe learned obje
t properties (lo
ation of the 
enter and the s
ale) are relative to the
hara
teristi
 s
ale of dete
ted points. As a 
onsequen
e, the individual s
ales areessential parameters and the method 
an substantially su�er from their noisy or im-pre
ise estimation. This is the reason why H-MSLSD outperforms H-Lap. The leadingperforman
es of LoG and L-MSLSD are partially due to the good s
ale estimation onblob-like stru
tures.
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tor APH-Lap 0.377H-MSLSD 0.412LoG 0.412DoG 0.419L-MSLSD 0.428Figure 4.10: Re
all-Pre
ision 
urve of our lo
alization approa
h on the UIUC test II(top) and the Graz1 bi
y
les (bottom) sets for di�erent interest point dete
tors. Thetables on the right show the average pre
ision 
omputed on the 
urves.Importan
e of Feature Sele
tionTo measure the improvement and dis
uss the advantages of the integrated featuresele
tion, we perform three di�erent experiments with ea
h of the interest point de-te
tors.(A) We use all the 100 features in our vo
abulary and for ea
h, we learn the spatialdistribution of the obje
t positions and s
ales. We do not perform any featuresele
tion. (The baseline method.)(B) Same as in (A), but we only use the top 25 features determined by R̂(LIK) to vote.We do not integrate R̂(LIK) s
ores in the voting.(C) Same as in (A), using all the 100 features, but we also 
ompute the dis
riminatives
ores R̂(LIK) for ea
h feature, and use it to weight its votes in the mean-shiftspa
e.(D) Similar to (C), but we only use only the top 25 features to vote. (Combinationof (B) and (C).)
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alization of Obje
t ClassesH-Lap DoG LoG H-MSLSD L-MSLSDUIUC Cars IIno f.sel., no weights (A) 0.414 0.162 0.389 0.452 0.402best 25, no weights (B) 0.503 0.368 0.689 0.516 0.447no f.sel., weights by R̂(LIK) (C) 0.441 0.383 0.512 0.498 0.406best 25, weights by R̂(LIK) (D) 0.527 0.427 0.753 0.601 0.575Graz1 Bi
y
lesno f.sel., no weights (A) 0.417 0.423 0.432 0.432 0.434best 25, no weights (B) 0.330 0.419 0.409 0.410 0.423no f.sel., weights by R̂(LIK) (C) 0.405 0.419 0.432 0.430 0.431best 25, weights by R̂(LIK) (D) 0.377 0.419 0.428 0.412 0.428H-Lap (Cars) DoG (Cars) LoG (Cars)
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Figure 4.11: The e�e
t of ranking and sele
tion for di�erent interest point dete
tors.For the 
ars ea
h re
all-pre
ision 
urve shows the results of the obje
t lo
alizationwithout feature sele
tion (A), using only the top 25 
lusters to vote (B), using thedis
riminative s
ore for voting with all the features (C), and additionally to the weightssele
t the top 25 
lusters to vote (D). The table above shows the average performan
esfor the 
ars and the bi
y
les datasets.The results are summarized in Figure 4.11. For the 
ars, version (D), the featuresele
tion together with the weighting, shows signi�
ant improvement for ea
h dete
-tor. The sample dete
tion in Figure 4.12 helps understanding why feature sele
tion isso important for the voting phase. In general the best results 
an be a
hieved withthe dete
tor that delivers the most points on the obje
ts. In our 
ase the LoG de-te
tor sele
ts the most points and delivers the best results. On the other hand, we
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H-Lap DoG LoGFigure 4.12: Example dete
tion on two di�erent test images (�rst and se
ond row).Blue dete
tions were eliminated by the top 25 dis
riminative 
luster sele
tion, theirvotes were not in
luded in the mean-shift spa
e. Yellow 
ir
les indi
ate points thata
tually parti
ipated in the sele
tion of the most probable obje
t lo
ation (yellowre
tangle). Violet points voted for some other 
enters. Non-yellow bounding boxesindi
ate further possible solutions with lower 
on�den
e.prefer few ba
kground points, be
ause they add noise to the voting spa
e. The bestpossible way to bene�t from the in
reased dete
tions on the obje
ts is to reje
t thenon-dis
riminative, and non-obje
t features. As the examples show the pre-sele
tionof the 25 most dis
riminative 
lusters reje
t a huge amount of points (indi
ated byblue 
ir
les). This 
learly shows the advantage of dis
riminative feature sele
tion. Onthe bi
y
les dataset, the feature sele
tion does not show the same improvement. Thisis due to the nature of the database: several bi
y
les that are lo
alized 
orre
tly aresideviews 
overing a huge part of the images, while others 
an never be found dueto their previously unseen viewpoint or to their o

lusion by other bikes. On thisset feature sele
tion and weighting 
annot improve the results, moreover it sometimes
aused weaker obje
t estimates due to the fewer number of points.Comparison of Di�erent Feature Sele
tion MethodsAs we did earlier for obje
t feature retrieval (Se
tion 3.3.2) and for image 
lassi�
ation(Table 4.2) we 
ompare the di�erent sele
tion te
hniques, here, for obje
t lo
alization.Unlike R(LIK), many of the introdu
ed method do not o�er a straightforward 
on-version to probabilisti
 s
ores. Therefore, the following set of experiments do nottake advantage of feature weighting as before; we only sele
t the top 25 features andequally weight their 
ontributions during the voting phase. Note that this is equivalentto experiments (B) from the previous se
tion.
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ation and Lo
alization of Obje
t ClassesRanking CarsH-Lap DoG LoG H-MSLSD L-MSLSD
R(LIK) 0.503 0.368 0.689 0.516 0.447
R(OR) 0.503 0.368 0.689 0.516 0.447

