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SELECTION OF DISCRIMINATIVE REGIONS AND LOCAL DESCRIPTORS
FOR GENERIC OBJECT CLASS RECOGNITION

Gyuri DORKO, Ph.D. dissertation
Institut National Polytechnique de Grenoble, 9 June 2006

Object category recognition is one of the most difficult problems in computer vi-
sion. It involves recognizing objects despite intra-class variations, viewpoint changes
and background clutter. The goal of this thesis is to investigate robust invariant
local image description and the selection of discriminative features. We show that
class-discriminative scale-invariant features achieve excellent results for image-level
categorization and object localization. We present solutions for two key problems:
(i) we improve the quality of the image description based on a novel scale-invariant
keypoint detection method and (ii) we integrate feature filtering techniques into our
object models.

Our novel scale-invariant detector is based on the idea of a “maximally stable de-
scription”, i.e., the descriptor should be stable even in the presence of minor variations
of the detector. The technique performs scale selection based on a region descrip-
tor, here SIFT, and chooses regions for which this descriptor is maximally stable,
i.e., the difference between descriptors extracted for consecutive scales reaches a mi-
nimum. This scale selection technique is applied to multi-scale Harris and Laplacian
points. Experimental results evaluate the performance of our detector and show that
it outperforms existing ones in the context of image matching, category and texture
classification, as well as object localization.

To construct object models based on discriminative features, we first cluster the
scale-invariant descriptors and obtain a set of “visual words”. We then estimate
the discriminative information of these clusters based on different feature selection
techniques—several of which are traditionally used in text retrieval. We discuss their
properties—feature frequency, discriminative power, and redundancy—and analyze
their performance in the context of image classification and object localization. We
show that each task has different requirements, and indicate which selection techniques
are the most appropriate. Experimental results for recognition on challenging large
datasets demonstrate the performance of the approach.






SELECTION DE REGIONS SIGNIFICATIVES LOCALES ET DE LEURS
DESCRIPTEURS POUR LA RECONNAISSANCE DE CLASSES GENERIQUES
D’OBJETS

Gyuri DORKO
Institut National Polytechnique de Grenoble, 9 June 2006

La catégorisation d’objets est I'un des problémes les plus difficiles en vision par ordi-
nateur. Le but est de reconnaitre des objets visuels malgré des variations intra-classe,
des changements de point de vue et un fort bruit de fond. L’objectif de cette thése est
d’investiguer un descripteur local d’image et une méthode de sélection de caractéris-
tiques discriminatives. Nous montrons que des descripteurs discriminatifs invariants
par échelle donnent d’excellent résultats en catégorisation et en localisation d’objet.
Des solutions sont apportées aux deux problémes fondamentaux suivants: (i) nous
améliorons la qualité de la description des images grace a un nouveau détecteur de
points d’intéréts invariant par échelle et (ii) nous intégrons des techniques de filtrage
de descripteurs dans nos modéles d’objets.

Notre nouveau détecteur invariant par échelle est basé sur I'idée de “région stable
maximale”, c¢’est-a-dire le fait que la position du point d’intérét est stable méme en
présence de variations mineures du détecteur. La méthode sélectionne une échelle a
partir d'un descripteur local — dans notre cas SIFT — et choisit les régions pour
lesquelles la stabilité du descripteur est maximale, c’est-a-dire la différence entre les
descripteurs a deux échelles consécutives atteint un minimum. Cette technique de
sélection d’échelle est appliquée au détecteur de Harris multi-échelle et les points de
Laplace. Des résultats expérimentaux permettent d’évaluer les performances de notre
détecteur et montrent qu’il améliore les résultats de mise en correspondance d’image,
de classification d’objets et de texture et la localisation d’objets.

Afin de construire des modéles d’objets basés sur des facteurs discriminatifs, les de-
scripteurs invariants par échelle sont classés dans des clusters et donne un ensemble de
“mots visuels”. Ensuite, nous estimons I'information discriminative contenue dans ces
clusters en utilisant différentes techniques de sélection discriminatives — Plusieurs
d’entre elles sont traditionnellement utilisées en recherche d’information textuelle.
Nous discutons leurs propriétés — fréquence, pouvoir discriminatif et redondance —
et analysons leur performances dans le contexte de classification et de localisation
d’objet. Nous montrons que chaque tache a ses particularités et indiquons quelle
technique de sélection est la plus appropriée. Des résultats expérimentaux de recon-
naissance d’objets sur des jeux de données difficiles montrent les bonnes performances
de la méthodologie proposée.
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FIRST CHAPTER

Introduction

O BJECT recognition is a challenge that computer vision researchers, psychologists
and researchers from other fields have been trying to understand for more than 40
years. After many years of research artificial vision is still far behind human vision.
People are able to see, to recognize, and to categorize objects in the world. However,
for computers this is not an easy task. The ability, for example, to see a chair from all
different viewpoints and to understand and know that it is the same chair are extremely
complicated tasks. The 2-D appearance of the same object can be very different when
the viewpoint changes. Furthermore, due to our generalization capability, people are
capable of finding a chair, even if they have not seen that particular instance before.
Creating categories, finding shared properties, generalizing appearance are challenging
tasks for computers, mainly due to a potentially high intra-class variance across object
instances.

1.1 Context

While object recognition is a large field, in this thesis we focus on visual object class
categorization and localization. Figure 1.1 illustrates some of the difficulties of recog-
nizing object categories. Intra-class variations among instances of a class is only one

Figure 1.1: Five different bicycles illustrate the challenge for object class recognition.
Different viewpoints, occlusion, noise, and cluttered background make it hard to rec-
ognize the objects. Intra-class variation (shape and color) across the different bicycles
challenges the generalization capabilities of computer vision systems.
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Figure 1.3: Examples of butterflies.

of the challenges: object parts can have different geometrical structure, color or can be
completely missing. In Figure 1.1 bicycles (a) and (e) are different in color, while bicy-
cle (b) has different geometrical proportions. Many applications require objects to be
found in predefined pose and orientation, such as recognizing profiles of faces, or side-
views of cars. Others, like the bicycle example, are less restricted and therefore more
difficult: bicycles (d) and (e) are viewed from different viewpoints, and (a) and (b) are
imaged at different scales (magnification). Robustness to occlusions and missing parts
are usually additional requirements for state-of-the-art applications; e.g., bicycle (a)
has a missing (covered) seat. Occlusions may be caused by the environment, or even
by the object itself: the spokes of the first tire are occluded on (d). Everyday objects,
such as bicycles, often appear together with other objects or on cluttered background.
This additional data, so called context, can distract our system and needs in general
to be discarded. Note that it can also help to recognize the object class. An example
is a traffic control system detecting cars. In such a system the recognition of roads is
probably useless because they occur in all images. However, the shadow of the car (on
the road) is probably a useful discovery.

1.2 Owur Approach

Instances of an object category often share some visual appearance, and our main
goal is to find these common features. The examples in Figure 1.2 and Figure 1.3
show two different object categories. The selection of common discriminative object
parts is relatively easy, because almost any set of features (of adequate size) separates
wildcats from butterflies. However, if Figure 1.2 itself are defined to contain two
categories—cheetahs (a),(b), and jaguars (c),(d)—discriminative features are much
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harder to find. Furthermore, if we assume that examples in Figure 1.3 are from two
categories, then butterfly experts would immediately notice that (a) and (b) are black
swallowtails, while (c)-(f) are monarchs. Those who have less experience with insects
would probably say that (a)-(d) are open while (e)-(f) are closed butterflies. So we
see that common features are not always discriminative, and according to the task the
useful features are different. To discover discriminative object parts we use

e local or semi-local representations of images to describe object parts,
e a way to measure their usefulness, and select discriminative features.

Sparse local representations are typically computed on a set of interest point
locations. Their aim is to describe the regions by keeping distinctive information, and
at the same time providing robustness to small translations and noise. Local repre-
sentation of images offer a solution to deal with occlusion and cluttered background:
individual descriptors only store information of the local content, and therefore they are
not distracted by other parts of the image. The influential work of Schmid and Mohr
(1997) is the first that uses interest points for content based object recognition. In-
terest points are automatically detected image locations, such as corners or centers of
blobs. They allow to create a sparse local representation of images by selecting regions
which keep distinctive information, and at the same time provide robustness to small
translations and noise. In the last few years these points became invariant to various
image transformations, like changes in viewpoint and scale. At the time of writing at
least a dozen of these detectors exist all selecting regions by different criteria. The
combination of interest points detectors and local descriptors allows sparse and robust
representation of object, scenes, or textures. Rotated objects, scenes from different
viewpoints or with illumination changes are challenges that can be solved already at
representation level, i.e., there is no need to learn those by examples.

State of the art methods provide relatively good solutions for recognizing specific
objects, such as a given bicycle or car, by matching local appearance. However, de-
tection of object categories requires additional generalization capabilities to deal with
intra-class variability. Discriminative feature selection methods can guide object
recognition to find category-discriminative object parts and to discard unnecessary
background features. These methods are recent tools in computer vision adopted from
the text literature. Local representation of images and standard learning techniques,
such as vector quantization, have built a bridge between computer vision and text
recognition. Our images become visual documents and the quantized local descriptors
became visual words. Owing to a huge availability of documents, the text community
has early realized the need for discriminative feature selection. For example, to index
news directories or web pages, relevant information has to be selected to train clas-
sifiers to recognize different categories. In the last few years, the growing number of
examples (Internet) directed researchers to improve classification efficiency and accu-
racy. One essential topic of this research is feature selection. In this thesis we apply
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these techniques to computer vision. In object category recognition, local representa-
tion and feature selection together help to develop high performance automatic tools
for object and texture recognition, categorization and detection, for scene analysis,
and for image indexing.

1.3 Contributions

In this thesis we discuss and offer solutions for recent problems of image representation
and object detection. The key contributions are the following:

Interest Point Detection by Maximally Stable Local Image Representation

Many interest point detectors and local descriptors have been developed during the
last few years. Their quality depends on the task. For example, some perform well
for image matching while others are better for object recognition. Their behavior can
be explained by the different ways they select image regions and incorporate various
feature properties. As an examples, image classification or image retrieval may only
match the local regions purely by appearance, i.e., ignoring their scales, locations, and
spatial organization. For other applications, such as image matching or camera calibra-
tion, these properties are very important, and many times their estimation is unstable
or noisy. Consequently, the quality of interest point detectors is not straightforward
to measure, since different methods should be used depending on the context. Our
experience has shown that one of the weakest properties of scale-invariant detectors
is the scale estimation. This thesis proposes a novel method to determine (select) the
characteristic scales for interest point detectors. Our idea is to use an appropriately
chosen descriptor to select regions for which this descriptor is maximally stable. Exper-
imental results show that our new criterion improves performance for image matching
in challenging environments, such as variation in illumination conditions. Due to a
more stable appearance-based representation, texture categorization on popular sets
shows 3 — 10% improvement, with the new detectors.

Feature Selection for Local descriptors

In this thesis we adapt and compare several techniques from the text literature, most
of which are new in vision. We analyze several feature properties including feature
frequency, i.e., how often a feature appears, discriminative power to separate object
from background, and redundancy. Different trade-offs between properties are pointed
out, and selection methods are distinguished (grouped) accordingly. By the correct
combination of these properties, i.e., by choosing the selection method wisely for a
given task, we show how to achieve good recognition performance with many or just a
sparse set of features. Our experiments evaluate class-discriminative feature selection
for invariant local features.
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Improved Object Class Recognition via Feature Ranking and Selection

We have chosen object category classification and localization to demonstrate the
performance of discriminative feature selection. A simple classification framework
demonstrates that discovering discriminative features can directly be used for object
recognition. Selection methods on different types of features are compared and dis-
cussed for three different tasks: Object feature retrieval tries to recall features provid-
ing the best object coverage, while keeping the background featureless or very sparse.
Appearance-based object classification uses discriminative features to decide about the
presence of an object class in images. Object class localization aims to determine the
exact position of unseen object instances in test images. For localization we extend
an existing state-of-the-art method by incorporating feature ranks. This leads to a
faster system with improved performance. We additionally extend the framework for
rotation invariant training and detection.

1.4 Applications

Advances such as discriminative feature selection and scale-invariant local represen-
tations, discussed in this thesis, help to analyze and improve state-of-the-art image
representation and object recognition techniques. In the following we list a few exam-
ples among a wide range of possible applications.

Surveillance and Security

One of the most useful applications of object recognition are surveillance systems.
Recent security systems based on photography or CCTV (Closed Circuit Television)
use computer vision to match digital images taken from cameras with images stored in a
database. Discriminative feature selection may help to determine an important subset
of features in advance, and therefore increase the system quality and performance.

Manufacturing Processes and Quality Control

Improved feature extraction and local description of images can help industrial ap-
plication to support manufacturing processes. Many quality control methods employ
computer vision. They are based on statistical analysis of detected features, and aim
to reduce the amount of faulty products, in order to meet customer requirements.

Autonomous Vehicles

Even though autonomous driving cars are not yet available for the market, manufactur-
ers have already demonstrated preliminary prototypes and driving systems. Learning
and rapid discovery of useful features, such as parts of other cars or obstacles, can
guide or help the drivers increasing their safety. UAVs (unmanned aerial vehicles) first
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were used for surveillance, and nowadays, almost all major military have them. They
are also used to monitor traffic, detect certain events, such as forest fires. Robust local
image representation and focus of attention mechanism (feature selection) help those
vehicles for better motion planning, navigation, scene analysis (to detect where it is),
or improved SLAM techniques®.

Web Search and Content Based Image Retrieval

Did you know that the verb GOOGLE? has been added to the New Oxford American
Dictionary? The Internet search engines have become a part of our everyday life.
Researchers from the text domain have implemented discriminative feature selection
so successfully that search engines generate around 85% of the total web traffic. Now it
is our turn to index images. Many recent search engines, such as Google, MSN, Lycos,
Yahoo, Altavista, and A9 support search for images. However their algorithm is based
on purely textual information, such as filenames, image meta-data, and surrounding
HTML content. While many times this is sufficient, indexing by image content would
improve current performance, as well as open new possibilities:

e visual similarity between images helps to reject incorrect matches, and increase
the recall by discovering new correct ones,

e queries can be based on images instead of text; e.g., we can look for a certain
car by its picture, or find our copyright protected images and identify fraud,

e given an image or images of someone or something, e.g., a famous building or an
actress, we can recover its identity, such as its place and name,

e mixed text and image queries can provide a richer way of looking for information.

In order to efficiently index and rank images, the correct features have to be generated
and selected. Discriminative feature selection may help to develop domain specific
search engines, as well as to find the most informative features in general.

Video Indexing

Digital videos are now available not only for professionals but also for everyday people.
DVD players and recorders, recent digital cameras, and high speed Internet connec-
tions made indexing for videos as important as for images. Videos can be seen as a
sequence of images, and therefore many techniques from images can be applied without

1In Simultaneous Localization And Mapping (SLAM), the quality of the iteratively built map can be refined and
therefore improved by matching discriminative local features over time.

2g;oo-g;le |'googel| (also Goo-gle) - verb informal [ intrans. | use an Internet search engine, particularly Google.com:
she spent the afternoon googling aimlessly. - [ trans. | search for the name of (someone) on the Internet to find out
information about them: you meet someone, swap numbers, fiz a date, then Google them through 1,3/6,966,000 Web
pages. ORIGIN: from Google, the proprietary name of a popular Internet search engine.
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major modification. However, adding temporal information to the feature space opens
new perspectives, such as searching for certain actions. Presently only preliminary
versions of video web search are available on major sites (Google, Yahoo, Altavista,
A9) and similarly to images, their indices are build on textual information only. Dis-
criminative feature selection could help to built domain specific search, e.g., looking
for the appearance of an actor in a movie, or to determine the difference between
actions. Scene analysis can guide professionals when editing movies, or can identify
viewers preferences (e.g., improve TiVo suggestions).

1.5 Overview

The manuscript is organized as follows. Chapter 2 introduces a sparse local image
representation with interest point detectors and local descriptors. In Section 2.2 we
describe our new scale selection method. Evaluation and comparison with existing
techniques are carried out for image matching (Section 2.3), object and texture clas-
sification (Section 2.4 and Section 4.1.3), and object localization (Section 4.2.2).

Chapter 3 introduces different selection and ranking techniques. In Section 3.3 we
build the link between image representation and features by creating visual words, and
experimentally compare the introduced selection techniques for object feature retrieval.
Chapter 4 integrates feature selection into a framework for object recognition. First we
show an application to recognize the presence or absence of objects in images (image
classification), and compare the results of different features and selection methods. In
Section 4.2 we show how to improve object localization by class-discriminative feature
ranking.
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SECOND CHAPTER

Local Image Representation

Scale Selection via Maximally Stable Local Description

LOCAL photometric descriptors computed at keypoints have demonstrated excellent
results in many vision applications, including object recognition (Fergus et al.,
2003; Opelt et al., 2004), image matching (Schaffalitzky and Zisserman, 2002), and
sparse texture representation (Lazebnik et al., 2003). Recent work has concentrated
on making these descriptors invariant to image transformations. This requires con-
structing invariant image regions which are then used as support regions to compute
invariant descriptors. In most cases a detected region is described by an independently
chosen descriptor. It would, however, be advantageous to use a description adapted to
the region. For example, for blob-like detectors which extract regions surrounded by
edges, a natural choice would be a descriptor based on those edges. However, those
adapted representations may not provide enough discriminative information for the
region, and consequently, a general purpose descriptor (e.g. wavelets, shape-context,
SIFT, etc.) might be a better choice. Many times this leads to better performance,
yet less stable representations: small changes in scale or location can alter the descrip-
tors significantly. Our experiments have shown that the most sensitive component of
keypoint-based scale-invariant detectors is the scale selection. This motivated us to
develop a novel detector which uses the descriptor chosen for the given task to select
the characteristic scales. Our feature detection approach consists of two steps. We
first apply an interest point detector on multiple scales to determine informative and
repeatable locations. For each position we then apply a scale selection algorithm to
identify maximally stable representations, i.e., a scale for which a local descriptor is
the most stable. The local description can be any measure that can be computed
on a pixel neighborhood, such as color histograms, steerable filters and wavelets. For
our experiments we chose the Scale-Invariant Feature Transform (SIFT) (Lowe, 2004),
which has proven excellent performance for object representation and image match-
ing (Mikolajczyk and Schmid, 2004a).

Our new method for scale-invariant keypoint detection and image representation
has the following properties:



22 Chapter 2. Local Image Representation

e Our scale selection method guarantees more stable descriptors than state-of-the-
art techniques by explicitly using descriptors during keypoint detection. The
stability criterion is developed to minimize the variation of the descriptor for a
small change in scale.

e Repeatable locations are provided by interest point detectors (e.g. Harris), and
therefore they have rich and salient neighborhoods. This consequently helps to
choose repeatable and characteristic scales. We verify this experimentally, and
show that our selection competes favorably with the best available detectors.

e The detector takes advantage of the properties of the local descriptor. This can
include invariance to illumination or rotation as well as robustness to noise. Our
experiments show that the local invariant image representation extracted by our
algorithm leads to significant improvement for object and texture recognition.