R(BNS+) 0.481 0.370 0.710 0.486 0.395
R(CMIM+) 0.432 0.390 0.765 0.529 0.388
R(MI+) 0.504 0.421 0.694 0.539 0.410
R(CC) 0.502 0.437 0.735 0.510 0.408
R(GSS) 0.499 0.420 0.726 0.528 0.403
R(F1) 0.474 0.388 0.628 0.534 0.482

R(SV M+) 0.440 0.353 0.773 0.506 0.348
R(AB+) 0.397 0.446 0.691 0.531 0.275
R(Freq) 0.063 0.133 0.441 0.357 0.352Ranking Bi
y
lesH-Lap DoG LoG H-MSLSD L-MSLSD
R(LIK) 0.330 0.419 0.409 0.410 0.423
R(OR) 0.330 0.419 0.409 0.410 0.423

R(BNS+) 0.417 0.412 0.417 0.428 0.426
R(CMIM+) 0.415 0.417 0.418 0.428 0.445
R(MI+) 0.409 0.411 0.414 0.415 0.360
R(CC) 0.418 0.430 0.413 0.415 0.442
R(GSS) 0.412 0.412 0.439 0.415 0.437
R(F1) 0.415 0.402 0.327 0.368 0.401

R(SV M+) 0.422 0.423 0.315 0.427 0.419
R(AB+) 0.429 0.369 0.302 0.401 0.409
R(Freq) 0.401 0.396 0.420 0.386 0.413Table 4.4: Comparison of di�erent ranking methods on the 
ars and the bi
y
lesdataset. Reports are the Average Pre
ision rates using the best (highest ranked) 25
omponents.Table 4.4 details the average performan
e of ea
h sele
tion method for the samedete
tors as before. Even though, the best performan
es are several times a
hieved by

R(SV M+) or R(AB), on average R(CC), R(GSS), and R(MI+) perform best (in this order).Noti
e that these three methods are non-
onditional, i.e., sele
t features independentlyof what has been sele
ted before, and mix frequen
y with dis
riminative power. Thebene�t of dis
riminative features is that they help to remove noise from the votingspa
e, while frequent parts, as they appear more often, have better estimation dur-ing the training, and therefore they lead to better obje
t 
lass models. Conditional



4.2 Obje
t Lo
alization with Dis
riminative Features 101Class Train Test 1 Test 2motorbikes 214 217 216 220 202 227bi
y
les 114 123 114 123 279 399people 84 152 84 149 526 1038
ars 272 320 275 341 275 381Table 4.5: The number of training and test images/obje
ts in the PASCAL VOC2005Challenge database.sele
tion methods may provide su�
ient number of parts to well lo
alize the obje
ts(e.g. the LoG dete
tor for 
ars), but on the other hand the reje
ted, and individuallydis
riminative features 
ould be missing, as they 
ould still 
ontribute to more pre
iselo
ation estimates (e.g. Harris based dete
tors for 
ars). Even though R(CMIM) isa 
onditional method, for the bi
y
le dataset it performed the best, and for the 
ardataset it performed better then R(SV M+) and R(AB). R(CMIM) similarly to R(CC),
R(GSS), and R(MI+), expli
itly takes the feature frequen
y into a

ount.From all these we 
on
lude that for obje
t lo
alization based on part distributionestimates, dis
riminative feature sele
tion may improve the results, and te
hniquesbased on individual �ltering that take into a