Related Work

For selecting local invariant regions, many different scale- and affine-invariant detec-
tors exist in the literature. Harris-Laplace (Mikolajczyk and Schmid, 2004b) detects
multi-scale keypoint locations with the Harris detector (Harris and Stephens, 1988)
and the characteristic scales are then determined by the Laplacian operator. Loca-
tions based on Harris points are very accurate. However, scale estimation is often
unstable on corner-like structures, because it depends on the exact corner location,
i.e., shifts by one pixel may modify the selected scale significantly. The scale-invariant
Laplacian detector (Lindeberg and Garding, 1994) (LoG) selects the extremal values
in location-scale space. The Difference of Gaussian (DoG) detector developed by Lowe
(2004) approximates the Laplacian, and therefore it similarly selects scale-space max-
ima to find blob-like structures. Blobs are well localized structures, but due to their
homogeneity, the information content is often poor in the center of the region. Triggs’
detector (Triggs, 2004) extends the Forstner-Harris approach to general motion models
and robust template matching by finding regions which can be accurately self-matched
under various similarity or affine transformations. This detector extracts fewer but
very stable keypoints. For instance, the rotation invariant detection rejects point-like
structures, since they cannot be well-localized (self-matched) under image rotation,
i.e., they have no characteristic orientation. The method of Kadir et al. (2004) ex-
tracts circular or elliptical regions in the image as maxima of the entropy scale-space
of region histograms. This is also a blob detector, but has been shown to provide a more
robust appearance based representation for some object categories (Kadir et al., 2004).
Mikolajezyk et al. (2005b) showed that it performs poorly for image matching, which
might be due to the sparsity of their scale quantization. Presumably performance issues
prohibit them for more extensive search in scale-space. The Intensity-Based Region
detector (Tuytelaars and Van Gool, 2004) selects multi-scale locations at extremal in-
tensity values and determines the corresponding neighborhood by discovering sudden
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nearby intensity changes. The edge-based region detector (Tuytelaars and Van Gool,
2004) finds quadrangular segments with a corner detected by the multi-scale Harris
operator and sides determined by near edges. The object-part detector of Jurie et
al. (Jurie and Schmid, 2004) selects circular regions with the most salient convex ar-
rangement of local edges extracted by the Canny-Deriche operator. Since the detected
regions are surrounded by edges, they proposed a local image representation based on
this structure. These descriptors are however not as discriminative as other available
representations, since it only encodes information of the surrounding edges. Due to the
homogeneity of the selected regions it suffers from the same problems as other blob-like
methods. The Maximally Stable Extremal Regions (MSER) detector (Matas et al.,
2002) defines extremal regions as image segments where each inner-pixel intensity
value is less/greater than a certain threshold ¢, and all intensities around the bound-
ary are greater/less than the same ¢t. An extremal region is mazimally stable when the
area (or the boundary length) of the segment changes the least with respect to ¢. This
detector works particularly well on images with well defined edges, but is less robust
to noise and not adapted to texture-like structures. It usually selects relatively few
regions.

Viewpoint invariance is sometimes required to achieve reliable image match-
ing, object or texture recognition. Affine-invariant detectors (Kadir et al., 2004;
Matas et al., 2002; Mikolajczyk and Schmid, 2004b; Tuytelaars and Van Gool, 2004)
explicitly estimate the affine shape of the regions to allow pre-normalization of
the patch prior to the descriptor computation. The affine extension of Harris-
Laplace (Mikolajezyk and Schmid, 2004b) is similar to the one first used by
Lindeberg and Garding (1997) for shape-from-texture. It applies the affine kernel only
to fixed points to reduce the complexity of the entire affine-space. This is one of the
most widely used approaches; Lazebnik et al. (2003) use a similar technique for the
LoG detector to perform texture classification under affine transformations. However,
note, that their adaptation procedure is a post-processing step of the scale-invariant
detection based on the scatter matrix of image gradients at keypoint locations.

Mikolajczyk et al.  (2005b)  evaluated several affine-invariant  detectors.
MSER (Matas et al., 2002) performed best, closely followed by Hessian- and
Harris-Laplace. Moreels and Perona (2005) also find that Harris- and Hessian-Laplace
perform best for object recognition. Their study shows poor performance of the
MSER detector for 3D environments. Mikolajezyk et al. (2005a) experimentally
compared the performance of recently proposed detectors and descriptors for category
recognition, and found Hessian-Laplace (Mikolajezyk and Schmid, 2004b) and the
entropy detector (Kadir et al., 2004) to be the most suitable.

Overview

This chapter is organized as follows. In Section 2.1 we present the interest point
detectors and local descriptors that are used in this chapter. Section 2.2 presents our
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Figure 2.1: Harris corner detection. (a) the original image, (b) the Harris image, (c)
the local maxima of the Harris image marked on the original image.

new scale selection technique Maximally Stable Local SIFT Description and introduces
two new detectors, Harris-MSLSD and Laplacian-MSLSD. We then compare their
performance to Harris-Laplace and the Laplacian detectors. In Section 2.3 we evaluate
the performance for image matching using a publicly available framework. Section 2.4
reports results for object-category and texture classification. Finally, in Section 2.6 we
conclude.

2.1 Background

This section provides a detailed description of the interest point detectors
of (Mikolajczyk and Schmid, 2004b; Lowe, 2004; Triggs, 2004; Lindeberg, 1998,
Matas et al., 2002), and the Scale-Invariant Feature Transform descriptor (Lowe,
2004). Our aim is not to cover the full theory of scale-invariant detectors and lo-
cal representation, but to provide sufficient background information for the techniques
that are used later in this chapter. Our experiments will compare our scale selection
to several existing techniques in the literature.

2.1.1 Interest Point Detectors
Harris Points — a corner detector

The scatter matriz (or second moment matrix) of local image gradients, [ VI VI dx,
is often used for feature detection, and it is given as

Ii(X, O'D) Iny(X, UD)

LIy (x,0p) I2(x,0p) (2.1)

p(x,01,0p) = opgor) =

Image derivatives Iy and I, are computed by convolution of Gaussian filters with
scale op (derivation scale), and locally averaged by Gaussian smoothing with scale
o; (integration scale). The eigenvalues of this matrix represent the two principal
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Figure 2.2: Extraction of multi-scale Harris points. (a) shows the multi-scale image
pyramid, (b) the computed Harris images at each scale, and (c) the image pyramid
with the multi-scale Harris points. (d) shows the detections projected back to the
original image. The radii of the circles correspond to the scale (20).

curvatures of a point x. Corner-like structures can be extracted at points where
both of these curvatures are significant in orthogonal directions. The Harris detec-
tor (Harris and Stephens, 1988) is based on this principle. The Harris cornerness
combines the determinant and trace of this matrix and defined by

det(u(x, 07, 0p)) — atrace®(u(x, o, 0p)). (2.2)

The keypoints are determined as local maxima of this value. Figure 2.1 shows a
Harris image, i.e., the cornerness for each point, and the keypoints on an example
image. Schmid et al. (2000) show that the Harris detector is superior to other methods
(Cottier, 1994; Heitger et al., 1992; Horaud et al., 1990).

Multi-Scale Interest Points

A multi-scale representation of images is crucial for many applications. A typical exam-
ple is matching scenes or objects with different scales. Many state-of-the-art methods
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are based on the Gaussian kernel. A multi-scale representation consists of a set of im-
ages at different discrete levels of scale (Witkin, 1983). Koenderink (1984) showed that
scale-space satisfies the diffusion equation for which the solution is a convolution with
a unique Gaussian kernel (Babaud et al., 1986; Lindeberg, 1990; Florack et al., 1992).
Images on coarse scales are obtained by smoothing images on finer scales with an ap-
propriate Gaussian kernel. An implementation can sample the coarser scale image by
the corresponding scale factor to accelerate the computation and this representation
is often referred as the scale-space image pyramid.

When an interest point operator is applied on multiple scales we call the detections
multi-scale interest points. Even though they are called points, they can be interpreted
as regions—points and their neighborhood—as they are parameterized by a location
x, and a scale 0. ' As for the Harris operator, Dufournaud et al. (2000) proposed
a scale adaptive extension, where the points are detected at the local maxima of
the Harris images computed at different scales. Figure 2.2 illustrates the multi-scale
Harris interest points. Figure 2.2(a) shows the original image pyramid, and (b) the
corresponding Harris images. Figure 2.2(c) marks the detections, i.e., the maxima
of (b) on the original images (a), and finally on (d) we show all the detections with
circles corresponding to the detection scale. Note, that for illustration purposes, we
omit some scale levels from the pyramids (a), (b), and (c).

Scale-Invariant Interest Points

Instead of extracting interest points for every scale level, automatic scale-selection
techniques determine one or a few characteristic scales at each location. These de-
tections are called scale-invariant interest points because they mark the same points
(x,0) on images taken at different resolutions. There are two main advantages of se-
lecting scales. First, the number of interest points is reduced by intelligent rejection
of unnecessary scales, and second, the scale becomes a new characteristic property of
the detection. Many applications, such as the one in Section 4.2, rely on this property
to perform scale-invariant learning and recognition.

One of the first scale-invariant interest point detectors is the Laplacian-of-Gaussian
(LoG) developed by Lindeberg (1998). It is based on the Gaussian scale-space (succes-
sive smoothing with Gaussian kernels), and it selects 3D local extrema of the Laplacian
filtered images. Detections are obtained on blob-like image structures. Figure 2.3(b)
shows an example detection of LoG. To demonstrate the multi-scale behavior, i.e.,
LoG without scale selection, Figure 2.3(a) shows the local extrema of the Laplacian

'Tn several multi-scale detectors that are based on second moment matrix computa-
tions, we distinguish between two scale parameters, the derivation scale (op) and the
integration scale (o) (cf.Section 2.1.1). Usually, a constant factor is used between o
and o to balance the size of the area used to calculate the statistics of local gradient
variations.
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(a) multi-scale (b) scale-invariant

Figure 2.3: The LoG detector. (a) shows all extrema of the 2D LoG function on
multiple scales. (b) LoG 3D maxima in location-scale space. Note for illustration
purposes we omit some scales from (a).

on each scale. As before, the radii of the circles indicate the scale. We can observe
that while the LoG (Figure 2.3(b)) detector selects only blob-like features, the 2D LoG
maxima (Figure 2.3(a)) includes also detections near corners and edges.

Mikolajczyk and Schmid (2001) evaluate different scale selection criteria for scale-
invariant image matching environments. Apart from the Laplacian they study the
squared image gradients, the Difference-of-Gaussians (Lowe, 2004) (the difference of
the Gaussian filter responses between two consecutive scales), and the Harris function
(2.2). Their evaluation shows that the Laplacian function selects the highest percent-
age of correct characteristic scales, and as a result they introduce the scale-invariant
Harris-Laplace (H-Lap) detector, which combines the stable Harris detector with the
Laplacian scale-selection. Unfortunately, their evaluation of scale selection functions
are carried out in general, i.e., for each pixel in the image. While it is a reasonable
assumption to transfer the results to Harris points, they did not verify the quality of
scale selection specifically on keypoint locations. Even though, they did not search
for the Harris maxima in scale space, we find it interesting to investigate the Harris
scale selection on Harris points, and include the Harris-Harris (H-Har) detector in
our experiments.

Triggs (2004) generalizes the Forstner-Harris approach to general motion models
and offers a new characteristic scale selection technique. Including scale as a (non-
translational) motion parameter forces the detections to be accurately self-matched not
only in location but also in scale-space. Since this is a more generalized Harris detector,
we call it Harris-Gen (H-Gen) in our experiments. Notice the difference between Harris-
Harris and Harris-Gen. The former computes the 2D Harris images for stable locations
and chooses the maxima of cornerness in scale-space, while Harris-Gen optimizes the
Harris keypoints for matching precision in higher dimensional (not only translational)
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(c) Harris-Gen (d) Harris-MSLSD

Figure 2.4: Scale-Invariant Harris points. The example shows the points with their
characteristic scales for each scale selection method. For illustration we omited detec-
tions with o < 2.

space. In our experiments Harris-Gen is used with rotation stability enabled, so the
motion model actually includes 4 parameters® (location+scale+rotation). Example
detections for the various Harris-based detectors can be found in Figure 2.4. Figure 2.4
(d) also shows results of our scale selection approach introduced in Section 2.2.

Maximally Stable Extremal Regions (MSER) (Matas et al., 2002) directly opti-
mizes the region shape for stability. The algorithm determines a small subset of
all regions, the so-called extremal regions, where each inner-pixel intensity value is
less/greater than a certain threshold ¢, and all intensities around the boundary is
greater/less than t. Among these extremal regions they select the ones that are
the most stable in shape. Stability is measured by the change in region area (or
boundary length) with respect to ¢. The MSER detector has been shown to perform
well (Mikolajezyk and Schmid, 2004b) for matching scenes with significant viewpoint
changes.

2In our experiments we do not include other stability properties, e.g., affine trans-
formations, illumination, etc, into H-Gen; the detector is consistently used with the
same criteria. Note, that we have tried to add other parameters, but the results were
always inferior to using location-+scale+rotation.
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Figure 2.5: The SIFT descriptor computed on a 4x4 grid with 8-bin orientation his-
tograms.

2.1.2 Local Description: Scale-Invariant Feature Transform

Local image representations are typically a set of vectors computed on image patches
at various locations. Possible choices of image descriptors are raw image intensities,
color histograms (Swain and Ballard, 1991), wavelets (Grossmann and Morlet, 1984),
steerable filters (Freeman and Adelson, 1991), moment invariants (Van Gool et al.,
1996), differential invariants (Koenderink and van Doom, 1987), complex fil-
ters (Schaffalitzky and Zisserman, 2002), shape context (Belongie et al., 2002), spin
images (Lazebnik et al., 2003), scale-invariant feature transform (SIFT) (Lowe,
2004), and its variants (Ke and Sukthankar, 2004; Lazebnik et al., 2005;
Mikolajezyk and Schmid, 2004a). Mikolajezyk and Schmid (2004a) compared
some of these descriptors and show that SIFT (Lowe, 2004) features performs
better than others. Evaluation of Moreels and Perona (2005) also found SIFT and
shape-context to perform best for object recognition. Based on their results we always
use SIFT as a local image representation.

Figure 2.5 illustrates the computation of SIFT on an image patch centered on
keypoint locations (x) and using a window size related to its scale (o). The patch is
divided by an I.SxIS grid, where IS is the index size, and is set to 4. For each cell
an OS-bin histogram of local orientations (weighted by the gradient magnitudes) is
computed (OS = 8), leading to a concatenated, 4x4*8 = 128 dimensional real vector.
These parameters were suggested by Lowe (2004), and are fixed for our experiments.
For robust description, histograms are computed with a Gaussian weighting function
(0 = half window size) and a trilinear interpolation is used to distribute the value of
each gradient sample into adjacent histogram bins (each orientation falls to 23 = 8
bins). The SIFT descriptor is normalized to unit length, providing invariance to scalar
changes in image contrast. Since the descriptor is based on gradients, it is also invariant
to additive constant changes in brightness. STF'T was originally proposed to be rotation
invariant, which is achieved by an efficient dominant gradient computation, which can
directly be used to normalize the gradients for the orientation histograms.
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Practically, many times scale-invariant interest point detections are followed by a
normalization to obtain a regular region before the computation of the descriptors.
This may include an elliptical or an irregular shape normalization to unit square or a
rotation of patches to a pre-computed characteristic orientation. In our experiments we
also follow this principle, however, rotation invariance is only applied when indicated,
i.e., in general the SIFT descriptors are computed in a non-rotation invariant way.

2.2 Scale Selection by Maximally Stable Local Description

In this section we propose a new method for selecting characteristic scales for keypoint
detectors and discuss the advantages and properties of the new approach. We address
two key features of interest point detectors: repeatability and description stability.
Repeatability determines how well the detector selects the same region under various
image transformations, and is important for image matching. In practice, due to
noise and object variations, the corresponding regions are never exactly the same
but their underlying descriptions are expected to be similar. This is what we call
the description stability, and it is important for image representation and appearance
based recognition.

The two properties, repeatability and descriptor stability, are in theory contradic-
tory. A homogeneous region provides the most stable description, whereas its shape
is in general not stable. On the other hand, if the region shape is stable, for example
using edges as region boundaries, small errors in localization will often cause signifi-
cant changes of the descriptor. Our solution is to apply the Maximally Stable Local
Description algorithm to interest point locations only. These points have repeatable
locations and informative neighborhoods. Our algorithm adjusts their scale param-
eters to stabilize the descriptions and rejects locations where the required stability
cannot be achieved. The combination of repeatable location selection and descriptor
stabilized scale selection provides a balanced solution. In Section 2.3 we show that our
new method provide comparable performance to Harris-Laplace and LoG for image
matching. Moreover, due to additional robustness (which is discussed later in this
section) they outperform their counterparts.

Scale-invariant MSLSD detectors

To select characteristic locations with high repeatability we first apply an interest
point detector at multiple scales. We chose two widely used complementary meth-
ods, Harris (Harris and Stephens, 1988) and the Laplacian (Blostein and Ahuja, 1989;
Lindeberg, 1998) detectors. The second step of our approach selects the characteristic
scales for each keypoint location. We use description stability as criterion for scale
selection: the scale for each location is chosen such that the corresponding representa-
tion (in our case SIFT (Lowe, 2004)) changes the least with respect to scale. Figure 2.6
illustrates our selection method for two Harris points. The two graphs show how the
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Figure 2.6: Two examples of scale selection. The left and right graphs show the change
of the local description as a function of scale for the left and right points respectively.
The scales for which the functions have local minima are shown in the image. The
bright thick circles corresponds to the global minima.

descriptors change as we increase the scale (the radius of the region) for the two key-
points. To measure the difference between SIFT descriptions we use the Euclidean
distance as in (Lowe, 2004). The minima of the functions determine the scales where
the descriptions are the most stable; their corresponding regions are depicted by cir-
cles in the image. Our algorithm selects the absolute minimum (shown as bright thick
circles) for each point, yet in cases of extreme scale changes we recommend choosing
all minima and discovering multiple sparse selections of scales per keypoint locations.
Multi-scale points which correspond to the same image structure often have the same
absolute minimum, i.e., result in the same region. In this case only one of them is kept
in our implementation. To limit the number of selected regions an additional threshold
can be used to reject unstable keypoints, i.e., if the minimum change of description
is above a certain value the keypoint location is rejected. For each point we use a
percentage of the maximum change over scales at the point location, set to 50% in our
experiments.

Our algorithm is in the following referred to as Maximally Stable Local SIFT De-
scription (MSLSD). Depending on the location detector we add the prefix H for Harris
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and L for Laplacian, i.e., H-MSLSD and L-MSLSD.

Illumination and Rotation Invariance

Our new detectors are robust to illumination changes, as our scale selection is based on
the SIF'T descriptor. Recall, that the SIF'T descriptor is invariant to affine illumination
changes.

Many applications require representations that are invariant to similarity transfor-
mations including rotation. This is either achieved by a rotation invariant descrip-
tor (Lazebnik et al., 2003), or, as we discussed when we introduced SIFT, by the
extraction of a dominant orientation. In case of SIFT, if detected keypoints have
poorly defined orientations, the resulting descriptions may become unstable and noisy.
(This is not the case if the detected regions have a centered circular texture or they are
completly homogenious.) In our algorithm, we orient the patch in the dominant direc-
tion prior to the descriptor computation for each scale. Maximal description stability
is then found for locations with well defined local gradients. In our experiments a -R
suffix indicates rotation invariance. Experimental results in Section 2.4 show that our
integrated estimation of the dominant orientation can significantly improve results, in
contrast to other detectors lacking this type of stability.

Affine invariance

The affine extension of our detector is based on the affine adaptation
in (Lindeberg and Garding, 1994; Baumberg, 2000), where the shape of the elliptical
region is determined by the second moment matrix of the intensity gradient. However,
unlike other detectors (Lazebnik et al., 2003; Mikolajczyk and Schmid, 2004b), we do
not use this estimation as a post-processing step after scale selection, but estimate the
elliptical region prior to the descriptor computation for each scale. When the affine
adaptation is unstable, i.e., sensitive to small changes of the initial scale, the descrip-
tor changes significantly and the region is rejected. This improves the robustness of
our affine-invariant representation. In our experiments an -Aff suffix indicates affine
invariance. Full affine invariance requires rotation invariance, as the shape of each el-
liptical region is transformed into a circle reducing the affine ambiguity to a rotational
one. Rotation normalization of the patch is, therefore, always included when affine
invariance is used in our experiments.