ount both dis
riminative power andfrequen
y are the most suitable.4.2.3 Additional Results: PASCAL Challenge, Butter�lesIn this se
tion we present results for the PASCAL Visual Obje
t Classes Challenge(VOC2005)1 dataset and the butter�y dataset. Results on the PASCAL Challengeallow to 
ompare our method to the state-of-the-art. The butter�y dataset validatesour approa
h to rotation invarian
e.In the PASCAL Challenge dataset there are four di�erent obje
t 
ategories: mo-torbikes, bi
y
les, people and 
ars. Table 4.5 shows the the number of images andobje
ts per 
ategory. We train our dete
tor for ea
h 
lass with the given training set;we used 1200 
lusters and des
riptors extra
ted by LoG (the dete
tor performed beston 
ars in our previous lo
alization experiments). For lo
alization we run the 4 obje
t
lass dete
tors with 100 sele
ted 
lusters, with weights 
omputed by R̂(LIK), separatelyon the test1 and the test2 sets. Note, that ea
h dete
tor is tested on all test imagesi.e., 689 images for test1 and 1282 for test2. The test1 set is taken from the samedistribution of images as the training data, i.e., same type of s
ene and 
onditions,while the test2 set provides a �more di�
ult� set of spe
i�
ally 
olle
ted images forthe 
hallenge.1Dataset, des
ription and report of other methods on the same set are available athttp://www.pas
al-network.org/
hallenges/VOC/.
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#img 26/85 26/16 26/57 26/58 26/48 26/108 26/65Figure 4.13: The butter�y database (Lazebnik et al., 2004). Example images fromea
h of the seven 
ategories. Bouding boxes indi
ate the hand-segmented groundtruth.Last line shows the number of images in the training/test sets.The butter�les (Lazebnik et al., 2004) database 
onsist of seven di�erent 
ategoriesof butter�ies. For the training and the lo
alization we use our extension to rotationinvarian
e (Se
tion 4.2.1), be
ause both on the training and on the testing images thebutter�ies are in di�erent pose and dire
tion. The seven 
ategories with examples
an be found in Figure 4.13. The butter�ies database has the following 
hallengingproperties:� rotation invarian
e (in reality there are also 3-D viewpoint 
hanges),� similarities between di�erent 
lasses of butter�ies,� less rigidity, due to their wings,� monar
h open and monar
h 
losed are two di�erent 
ategories with the sametype of butter�ies.Please note, that we have only used grey-s
aled images with SIFT des
riptors in thefollowing experiments, to keep our lo
al representation 
onsistent throughout the the-sis, we believe that adding 
olor information may signi�
antly improve the results.Similarly to the PASCAL Challenge, we used the LoG dete
tor, and weight our votesby R̂(LIK) s
ores. For the butter�ies we sele
t 50 features out of 300. We split themulti-
lass problem into seven two-
lass lo
alizers, and we allow multiple labels onthe test images. Even though we do not have images in our set in whi
h two or moredi�erent types of butter�ies o

ur, our system is built to be able to lo
alize or all ofthem. In ea
h experiment we use the same test images. Dete
ted instan
es of otherbutter�ies and multiple dete
tions of the same butter�y are 
ounted as false positives.
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t Lo
alization with Dis
riminative Features 103Test 1Ours Darmstadt Fr.Tele
om Inria-Dalal Edinburghmotorbikes 0.824 0.886 0.729 0.490 0.470bi
y
les 0.355 - - - 0.119people 0.103 - - 0.013 0.002
ars 0.456 0.489 0.353 0.613 0.000Test 2Ours Darmstadt Fr.Tele
om Inria-Dalal Edinburghmotorbikes 0.245 0.341 0.289 0.124 0.116bi
y
les 0.209 - - - 0.113people 0.021 - - 0.021 0.000
ars 0.110 0.181 0.106 0.304 0.028Table 4.6: Average pre
ision rates on the four di�erent 
ategories of the PASCALVOC2005 
hallenge dataset. Our performan
e is 
ompared to the four 
ompetinginstitutions' best results. Empty 
ells indi
ate that the 
ompetitor did not run theirmethod(s) on given test set.ResultsTable 4.6 
ompares our performan
e with the best results of the 
hallenge. Most ofthe 
ompetitors submitted several results of di�erent methods. Here, we always taketheir best results for 
omparison, for more detail whi
h method they used we referto the book 
hapter dedi
ated to the 
hallenge(Everingham et al., 2006). Figure 4.14shows our re
all-pre
ision 
urves on the di�erent 
ategories. Example dete
tions areshown in Figure 4.15.In 
ategories of bi
y
les and people (test1) our method outperformed all existingresults while in the other 
ases it showed 
omparable performan
e. The method ofDarmstadt is based on (Leibe and S
hiele, 2004) and is only slightly better then ours'.Their algorithm in
ludes two additional veri�
ations steps. One, based on the �gure-ground segmentation requiring additional segmentation masks, while the other oneis an SVM-based step to reje
t false dete
tions. It is remarkable that the simplevoting algorithm used together with our feature sele
tion 
an 
ompete with theirs. Anadditional advantage of the proposed solution is the gain in exe
ution time due to theelimination of unne
essary votes by feature sele
tion.Figure 4.16 shows the average pre
ision rates on the di�erent butter�y 
ategories,using the same evaluation 
riteria. Our rotation invariant lo
alization 
orre
tly re-trieve (re
all) around 70− 80% of the butter�ies. As we may have expe
ted, the maindi�
ulty is to separate between di�erent 
ategories. This is the main reason of thepoor pre
ision for the Admirals and the Bla
k Swallowtails. Our Ma
haon dete
tor
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Figure 4.14: Re
all-Pre
ision 
urves on the PASCAL VOC2005 Challenge dataset.Ea
h plot shows a di�erent 
ategory. For ea
h 
ategory two 
urves are showed for thetwo di�erent test sets.also falsely dete
ts many other butter�ies, but due to the Ma
haons' parti
ular anddis
riminative patterns in their middle stripe our system assigns a mu
h higher 
on�-den
e for 
orre
t instan
es. Monar
h 
losed and open are two di�erent 
ategories, andunfortunately a substantial performan
e drop is due to mixing them up. Even thoughPea
o
ks have a parti
ular pattern at the end of their wings using the LoG dete
torthe rest of the butter�ies (middle wings and body) remain almost featureless. Whilethose few number of parts�not so dis
riminative without 
olor�provide some 
orre
tdete
tions, the la
k of features leads to very few, weak (in 
on�den
e) lo
alizations.The Zebra butter�ies have a lots of dete
tion along their stripes leading to outstandingpre
ision on all re
all rates.4.3 Implementation DetailsIn this se
tion we give more insight and detail about the implementation and theparameters used over our experiments. In Se
tion 2.5 we have already dis
ussed thedetails of the interest point dete
tors used in Chapter 2. These are the same hereas well. For the other dete
tors, ENTR, DoG, IBR, and MSER, we use the publi
lyavailable binaries from the authors with their default parameters.
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Motorbikes Bi
y
les CarsFigure 4.15: Example dete
tions for the PASCAL Challenge (2005) dataset. First rowshows images from the test1 while the se
ond row from the test2 set. Blue pointsare eliminated due to feature sele
tion, and yellow points are voted for the best so-lution (yellow re
tangle). Non-yellow re
tangles indi
ate false dete
tions with lower
on�den
e.
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Figure 4.16: Results on the butter�y database.
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ation and Lo
alization of Obje
t ClassesObje
t Class Classi�
ation ExperimentsAfter extra
ting interest points and 
omputing the lo
al SIFT des
riptors, we pro
eedwith EM 
lustering to estimate a GMM for ea
h 
lass. Noti
e, that all experiments aretwo-
lass problems, an obje
t 
ategory vs. ba
kground. We 
reate a vo
abulary forea
h 
lass independently. EM algorithms are initialized with kmeans, where the num-ber of 
lusters, and therefore the number of modes of the GMM is 400 for motorbikesand airplanes, 200 for bi
y
les and fa
es, 50 for wild 
ats, and 25 for leaves. Thesenumbers are 
hosen manually, a