Illustration of Scale Selection

Table 2.1 shows the number of extracted interest points for the motorbike image from
Figure 2.6 (640x480). On the left, Harris and Laplacian interest points are extracted
on each scale. Note that the number of multi-scale detections depends on the multi-
plier between neighboring scales of the image pyramid (1.2 in our case). On the right,
we show the reduced number of points by the characteristic scale selection. The first
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Scale-invariant detector | # of points
Harris-Laplace 1011
Detector ‘ # of points Harris-Harris 283
Multi-Scale Harris 2228 Harris-Gen 66
Multi-Scale Laplacian 4893 Our H-MSLSD 1225
LoG 2862
Our L-MSLSD 1261

Table 2.1: The number of interest points extracted for the image in Figure 2.6. On
the left we shows multi-scale points with 1.2 multiplier between scales. On the right
we show the results after scale selection with Harris-Laplace and Harris-Harris, Harris-
Gen, our new H-MSLSD, and for LLoG and our new L-MSLSD. See text for details.
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Figure 2.7: Number of selected points with gradually increased multi-scale points.
Selection Ratio is define in (2.3) See text for discussion.

line shows the Harris-Laplace detector (Mikolajczyk and Schmid, 2001) followed by
the other Harris-based detectors in the next three rows. The last two rows show scale
selections on Laplacian points. In practice, to further limit the number of selected
regions an additional threshold can be used to reject unstable keypoints. Apart from
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LoG and Harris-Harris detectors, two separate thresholds can be set, one for the loca-
tion and one for the scale function. Please also note that rotation invariance, which is
enabled in these examples, further reduced the numbers of points found by Harris-Gen,

H-MSLSD, and L-MSLSD.
Using a fixed image pyramid we define the scale selection ratio as

. . Scale Invariant Points
Selection Ratio = Multi Scalo Points (2.3)
Table 2.1 shows that H-Lap, H-MSLSD, LoG and L-MSLSD provide sufficient amount
of detections, yet at the same time, their scale selection ratio is relative high, i.e., they
keep many of the multi-scale points.

Figure 2.7 analyzes how much the detected number of points depends on the scale-
space pyramid. We gradually change the scale multiplier between 1.5 and 1.03 and
plot the number of scale-invariant points as a function of multi-scale points. Since
the absolute number of points for each detector may easily be altered by a threshold,
the interesting part of the curves are their shapes. One would expect that after a
certain level adding intermediate new layers in the pyramid should not increase the
number of detections. Surprisingly, the H-Lap detector (almost straight line) always
selects a certain ratio of multi-scale points. This could be caused by noise or imprecise
Laplacian scale selection on Harris points. The selection ratio of H-Har detector begins
as expected, but after 3000 multi-scale points it actually starts to increase. H-Gen and
H-MSLSD both demonstrate the expected descending shape. In case of the Laplacian-
based detectors (Figure 2.7 second line), we draw similar conclusions, MSLSD stops
increasing the number of detections after a certain limit. The expected behavior of
our MSLSD implementation is probably due the smoothing factor introduced in our
implementation during the computation of descriptor differences. It explicitly removes
high frequency noise from the scale selection function. Also note that our scale selection
always uses a finer scale-step then the multi-scale initialization.

2.3 Evaluation for image matching

This section evaluates the performance of the new detectors for image matching based
on the evaluation framework in (Mikolajczyk et al., 2005b). 3 We compare our results
to H-Lap, H-Har, H-Gen and LoG respectively. The two main evaluation criteria of
the framework we also applied are repeatability and matching rates.

The repeatability rate measures how well the detector selects the same scene region
under various image transformations. Each sequence has one reference image and five
images with known homographies to the reference image. Regions are detected for
the images and their accuracy is measured by the amount of overlap between the

3The evaluation script may be downloaded from
http://www.robots.ox.ac.uk /~vgg/research /affine /evaluation.html.
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reference image images from the sequence

Figure 2.8: Image sequences used in the matching experiments. (a) and (b) are
sequences with viewpoint change, while (¢) contains illumination change. The
first column shows the reference image, the other images are examples which ho-
mography is known to the reference. These sequences may be downloaded from
http://www.robots.ox.ac.uk/~vgg /research /affine /index.html.

detected region and the corresponding region projected from the reference image with
the known homography. Two regions are matched if their overlap error is sufficiently

small:
_ Ry, 0 Rgr i

Ry, U Ry, m) 0
where R, is the elliptic or circular region extracted by the detector and H is the
homography between the two images. The union (R, UR g, i)) and the intersection
(R, N Rgry,m) of the detected and projected regions are computed numerically. As
in (Mikolajczyk et al., 2005b) the maximum possible overlap error €o is set to 40% in
our experiments. The repeatability score is the ratio between the correct matches and
the smaller number of detected regions in the pair of images.

The second criterion, the matching score, measures the discriminative power of the
detected regions. Each descriptor is matched to its nearest neighbor in the second im-
age. This match is marked as correct if it corresponds to a region match with maximum
overlap error 40%. The matching score is the ratio between the correct matches and
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the smaller number of detected regions in the pair of images. See (Mikolajczyk et al.,
2005b) for more detailed discussion of the procedure.

2.3.1 Viewpoint Changes

The performance of our detectors for viewpoint changes is evaluated on two different
image sequences with viewpoint changes from 20 to 60 degrees. Figure 2.8(a) shows
sample images of the graffiti sequence. This sequence has well defined edges, whereas
the wall sequence (Figure 2.8(b)) is more texture-like.

Figure 2.9 shows the repeatability rate and the matching scores as well as the num-
ber of matches for different affine-invariant detectors. The ordering of the detectors is
very similar for the criteria repeatability rate and matching score, as expected. In the
following we focus on the comparison of H-MSLSD-Aff to the other Harris based detec-
tors, and L-MSLSD-Aff to LoG-Aff respectively. On the graffiti sequence (Figure 2.9,
first row) the original Harris-Laplace (H-Lap-Aff) detector performs better than the
other Harris detectors. On this sequence the new H-MSLSD-Aff are outperformed
by H-Lap-Aff and H-Har-Aff. On the wall sequence, a more natural scene, results
for H-MSLSD-Aff are slightly better than for H-L-Aff. This shows that the Lapla-
cian scale selection provides good repeatability mainly in the presence of well defined
edges. In case of the Laplacian our detector (L-MSLSD-Aff) outperforms the original
one (LoG) for both sequences. This can be explained by the fact that LoG-Aff detects
a large number of unstable (poorly repeatable) regions for nearly parallel edges, see
Figure 2.10. A small shift or scale change of the initial regions can lead to completely
different affine parameters of LoG-Aff. These regions are rejected by L-MSLSD-Aff,
as the varying affine parameters cause large changes in the local description over con-
secutive scale parameters. Note that in case of affine divergence all detectors reject
the points. This example clearly shows that description stability may lead to more
repeatable regions. In case of natural scenes, as for example the wall sequence, this ad-
vantage is even more apparent, i.e., the difference between L-MSLSD-Aff over LoG-Aff
is higher than for the graffiti sequence.

We can observe that we obtain a significantly higher number of correct matches
with our L.-MSLSD. This is due to a larger number of detected regions. This could
increase the probability of accidental matches. To ensure that this did not bias our
results—and to evaluate the effect of the detected region density—we compared the
performance for different Laplacian thresholds for the L-MSLSD detector. Note that
the Laplacian threshold determines the number of detections in location space, whereas
the scale threshold rejects unstable locations and remains fixed throughout the thesis.
Figure 2.11 shows that as the number of correct matches gradually decrease, the quality
of the descriptors (matching score) stays the same. Consequently, we can conclude that
the quality of the detections does not depend on the density of the extracted regions.

Figure 2.12 shows that in case of small viewpoint changes the scale-invariant ver-
sions of the detectors perform better than the ones with affine invariance. It also allows
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Figure 2.9: Comparison of detectors on viewpoint invariant sequences. The repeata-
bilities, matching scores and the number of matches are computed on the graffiti (first
row) and on the wall (second row) sequences. See text for discussion.
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Figure 2.10: Output of LoG detection on a part of a graffiti image. On the left, the
output of the standard LoG detector which is at the same time the input (initialization)
of the affine adapted LoG (middle). On the right, the output of the new L-MSLSD-
Affine. See text for discussion.
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Figure 2.11: L-MSLSD results on the wall sequence while the threshold of the detector
is gradually increased (20,25,30,35). Higher threshold implies fewer detection and
consequently a smaller number of absolute matches (second column).

to compare the scale-invariant detectors. On the graffiti images the original H-Lap and
H-Gen performs better than its affine adapted version until 30° of viewpoint change.
For our detector this transition occurs later around 40°. In the case of L-MSLSD
and LoG the curves cross around 35° and 40° respectively. Interestingly, H-Har-Aff
performs better on this sequence than H-Har. On the wall sequence it is almost never
helpful to use the affine adaptation, scale invariance is sufficient until 55 — 60°. We
can conclude that the use of affine invariance is not necessary unless the viewpoint
changes are significant, and that it is more helpful in case of structured scenes. We
can also observe that the scale-invariant versions H-Lap and H-MSLSD give compara-
ble results for the graffiti sequence, whereas in the case of affine invariance H-Lap-Aff
outperforms H-MSLSD-Aff. In the other cases, our scale-invariant detectors outper-
form their standard versions. In addition, the improvement of our detectors over the
standard versions is more significant for scale invariance than for affine invariance, in
particular for the Laplacian and the wall sequence.
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Figure 2.12: Comparison of using invariant detectors with and without affine estima-
tion on the graffiti (first row) and the wall (second row) sequences. First column show
results with the Harris, while the second is with the Laplacian-based detectors. See
text for discussion.

2.3.2 Changes in Illumination

Section 2.2 motivated that our scale selection method offers robustness to properties
provided by the underlying representation, in this case to illumination changes by
SIFT. In this section, experiments are carried out for the Leuven sequence (Figure 2.8
(c)), i.e., images of the same scene under gradually reduced camera aperture. Fig-
ure 2.13 shows that the repeatability rate and matching score are significantly higher
for our Harris- and Laplacian-based detectors than for the other Harris-based and
LoG detectors respectively. This confirms that our scale selection is robust to lighting
conditions as it is based on the SIFT descriptor which, recall, is invariant to affine
illumination changes.