ording to the size of the database. The EM-loopqui
kly 
onverge within the �rst 5 − 20 iterations. The 
lustering is done on one halfof the training set. The other half is used to 
ompute feature ranks for ea
h 
enter(Gaussian mode). While for the ranking we use soft feature assignment, i.e., the a
-tual probabilities from the GMM, at testing time we hard assign ea
h des
riptor tothe most probable 
luster. The features (
lusters) are ordered based on their ranking,and the top n are marked as obje
t features. n is a parameter of the system andthe variable in our ROC 
urves. When all des
riptors of a test image are assigned totheir 
lusters we 
ount how many of them fall into an obje
t 
luster. If this number isgreater than p, we 
lassify the image as positive. The p parameter is learned duringtraining by optimizing the 
lassi�er to the highest EER on the ranking set.For the bag-of-keypoint experiments we use similar setting as des
ribed Se
tion 2.5.The number of 
lusters is the same as for the previous 
lassi�er.Obje
t Class Lo
alization ExperimentsIn general, the �rst steps of these experiments are identi
al to previous ones. We ex-tra
t interest points, 
ompute SIFT des
riptors and 
luster the des
riptors to 
reatethe visual vo
abulary. The number of 
lusters is 100 for 
ars, 1200 for the PAS-CAL 
hallenge, and 300 for the butter�ies. For the PASCAL 
hallenge and butter�iesdatabases we use one-one 
ommon vo
abulary for all 
ategories. Ea
h feature (
luster)is ranked by the likelihood ratio 
riterion. Unless it is stated otherwise, the best n fea-tures are sele
ted, and the distribution of the obje
t positions relative to these featuresare learned. We use non-parametri
 distributions, and basi
ally store all o

urren
esof obje
t 
enters and s
ales (width + height) for ea
h feature. Note that both lo
ationand obje
t s
ale values are normalized by the s
ale of the des
riptor. At dete
tiontime, ea
h lo
al des
riptor is hard-assigned to its 
losest 
luster, whi
h pla
es its votesto the 4D voting spa
e. All votes are weighted by the dis
riminative power of its 
lus-ter, i.e., the sum of the pla
ed votes per des
riptor equals to the R̂(LIK) s
ore of itsassigned 
luster. The �nal predi
ted obje
t lo
ations and s
ales are found as maximain the 4D voting spa
e using the s
ale-adaptive Mean-Shift (Comani
iu and Meer,1999; Comani
iu et al., 2001) algorithm. The 
on�den
e level for ea
h dete
tion isdetermined by the peak value of the kernel density estimate.



4.4 Dis
ussion 1074.4 Dis
ussionIn this 
hapter, we have shown two di�erent tasks whi
h use dis
riminative feature se-le
tion. Our image 
lassi�
ation is based purely on the number of sele
ted features fora given obje
t 
lass. For this task, we have found R(LIK) (and R(OR)) the best suitedsele
tion methods as they retrieve the most trusted features. Note that this agreeswith our earlier results in Chapter 3 where these methods provide the best obje
t 
ov-erage. However, the R(LIK) and R(OR) are followed by R(SV M+), R(AB), and R(CMIM),providing low obje
t 
overage (
f. Se
tion 3.3.2), yet good dis
rimination. Theseexperiments 
on�rm our earlier observation, that these three methods provide fewerfeatures on the obje
ts, be
ause they reje
t redundant dis
riminative 
omponents.In the obje
t lo
alization experiments ea
h feature has a (non-parametri
) prob-ability estimate for the relative obje
t position. Frequent features have more stableestimates, due to more training examples, and therefore on average the leading featuresele
tion methods are R(CC), R(GSS), and R(MI+). The other sele
tion methods mayalso provide good performan
e�as they do in our experiments�when the sele
tedfeatures (a

identally) have enough statisti
s. This explains that R(SV M) and R(AB)several times are the leading methods, but on average they are below the trio thattakes the frequen
y expli
itly into a

ount. For the same reason among the 
ondi-tional methods R(CMIM) performs the best.Image 
lassi�
ation experiments has shown that by using only feature sele
tionour system provide 
ompetitive results on popular datasets. As for the lo
aliza-tion we have shown how to improve both speed and a

ura
y of the voting phaseof Leibe and S
hiele (2004) by the integration of dis
riminative feature sele
tion. Wehave also generalized their method to general similarity transformations by adding ro-tation invarian
e without requiring any pre-normalizatioin (pre-rotation) of the train-ing images.
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Fifth ChapterCon
lusion and Future Work
Re
ognition of obje
t 
ategories is a 
hallenging task. Learning algorithms haveto generalize over all spe
i�
 instan
es of an obje
t 
lass, and at the same timethey have to learn enough distin
tive information to separate the obje
ts from theba
kground. A system whi
h solves su
h a 
hallenging goal has to rely on a highquality image representation as well as appropriate learning methods. This thesis hasaddressed these key features by proposing a novel s
ale-invariant keypoint dete
tionmethod, and by investigating 
lass-dis
riminative feature sele
tion.We have introdu
ed a new te
hnique, 
alled the Maximally Stable Lo
al Des
rip-tion, to provide more stable lo
al des
riptors, and 
onsequently a better appearan
ebased representation for images. We have applied MSLD for s
ale sele
tion on key-points extra
ted on multiple s
ales by the Harris and the Lapla
ian operators. Thealgorithm uses des
ription stability as 
riterion for s
ale sele
tion: the 
hara
teristi
s
ale for ea
h lo
ation is 
hosen su
h that the 
orresponding representation (in ourexperiments SIFT) 
hanges the least with respe
t to s
ale. The informative 
ontentand repeatability of the dete
tions are guaranteed by the keypoint dete
tors, whiledes
ription stability is preserved by MSLD s
ale sele
tion. This balan
ed solution hasdemonstrated 
ompetitive results, many times outperforming the Lapla
ian sele
tion.We have parti
ularly found MSLD s
ale sele
tion bene�
ial in the following situations.While the new dete
tors may have weaker repeatability rates in standard imagemat
hing environments, they 
an provide additional robustness, invarian
e, and there-fore improved performan
e in 
hallenging 
onditions. For example, due to the inherentproperty of SIFT, i.e., being invariant to a�ne light 
hanges, we have demonstratedimproved performan
e for image mat
hing under di�erent lighting 
onditions.The stability of the bag-of-keypoints representation rely on the stability of the lo
aldes
riptors. Sin
e our method enfor
es this stability it has 
onsistently demonstratedbetter results on textures and materials, as well as several times improvements onobje
t 
ategories.Re
ent works on obje
t re
ognition mostly reported a de
rease in performan
e whenimposing additional levels of invarian
e, su
h as rotation. The standard explanation is
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lusion and Future Workthat more invarian
e makes des
riptors more similar, and therefore they loose distin
-tiveness. On texture databases we have shown in several experiments that their poorperforman
e is mainly due to the instability in the parameter estimation, and thatour new 
riterion, whi
h maximizes stability, 
an over
ome those 
hallenges. Addingrotation invarian
e has 
onsistently improved our results using our new dete
tors.Experiments on obje
t lo
alization mat
hes the features by appearan
e to a 
ode-book entry, and it expli
itly uses the s
ale estimation (the region shape) to normalizeall distan
es to learn the spatial 
on�guration of the obje
t 
lass. Therefore, bothrepeatability (lo
ation + s
ale) as well as des
ription stability is 
ru
ial for this task.Our dete
tors have shown 
ompetitive results: while the 3D Lapla
ian dete
tor (LoG)performs better than our s
ale estimation on 2D Lapla
ian points, MSLSD (Maxi-mally Stable Lo
al SIFT Des
ription) on Harris 
orners is 
onsistently better thanHarris-Lapla
e. The reason is two-fold. First, probably for both 
ases the appearan
emat
hes are improved with MSLSD, and se
ond, for Harris points, the s
ale estimatesare less stable, i.e., less repeatable, using Lapla
ian.In this thesis, we have also adopted several feature �ltering te
hniques from thetext literature. We have shown how to use them for 
lass-dis
riminative feature sele
-tion and ranking. Several properties have been analyzed and explained. One majordi�eren
e is whether the sele
tion of positive and negative features are treated equallyor not. Consequently, we have shown how to 
onvert one-sided measures to two-sided,and vise versa. Some sele
tion methods (e.g., mutual information, 
hi-square) expli
-itly take into a