2.3.3 Overall Performance

Mikolajezyk et al. (Mikolajezyk et al., 2005b) reported MSER, (Maximally Stable Ex-
tremal Regions (Matas et al., 2002)) as the best affine-invariant detector on the three
image sequences used here. Figure 2.14 compares the matching score of our detectors
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Figure 2.13: Detector performance on the Leuven sequence(illumination change). See
text for discussion.
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Figure 2.14: Comparison of the matching scores obtained for our detectors, H-MSLSD-
Aff and L-MSLSD-Aff, and MSER.

to the performance of MSER on these sequences. Note that our results are directly
comparable to the other detectors reported in (Mikolajezyk et al., 2005b), as we use
the same dataset and evaluation criteria. We can observe that L-MSLSD outper-
forms MSER on the wall sequence and that H-MSLSD performs better than MSER
on the Leuven sequence. MSER gives better results than other detectors on the graf-
fiti images. Note that due to the image structure of the graffiti scenes MSER selects
significantly fewer keypoints than the other detectors.
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Detector Caltech databases TUGraz1 databases
Motorbikes | Airplanes | Bicycles | People
H-Lap 98.25 97.75 92.0 86.0
H-Har 97.25 97.75 86.0 78.0
H-Gen 97.75 97.00 88.0 72.0
H-MSLSD 98.5 99.25 94.0 86.0
LoG 98.75 98.75 90.0 78.0
L-MSLSD 98.75 98.75 92.0 80.0
MSER 98.5 91.5 84.0 72.0
Fergus 96.0 94.0 n.a. n.a.
Opelt 92.2 90.2 86.5 80.8

Table 2.2: Object class recognition results using seven different features sets and
four different databases. Classification rates are reported at EER and compared to
Fergus et al. (2003); Opelt et al. (2004).

2.4 Evaluation for image categorization

In this section we evaluate our new detectors for object and texture categoriza-
tion. In both cases we perform image classification based on the bag-of-kepoints
approach (Csurka et al., 2004). Tmages are represented as histograms of visual word
occurrences, where the visual words are clusters of local descriptors. The histograms
of the training images are used to train a linear SVM classifier. In the case of object
categorization the output of the SVM determines the presence or absence of a cate-
gory in a test image. For multi-class texture classification we use the 1-vs-1 strategy.
Vocabularies are constructed by the K-Means algorithm separately for each each class.
The number of clusters is fixed for each category, i.e., does not depend on the detector
(400 for motorbikes and airplanes, 200 for bicycles, 100 for people, 1120 for Brodatz,
and 1000 for KTH-TIPS). In all experiments we compare H-L to H-MSLSD and LoG
to L-MSLSD and our representation is always SIFT.

Evaluation for category classification

The experiments are performed for four different datasets. Motorbikes and airplanes of
the CalTech dataset (Fergus et al., 2003) contain 800 images of objects and 900 images
of background. Half of the sets are used for training and the other half for testing. The
split of the positive sets is exactly the same as (Fergus et al., 2003). The TUGRAZ-1
dataset (Opelt et al., 2004) contains people, bicycles, and a background class. We use
the same training and test sets for two-class classification as (Opelt et al., 2004).
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Brodatz

Figure 2.15: Example images from Brodatz and KTH-TIPS databases

Table 2.2 reports the classification rate at the EER* for four databases and seven
different detectors. The last rows columns give results from the literature. We can
observe that in most cases our detectors give better results when compared to their
standard versions. In the remaining cases the results are exactly the same. This
demonstrates that the local description based on our detectors is more stable and
representative of the data. Comparison to other detectors are reported in Section 4.1.3.
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Database ||H-Lap-R|H-Har-R |H-Gen-R|H-MSLSD-R || LoG-R | L-MSLSD-R
Brodatz 88.3+0.6 34.5+1.0 81.6x0.5 92.0z05 90.5+0.5 95.8:0.4
KTH-TIPS || 83.9411 | 42.5422 | 52.5412 88.4:009 71.2415] 81.1+12

Table 2.3: Multi-class texture classification for two different datasets. Columns show
results for different detectors, here their rotation invariant versions. Random class-
assignment would give 10% on KTH-TIPS (10 classes) and 0.9% on Brodatz (112
classes). See text for more discussion.

Evaluation for texture classification

Experiments are carried out on two different texture databases: Brodatz (Brodatz,
1966) and KTH-TIPS (Hayman et al., 2004). The Brodatz dataset consists of 112
different texture images, each of which is divided into 9 non-overlapping sub-images.
The KTH-TIPS texture dataset contains 10 texture classes with 81 images per class.
Images are captured at 9 scales, viewed under three different illumination directions
and three different poses. Our training set contains 3 sub-images per class for Brodatz
and 40 images per class for KTH-TIPS. Each experiment is repeated 400 times using
different random splits and results are reported as the average accuracy on the folds
with their standard deviation over the 400 runs. Table 2.3 compares the results of our
detectors H-MSLSD-R and L-MSLSD-R to H-Lap-R, H-Har-R, H-Gen-R and LoG-R.
Note that we use the rotation invariant version here, as rotation invariance allows to
group similar texture structures. We can observe that our scale selection technique,
MSLSD, improves the results significantly in all cases. The poor performance of H-Har
is due to the small number of detected features, for example on the Brodatz dataset
H-Har did not detected any points in 285 images from 46 classes. This agrees with the
conclusion of Mikolajczyk (2002, p.52 and p.58) that the Harris function rarely attains
maxima in scale space.

Table 2.3 show result for a rotation invariant SIFT representation, for which
the patch is rotated in the direction of the gradient orientation. Depending on the
database, rotation invariance may help to group similar structures together and im-
prove the classification accuracy. On the other hand making descriptors more similar,
i.e., impose additional invariance, may result in performance drop. Consequently the
following set of experiments, results reported in Table 2.4, analyzes the influence of ro-
tation invariance on the representation. Results for the state-of-the-art detectors are,
with one exception (LoG on the Brodatz dataset), better without, whereas results for
our detectors are always better with rotation invariance. Notice that our improvement

4The Equal-Error-Rate is a standard way to compare recognition results of Receiver
Operation Characteristic curves. It corresponds to the point where the classification
errors on the positive and negative examples are equal, i.e., p(TruePositives) = 1 —
p(FalsePositives).
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Brodatz KTH-TIPS

Detector || no rot.inv. | rot.inv.(-R) Detector || no rot.inv. | rot.inv.(-R)
H—Lap 89.2+0.6 +— 88.310.6 H—Lap 85.8+1.1 +— 83.9+11
H-Har 36.9+1.0 +— 34.5x10 H-Har 43.813.0 — 42.5122
H-Gen 84.0x05 <+ 81.6+05 H-Gen 61.3+13 <— D2.5+12
H-MSLSD 91.5+0.6 — 92.0+0.5 H-MSLSD 88.1+12 —> 88.4+00
LoG 90.1x05 — 90.5+05 LoG 731115 — 71.2115
L-MSLSD 94.2405  — 95.8+04 L-MSLSD 80.9+13  — 81.1+12

(a) (b)

Table 2.4: Classification accuracy with and without rotation invariance. Results for
(a) Brodatz and (b) KTH-TIPS datasets and different detectors.

may also be achieved on databases, such as Brodatz, where textures are not rotated.
In our opinion, the poor performance of the existing detectors is due to an unstable
estimation of the orientation leading to significant errors/noise in the descriptions.
Note, that the orientation of the patch is estimated after the region detection. In
our MSLSD method rotation estimation is integrated into the scale selection criterion
(cf. Section 2.2) which implies that only regions with stable dominant gradients are
selected, and it therefore improves the quality of the image representation.

Table 2.4 shows the results for both Brodatz and KTH-TIPS texture datasets.
Surprisingly, results for the state-of-the-art detectors are in general better without
rotation invariance, whereas results for our method are improved by the additional
normalization. The only exception is LoG on the Brodatz dataset, that shows a small
improvement using rotation invariant description. The poor performance of the ex-
isting detectors is due to unstable orientation estimation which leads to significant
errors/noise in the descriptor. In our MSLSD method rotation estimation is included
into the scale selection criterion which implies that only regions with stable dominant
gradients are selected, and therefore it improves the quality of the texture representa-
tions. Notice that improvement may also be achieved on databases, such as Brodatz,
where textures are not rotated.

2.5 Implementation Details

In this section we present implementation details and the parameters used in our
experiments.
Interest Point Detectors

Harris-Gen and MSER. In the case of these two detectors, we use the implementa-
tion provided by their authors (Triggs, 2004; Matas et al., 2002) with default
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parameters. For the Harris-Gen detector we use the location-+scale+rotation
(4D) stability criteria.

Harris-Laplace. Our implementation is based on the PhD thesis of Mikolajczyk (2002).
First, we build a multi-scale pyramid, with a scale factor of 1.3, and apply the
Harris corner detector with a threshold of 300 for every scale. Then, a scale
selection algorithm verifies if the Laplacian function has a local extremum on
each detected Harris points. If the scale selection criterium is not fulfilled, or the
absolute value of the Laplacian is below a certain threshold (3.0), the keypoint
is rejected.

Harris-Harris. This detector is implemented very similarly to Harris-Laplace. We build
a multi-scale pyramid using the same parameters, i.e., a scale factor of 1.3, and
compute Harris images for each scale. The difference is that here we use the
Harris functions for scale selection. For each keypoint point we ensure that it
has a maximum cornerness w.r.t. it neighbors both in location and scale space.
For the Harris function we additionally used a threshold of 300, similarly to
Harris-Laplace.

LoG. The implementation of this keypoint detector starts similarly as the two previous
detectors, but for each image in the muli-scale pyramid we compute 2D Laplacian
images. Keypoints in location space are selected by thresholding these images
with the value of 15. For each candidate locations, we then verify if its Laplacian
has an extrema on scale space. Otherwise, the keypoint is rejected.