ount feature frequen
y, while others (e.g., likelihood, odds ratio) arebased only on dis
riminative power. We have also listed three di�erent methods, SVM
oe�
ient, AdaBoost, and 
onditional mutual information maximization whi
h reje
tredundant features. On pra
ti
al terms, where visual features are quantized distribu-tion of sparsely extra
ted lo
al des
riptors, we have observed that all these methodssele
t 
lass-dis
riminative lo
ally 
onsistent obje
t-parts (e.g., tires of 
ars, eyes offa
es, et
.) and dominant textures (e.g., pattern of wild 
ats). We have evaluated thesele
tion methods in three di�erent s
enarios, and have 
ome up with the followingre
ommendations (see Figure 5.1).The purely appearan
e based obje
t 
overage problem tries to retrieve as manyfeatures on obje
ts as possible while minimizing the number of ba
kground features.This is a typi
al s
enario when only the dis
riminative power of the features are impor-tant, and even spe
ial features, i.e., features that 
orresponds to some spe
ial usuallyrare obje
t stru
tures, are very valuable besides the frequent ones. Our experimentalresults 
on�rming the use of 
lassi�
ation likelihood and odds ratios for su
h tasks.Our image 
lassi�
ation s
enario has used purely an appearan
e based represen-tation to de
ide about the presen
e of an obje
t instan
e in an image. In our sim-ple 
lassi�er�where we have required a prede�ned number of obje
t features for thepresen
e of an obje
t�likelihood and odds ratio have shown the best performan
e.The runners-up are SVM 
oe�
ients, AdaBoost, and 
onditional mutual information,whi
h is the group of methods that reje
t redundant features. Our experiments have
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enario Aim Relevant properties Re
ommendationsobje
t
overage retrieve as many ob-je
t features as possi-ble (Chapter 3) : dis
riminative power;in
lude redundantfeatures likelihood ratio, odds ra-tioimage
lassi�-
ation presen
e/absen
etest of obje
t in-stan
es; appearan
e-based (Chapter 4) dis
riminative power;redundant featuresless important likelihood ratio, oddsratio, SVM 
oef., Ad-aBoost, 
onditionalmutual informationmaximizationobje
t
lasslo
aliza-tion determine the posi-tion & s
ale of obje
tinstan
es in a s
ene;appearan
e + spatialrelations (Chapter 4) dis
riminative power;frequen
y to supportstatisti
s of spatialdistributions 
hi-square, 
orrelation
oef., GSS, mutual in-formation; 
onditionalmutual information max-imization (if sparserrepresentation required)Figure 5.1: Re
ommendations for feature sele
tion in three di�erent s
enarios. For ea
hs
enario we list the main properties of the features (third 
olumn) and the sele
tionmethods that performed the best, and therefore are re
ommended (last 
olumn).also shown that a more sophisti
ated 
lassi�er, a linear SVM whi
h in
ludes impli
itsele
tion based on SVM 
oe�
ients, outperforms our simple 
lassi�er on average, butat the same time has also 
on�rmed the su

ess of the sele
tion method by SVM
oe�
ients.The demonstrated obje
t 
lass lo
alization method estimates the spatial distribu-tion of di�erent features, and therefore su�
ient statisti
s also play an important role.Even though we have used non-parametri
 estimates, our experimental results haveindi
ated that good features must be supported by su�
ient training examples. Con-sequently, the most appropriate sele
tion methods are 
hi-square (and its derivatives,
orrelation 
oe�
ient and GSS) and mutual information. If a sparser representationis preferred, with the pri
e of loss in a

ura
y, redundant features 
an be most e�-
iently reje
ted by 
onditional mutual information maximization, sin
e it also ensuresthe su�
ient frequen
y of the sele
ted features. In general, we have shown that 
lass-dis
riminative feature sele
tion plays an important role in obje
t lo
alization. The
ombination of existing methods have led to a simple framework whi
h outperformsor obtain 
omparable results to state-of-the-art methods. Our integration of featuresele
tion in the voting framework provides the following advantages:� While keeping the ba
kground features nearly 
onstant, the number of obje
tdes
riptors 
an be in
reased, e.g., by adding more interest point dete
tors (
ues)or lowering the thresholds of existing ones. More obje
t features usually improvesthe performan
e of lo
alization.
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lusion and Future Work� The spatial (foreground) model is learned on obje
t features, i.e., is not built onfeatures that may often appear on the ba
kground, providing a better model forthe obje
t 
lass.� The speed of the �nal dete
tion on new images is signi�
antly improved due tothe removed non-dis
riminative obje
t and ba
kground features.Future WorkThe presented work has many possible extensions. In the following we summarize ourideas for su
h future work.Extensions for MSLDIn the following we des
ribe three possible extensions for our MSLD 
riterion. The�rst is to initialize the s
ale sele
tion by di�erent types of regions, the se
ond is toembed di�erent types of des
riptors, and �nally an extension to develop s
ale-invariantdense representations.S
ale sele
tion via Maximally Stable Lo
al Des
ription 
an be applied on di�erenttypes of regions, su
h as Hessian points or extremal regions, et
. In most 
ases thisis straightforward, e.g., for Hessian points it 
an be done in the same way as we haveshown for the Harris 
orners; for extremal regions the MSER dete
tor shape stability(region area or boundary length) 
an be repla
ed by des
riptor stability. Variousinitial 
onditions, e.g., interest point dete
tors, 
onstrain the sear
h spa
e di�erently.It would be interesting to analyze what types of �nal regions are sele
ted by the MSLDs
ale sele
tion in these di�erent environments.While the SIFT des
riptor is one of the most su

essful general des
riptors, usingother image features 
an be bene�
ial: s
ale sele
tion, and 
onsequently interest pointdete
tion, 
an be improved by adding di�erent levels of invarian
e. SIFT providesinvarian
e for 
hanges in light 
onditions; other des
riptors may provide other invari-an
e, e.g., to 
ertain 
olor 
hanges, or to spe
i�
 types of noise. Embedding thesedes
riptors in the dete
tor, MSLD 
an provide more robust dete
tions in those spe
i�

onditions. Moreover, invarian
e is obtained lo
ally on several parts of the image, andtherefore more powerful than a global prepro
essing of the image.S
ale sele
tion on ea
h pixel provides a s
ale-invariant dense representation. UsingMSLD for s
ale estimation may provide a parti
ularly stable lo
al des
ription, andtherefore 
ould be very useful for representing textures and patterns.Future Prospe
ts of Dis
riminative Feature Sele
tionIn the following we des
ribe unsolved problems and possible extensions for dis
rim-inative feature sele
tion. First we mention the problem of 
hoosing the number of



113features. We then dis
uss an extension to a dense feature spa
e. After that, we alsopoint out the bene�ts of integrating 
odebook 
reation and feature sele
tion. Dis-
ussion on the types of sele
ted features motivates us to investigate more in texturedobje
ts. Finally, we present the possibility to generalize our appearan
e based appli-
ations towards obje
t stru
tures and other types of features.Typi
ally feature sele
tion has one parameter (we have 
alled it n), the number of
omponents. Many times the 
omplexity of the learning model limits this parameter,and sometimes it 
an be set intuitively (e.g., likelihood ratios are meaningful values).It 
an be a main parameter of the task (su
h as in image 
lassi�
ation, the ROC
urves has been plotted respe
tively to n), but many times is has to be appropriately
hosen (e.g., for lo
alization). If no intuition and no previous experien
e is available itmight be set by 
ross-
orrelation, however, it would be interesting to investigate moresophisti
ated ways.In this thesis we have fo
used on sparse image representations. Keypoint dete
torsredu
e the 
omplexity, i.e., the number of lo
al features to deal with, by smart sam-pling of the spa
e. Redu
ed memory 
onsumption and systemati
ally sampled dataallow to deal with more training examples, and therefore lead to better statisti
s andperforman
e. Feature sele
tion as an immediate �rst step 
ould e�
iently sample thedes
riptor spa
e as well. This requires to run feature sele
tion on the quantized spa
eof dense des
riptors (des
riptors extra
ted at every pixel and at every s
ale). Exist-ing quantization methods, and the sele
tion te
hniques dis
ussed in this thesis allowthis 
omputation with linear 
omplexity on the des
riptor spa
e. In pra
ti
e, this ispossible for dense multi-s
ale features. The resulting sele
tion of des
riptors wouldbe a sparse set of mostly obje
t features, where the sparsity is set by the number ofsele
ted features. Sin
e the distribution of the dis
riminative points are very di�erentfrom the existing keypoint dete
tors, su
h a new representation should be throughlytested and the learning methods should be adapted.This thesis has demonstrated feature sele
tion on (pre)extra
ted visual words. Cou-pling the two steps, 
odebook 
reation and feature sele
tion, 
ould be bene�
ial forthe following reasons.� From our experiments we have learned that various tasks have di�erent needs.Many spe
ial dis
riminative features support the best obje
t 
overage, whilefrequent features are ne
essary for distribution estimates. We 
an sele
t the re-quired features with the appropriate te
hniques as shown in this thesis. However,the performan
e 
ould be improved by 
onstraining the feature 
reation (
ode-book 
onstru
tion) to satisfy these additional requirements. These requirements
an be derived from the feature sele
tion.� Creating 
odebook entries that 
an later be used to better separate obje
t andba
kground features may lead to better foreground appearan
e model, and there-fore, improved performan
e. Feature sele
tion 
an guide 
odebook 
reation toobtain more dis
riminative features. In pra
ti
e this leads to (semi-)supervised
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lusion and Future Work
lustering, be
ause the available 
lass labels are used by dis
riminative featuresele
tion.Our experiments have shown that feature sele
tion methods sele
t dis
riminativeobje
t parts as well as dominant texture features. However, we believe that re
ognitionmethods, like the one we have used for lo
alization, 
an bene�t from these two types offeatures di�erently. On rigid obje
ts, the part-type features have more pre
ise relativespatial distribution to the obje
t 
enter, while texture-type features should be groupedtogether for e�
ient spatial estimates. An interesting extension would be to learn todistinguish between these two types of features.This thesis has applied 
lass-dis
riminative feature sele
tion to 
odebooks of ap-pearan
e. This, of 
ourse, 
an be extended to sele
t obje
t stru
tures, i.e., spatially
onstrained tuples of obje
t parts. Creating features that en
ode small or large parts,loose or strong relationship of appearan
e based features may allow to determine obje
t
lass spe
i�
 rigid and less rigid geometri
al stru
tures.