H-MSLSD and L-MSLSD. We start by building a multi-scale pyramid. For each scale,
we compute Harris or Laplacian images accordingly. The potential keypoint lo-
cations are selected on each scale using the same criteria as for Harris-Laplace
or LoG (see above): the thresholds are also the same, 300 for Harris, and 15 for
the Laplacian. For each candidate locations, we optimize the descriptor stability
criterion in function of scale. During this optimization the change of description
is computed for a denser scale-space with a scale factor of 1.05, in contrast to
1.3, which is used only in the initialization phase, i.e., determine possible charac-
teristic locations. The absolute minimum of descriptor change on the smoothed
(Gaussian o = 3) descriptor-change function is then the selected characteristic
scale. It may happen that candidates that are close by, or that on different scales
correspond to the same image structure, have the same absolute minimum in our
final selection, i.e., after optimization they result in the same region. In this case
only one of them is kept in our implementation. To limit the number of selected
regions, and to impose higher stability, an additional threshold is used to reject
unstable keypoints. In our implementation this is a threshold relative to the
maximum change in description, 50% in our experiments.
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In general all keypoint detectors are applied to the images without any preprocess-
ing. In our experiments all points detected below scale 2 are omitted, as they have
too little information to compute appearance descriptors.

Invariances

Rotation invariance is achieved by estimating the dominant orientation, and by pre-
rotating the patch before descriptor computation. For the dominant orientation we
use the gradient direction in the center of the patch estimated with the appropriate
Gaussian kernel according to the detection scale.

The affine adaptation for all detectors is based on the second moment matrix of the
intensity gradient, and it is identical for all the above detectors, but MSER. Rotation
invariance is always included when affine invariance is used. For the MSER detector
an ellipse is fitted on the detected region to determine the affine shape of the region.
The keypoint location is the center of the ellipse.

Local Descriptors

Before computing the descriptors, regions are normalized to obtain the required in-
variance. We map each neighborhood to a standard circular region, with smoothing in
the case of downscaling. For all experiments in this thesis we use the SIFT descriptor
with a 4x4 grid (index size), and with 8 bin orientation histograms. The resulting di-
mension of the descriptor is 128. The descriptor is first normalized to unit length, then
bin values larger than 0.2 are truncated, and the vector is renormalized. Scales of key-
points detected by Harris-Laplace, Harris-Harris, Harris-Gen and LoG are multiplied
by a factor of 2 prior to descriptor computation.

Image Matching Experiments

These experiments are carried out with the publicly available evaluation framework of
Mikolajczyk et al. (2005b). We use affine invariant detectors (cf. -Aff) for viewpoint
changes, and rotation and scale invariant ones otherwise.

Image Categorization Experiments

For each image database the two class categorization experiments use separate vo-
cabularies built by kmeans. The number of clusters, and therefore the number of
bins in the histogram is 400 for motorbikes, 200 for bicycles, 100 for people, 1120
for Brodatz textures, and 1000 for KTH textures. These numbers are chosen manu-
ally, according to the size of the database. For the classification we use linear SVM
(SVMU9ht (Joachims, 1999) implementation) with the trade-off between training error
and margin, ¢ = 0.005.
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2.6 Conclusions

This chapter has introduced an approach for selecting characteristic scales based on
the stability of the local description. We experimentally evaluated this technique for
the SIFT descriptor, i.e., Maximally Stable Local SIFT Description (MSLSD). A new
key property for interest points detectors, local description stability, has been intro-
duced and discussed. We also demonstrated how a stable estimate of affine regions and
orientation can be integrated in our method. Results for MSLSD versions of Harris
and Laplacian points outperformed in many cases their corresponding state-of-the-art
versions with respect to repeatability and matching, in particular under challeng-
ing conditions such as highly textured scenes and under different lighting conditions.
For object category classification MSLSD achieved better or similar results for four
datasets. In the context of texture classification our approach always outperformed
the standard versions of the detectors.
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THIRD CHAPTER

Discriminative Feature Selection for
Object Class Appearance

HE selection of discriminative features is typically used to either improve classifi-

cation performance or to reduce the size of the feature set. If the goal is a higher
recognition rate, appropriate selection methods eliminate unimportant features, thus
reducing the noise prior to classification. On the other hand, if the method is used
to reduce the size of the feature set, the constructed sparse representation can signifi-
cantly decrease processing time as well as required resources.

Due to the recent popularity of local image representation and the increasing size
of datasets, feature selection has become important in computer vision. Many learn-
ing methods are unable to handle the huge feature sets produced by dense multi-scale
representations. Although scale-invariant interest point detectors dramatically reduce
this amount, discovering discriminative features can further improve the feature set.
Selecting discriminative features helps to separate objects from background, and there-
fore can be used directly for classification or to support and improve more complex
learning methods.

Figure 3.1 illustrates the importance of discriminative feature selection. The two
scale-invariant regions in Figure 3.1(a) have very similar appearance. However, one
of them lies on the background and the other on the object (bicycle). This region
is therefore not discriminative for the bicycle class. Non-discriminative descriptors
typically occur with small tubular or transparent parts, and with “donut-like” patches.
Figure 3.1(b) shows discriminative features of the bicycle class determined by one of
our selection methods.

Related Work

In the following we present a state-of-the-art on discriminative feature selection. Many
of the methods were originally developed and used in text classification. In document
categorization, the challenge raised by the large number of features, i.e., the num-
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Figure 3.1: Tllustration of feature selection. (a) Two similar regions which cannot be
used in a purely appearance based system to distinguish between the bicycle and the
background. (b) The most discriminative features of the bicycle determined by our
method.

ber of words, has made experts realize the need for feature selection. Techniques to
choose discriminative features, i.e., features which are particular for a given class, has
been extensively studied for document retrieval. Many of the methods discussed in
this chapter are motivated by applications from text classification; some have already
been used, while others are applied here for the first time for computer vision. In
text categorization among many available methods the most basic techniques include
domain specific stop word removal to avoid uninformative features, stemming', and
the exclusion of overly common words. A number of feature scoring methods have
been used in filters, among which mutual information and odds ratios are the most
popular. Filtering methods compute a score for each feature according to a chosen
selection metric, then take the best n features as a final representation. Recent stud-
ies (Forman, 2003; Mladeni¢ et al., 2004) show that standard classifiers, such as naive
Bayes or k-Nearest-Neighbor, can explicitly profit from such selections: using a sub-
set, of features significantly improves their classification performance, particularly for
classes with limited training examples. Linear Support Vector Machines implicitly
select the useful features, therefore, they are more robust to insignificant data. Ex-
periments of Mladenit et al. (2004) show that the SVM does not improve with feature
selection, but it yields better performance when the reduced feature space allows a
larger set of training examples. Joachims (1998) states that SVMs eliminate the need
for feature selection and experimentally shows that classifiers built on the low-ranked
features still perform better than random. Findings of Gabrilovich and Markovitch
(2004) are similar to Joachims (1998) with respect to the latter, however, they found
those low-utility features redundant rather than irrelevant. They show that using out-

IStemming algorithms, or stemmers, have been developed to reduce a word to its
stem or root form. This linguistic normalization is commonly used to reduce the
number of words (e.g., in search engines), however, it is considered feature engineering
rather than selection.
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lier count—a measure estimating feature redundancy by outlier analysis—for ordering
datasets reflects the degree to which a dataset can be described by only a few features.
They also define a class of problems where feature selection can significantly improve
the accuracy of linear SVMs. Forman (2003) introduces Bi-Normal Separation as a
feature scoring method and shows improvement with SVM host classifiers.

Our study mainly focuses on filtering techniques, however there also exists an-
other large group of selection methods, the wrappers (John et al., 1994). Exam-
ples of wrappers are sequential forward and backward selection or genetic search.
Wrapper methods evaluate all possible subsets of the features by repetitively calling
the induction algorithm (classifier) as a black-box, and choose the subset with the
highest performance. Comparisons find that wrapper methods are superior to fil-
ters (Kohavi and John, 1997), although those studies are limited to lower dimensional
representation. For large scale problem these NP-hard methods are impractical, and
filter methods are used instead. A valuable empirical study of filter methods for text
classification is written by Forman (2003).

In the domain of text classification feature selection is typically applied on doc-
uments represented as bag of words (Sebastiani, 2002), i.e., by histograms built on
occurrences of words. The construction of feature sets (visual vocabularies) are more
complex in computer vision. They are two widely used approaches: feature sets are
a set of descriptors computed on local regions (Viola and Jones, 2001; Opelt et al.,
2004), or are the result of a vector quantization algorithm applied on the descriptor
space (Agarwal et al., 2004; Weber et al., 2000b; Willamowski et al., 2004). In the
latter case feature extraction (construction) is usually achieved by a clustering algo-
rithm. Cluster centers can be interpreted as visual words (Sivic and Zisserman, 2003),
and image representations based on occurrence histograms are called bag of features
or bag of keypoints (Willamowski et al., 2004). Some recent methods combine feature
selection and local representation for object recognition. Viola and Jones (2001) ex-
tract rectangular Haar-like features to represent local parts of faces. They build a
fast and reliable face recognition framework by the linear combination of classifiers
based on individual features using Adaboost. Chen et al. (2001) also use boosting to
construct components by local non-negative matrix factorization. Opelt et al. (2004)
apply Adaboost for individual local descriptors to learn a local feature-classifier for
determining the presence or absence of objects in images. Torralba et al. (2004) de-
velop a framework for sharing features between object classes. They use multi-class
boosting to efficiently select the common features to improve generalization, as well
as to reduce the final computation cost. Mahamud and Hebert (2003) select discrim-
inative object parts and develop an optimal distance measure for nearest neighbor
search. Rikert et al. (1999) use a mixture model that retains only discriminative clus-
ters, and Schmid (2001) selects significant texture descriptors in a weakly supervised
framework. Both Rikert et al. (1999) and Schmid (2001) select features based on their
discriminative score. The former uses the term strength (class conditional probabil-
ity), while the latter uses the normalized likelihood ratio computed on the training
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images. Ullman et al. (2001) use image fragments and combine them with a linear
discriminative type classification rule. Their selection algorithm is based on mutual in-
formation. Fleuret (2004) uses conditional mutual information to select discriminative
edge-based features for face recognition. He discusses and compares his method with
kE-NN, naive Bayes, and SVM host classifiers. The study of Vidal-Naquet and Ullman
(2003) shows that linear classifiers can be learned using only a small set of features
if they are informative. Their method uses a greedy integrative algorithm based on
mutual information to select features for classification of cars. There are a few recent
applications using linear SVM based selection. Jurie and Triggs (2005) has experimen-
tally evaluated visual vocabularies created by different clustering algorithms together
with ranking methods based on linear SVM, mutual information and odds ratio. They
observed that the SVM selection is superior to the others. Fan and Lu (2005) integrate
SVM discriminative feature selection in a multi-class framework to efficiently classify
faces from different viewpoints. They have shown significant speed-up in recognition
without major degradation in classification performance.