Appendix AIn�uen
e of the number of interest points
Our method for image 
lassi�
ation relies on the parameter p, the threshold on thenumber of positively 
lassi�ed interest points. To evaluate the bias of our approa
h,we examine the in�uen
e of the number of points on image 
lassi�
ation. Note that abias exists for almost any 
lassi�
ation method, i.e. a low information 
ontent or lowimage resolution of the negative images 
an in�uen
e their 
lassi�
ation results. Thefollowing study therefore also evaluates the di�
ulty of the databases.In the following we evaluate the performan
e of a 
lassi�er based on the number ofinterest points. An image is 
lassi�ed as positive, i.e. 
ontaining the obje
t 
ategory,if the number of dete
tions are higher than a 
ertain threshold t. Changing thisparameter t determines an ROC 
urve, on whi
h we report the equal-error-rates inTable A.1. The experimental set-up is the same as in Se
tion 4.1.2.Table A.1 shows the results for HL and ENTR dete
tors as well as for the 
ombi-nation HL + ENTR. In ea
h 
ase the �rst 
olumn gives the average number of interestpoints on the foreground and ba
kground images. The se
ond 
olumn shows the equal-error-rate. Results with HL are very good for airplanes, fa
es, motorbikes and wild
ats. For these 
ategories signi�
antly more points are dete
ted on the obje
t imagesthan on the ba
kground ones; on average for these databases the EER of our approa
honly slightly in
reases. Results are at 
han
e-level for leaves, bi
y
les, and people; forthem our approa
h in
reases the EER signi�
antly. Results with the entropy dete
torlead to similar 
on
lusions. Note the 
lassi�
ation performan
e for people are below
han
e-level, as more points are dete
ted on the ba
kground. The results for the 
om-bination are again very good for the Calte
h dataset, and the results for the Grazdatabase are at 
han
e-level. This shows that the Calte
h dataset is biased, whereasthe Graz dataset is not. Ba
kground images of the Graz dataset are of the same sizeas obje
t images and 
ontain a signi�
ant amount of 
lutter, whereas Calte
h ba
k-ground images have lower resolution and 
ontain less 
lutter. In 
on
lusion, whenimages 
ontaining the obje
t 
lass are 
onsistently more informative than the ba
k-ground, the extra
ted number of interest points 
an help image 
lassi�
ation to �nd



116 Appendix A. In�uen
e of the number of interest pointsTable A.1: Equal-Error-Rate for image 
lassi�
ation based on the number of interestpoints.Database HL ENTR HL+ENTRAvg.# IP EER % Avg. # IP EER % Avg. # IP EER %fg./bg. fg./bg. fg./bg.CalTe
h DatabasesAirplanes 119/25 88.2 90/54 70.4 209/79 78.7Fa
es 311/25 98.9 115/54 76.2 426/79 92.9Motorbikes 199/25 95.8 207/54 89.8 406/79 95.3Wild Cats1 125/25 90.9 164/54 80.7 290/79 86.7Leaves 23/25 53.6 96/54 73.1 119/79 89.1TU-Graz1 DatabasesBi
y
les 243/219 52.0 254/138 84.0 498/357 66.0People 219/241 56.0 137/201 30.0 357/441 44.0the right 
ategory. As a 
onsequen
e, �badly� 
onstru
ted datasets 
an bias the resultswhi
h 
an in�uen
e any image based 
lassi�
ation method. Note that our method isindependent of the bias, as it allow to obtain ex
ellent results on the unbiased Grazdatabase.
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