Overview

This chapter studies discriminative local feature selection for computer vision. In
Section 3.1 we first introduce a probabilistic notation and then in Section 3.2 describe
different scoring techniques as well as discuss their various properties. Section 3.3
shows how to build a visual vocabulary, as well as demonstrates and compares selection
techniques on real images. Experiments in Section 3.3.2 evaluate individual feature
classification, which decides whether a feature lies on the object or not. In Chapter 4
we integrate the rankings into an object detection and localization framework.

3.1 Probabilistic Interpretation

This section defines the probabilistic notation used in Section 3.2 to introduce different
scoring techniques. Our notation is based on a given set of features F = { f1, fa, ..., fx},
and a set of measurements x;. In our experiments the features are based on visual words
(cf. Section 3.3.1), and the measurements are local invariant descriptors presented in
the previous chapter. f; is a binary variable indicating the existence of visual word
i. x¥ and x are positively and negatively labeled local descriptors (image patches).
In the case of weakly supervised data, as in Section 3.3.2, positive labels may not
necessary mean positive descriptors, but instead unlabelled descriptors from positive
images. Patches from negative images always have negative (©) labels. This section
does not detail the generation of the feature set IF; it assumes the probabilities P( f;|x;)
are given for all features f; and descriptor x;.

Let N® and N® be the total number of positively and negatively labeled x;. In
our experiments they correspond to the number of descriptors extracted from positive
and negative images respectively. We can then introduce the following notations:
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P(@) is the probability that a randomly drawn x; is from a positively labeled image.

NEB
PO = oy we

P(©) isthe probability that a randomly drawn x; is from a negatively labeled image.

N@

PO =§e e

P(f;) is the average probability that a randomly drawn x; belongs to feature f;, and
can be estimated by

piy = SiPUDS)
N® | N©
P(f) is the average probability that a randomly drawn x; does not belong to feature
fi. )
— P i | X5
N® - N©

P(fi,®) 1is the joint probability that a descriptor belongs to feature f; and is in a
positively labeled image:

N P(fi|x®
P, @) = ZHt )

It can be interpreted as the probability of true positives on our measurement set

{x;}.

Joint probabilities P(f;,©), P(f;,®), and P(f;, ©) are defined similarly, and they
correspond to the probability of false positives, false negatives, and true negatives
respectively.

P(f;|®) is the conditional probability that a descriptor from a positively labeled im-
age belongs to feature f;. It is interpreted as the true positive rate and estimated
by

N
Zj:l P(fi|X§‘9)

P(fil®) = e

Conditional probabilities of false positive rate (P(f;|©)), false negative rate (P(fi|®)),
and true negative rate (P(f;|©)) are defined similarly.

Several selection criteria are based on how many descriptors are assigned to a
given feature on object and background images. For visualization each feature can be
represented as a point in a 2D frequency diagram, see Figure 3.2 for an example. The
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300
Frequency on object images

Figure 3.2: 2D frequency diagram for the features of the bicycles dataset. There are
200 features, regions are detected with ENTR detector. We show a representative
region for six example clusters.

x and y axes indicate respectively the frequency that descriptors of a feature appears
in object and background images. Note that normalizing the axes by constant factor
N® and N©, delivers exactly the same diagram with P(f;|®) and P(f;|©) on the x
and y axes respectively. Descriptors of non-discriminative features are equally frequent
in positive and negative images, and therefore they lie close to the dashed diagonal
line. Features close to the bottom-right corner are discriminative for the objects, while
those close to the top-left are good for the background.

3.2 Feature Scoring Techniques

In this section we introduce and discuss possible scoring techniques for feature ranking.
We also show theoretical frequency diagrams for each method to demonstrate which
features they tend to select.

Freq: Frequency is one of the simplest methods; it measures how many times a feature
appears in the data set {x; }jV: @er “. More frequent features have a higher chance
to appear on the unseen images, and thus, a sparse representation should find

them useful. Frequency rank is defined as
REre) = P(f;) = P(fi,®) + P(fi, ©).

The frequency diagram for RU7°9 is shown in Figure 3.3. We can observe that
this selection method does not take into account the discriminative power. The
frequency score peaks at the most frequent and the least discriminative top-
right corner. However, R0 is often used to reject rare features. For example
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Frequency Measure

The most frequent, but
the least discriminative
features

Frequency on background images

0 10 20 30 40 50 60 70 80 90 100
Frequency on object images

Figure 3.3: Selection by Frequency (RU7¢9). Darker regions correspond to higher
scores. Isocontours indicate the same value across the plot. See the text for discussion.

OR:

Weber et al. (2000b) ignore small clusters (i.e., rare object parts) to reduce the
computational complexity of their method for learning a joint spatial model.

More sophisticated selection algorithms that combine frequency and discrimi-
native information (such as Mutual Information or Chi-Square, see below), are
shown to be superior to Frequency (Yang and Pedersen, 1997)2.

The Odds Ratio is one of the most popular scoring methods. It is defined as
the odds that a feature is labeled as positive normalized by the odds that it is
labeled as negative.

o _ PUIB) (1= PUIO) _ P(f,®) P(.©)

(1-P(fil®)) P(file)  P(fi,0) P(fi.®)

The corresponding diagram can be found in Figure 3.5 (b). This measure is
widely used in text classification (Caropreso et al., 2001; Mladenit et al., 2004;
Ruiz and Srinivasan, 1999) for relevance ranking. Mladenit and Grobelnik (1999)
report the best performance with Odds Ratio for multinomial naive Bayes. The
significant improvement—according to them—was due to the fact that this se-
lection method is “compatible” with the classification algorithm. Odds Ratio is
a very intuitive method and directly related to the discriminative power of the
features, yet surprisingly it is not often used in computer vision. One explana-
tion is that the Likelihood Ratio (R(“/%)) is better motivated by probabilities
and offers similar properties as Odds Ratio.

LIK: The Likelihood ratio (or probability ratio (Forman, 2003)) is basically the ratio

(odds) of the probabilities if a random patch which belongs to feature f; being

2What we call Mutual Information 1is called Information Gain by
Yang and Pedersen (1997).
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Figure 3.4: Likelihood scores for the 2D frequency diagram. Darker regions correspond
to higher scores. Isocontours indicate the same value across the plot. “Specific” features
have low frequency on the object images as well as close to zero frequency on the
background images.

labeled positive or negative. It is defined as

P(fi|®)
(LIK) _
x PUIE)

In our earlier work (Dorko and Schmid, 2003) as well as in (Schmid, 2001) it
demonstrated very good performance. Intuitively, ranking by likelihood ratio is
well suited for classification and detection purposes because it performs selec-
tion based on the classification rate. This is confirmed by our experiments in
Section 3.3.2 and in Section 4.1. This method is robust to changes in parameter
settings and overfitting of the estimated pdf of the data. On the other hand,
REIK) and RO typically prefer very “specific” features with near-zero values in
the denominator. Even though these rare parts have individually low recall rates,
combinations of them can provide sufficient recall with excellent precision. Fig-
ure 3.4 shows the likelihood scores for the 2D frequency diagram. Darker regions
indicate higher likelihood scores. Features in the bottom right corner receive the
highest values, since they are the most discriminative object features. We can
also observe that “specific” features, located at the bottom of the diagram, also
have high scores.

The computed scores (feature ranks) can be used, in many cases, within a recog-
nition framework. It is often necessary to bound or to provide probabilistic
explanation for these values. Since the likelihood ratio is the ratio of the correct-
and mis-classification rates, the often used relationship between odds and prob-
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abilities allow us to modify REK) as

RETE) P(fil®)
1+ REIK) — P(f]@) + P(fi|o)

ﬁi(LlK) _

which is now bounded between 0 and 1. Notice, that in case of equal priors,
RUIE) is the posterior of a positively labeled image given the feature f;. Schmid
(2001) uses this measure to determine the significance of clusters. Our experi-
ments in Section 4.2 use R scores for object localization. Notice, that REIE)
provides the same ordering of the features as RUTK),

CHI: Chi-Square is a well-known statistical test measuring the divergence from an ex-
pected distribution, or in our case, the lack of independence between the feature
and the class label. Since we have binary variables, the formulation of Chi-Square
has only four terms, as a typical case for problems set out in a fourfold table:

RO = 4(P(fi, ), P(f)) P(®)) + t(P([:, ), P(])P(®)) +

+t(P(fi,©), P(fi)P(O)) + t(P(fi, ©), P(fi) P(©)),

(r —y)?

where t(x,y) = ——. After some basic algebra, the simplified computation
(which is often used in scientific calculators) is
P(f;) P(fi) P(®) P(©)

Note, that we used probabilities in the previous formulation. In order to retrieve
the Chi-Square value in terms of feature frequency, similarly to the probabilities,
a constant multiplier, the total number of descriptors can be applied:

(N® + NO)[P(fi,®) P(f;,0) — P(f:,©) P(ﬁ,@)]é

:R(CHI) A
P(fi) P(f:) P(®) P(©)

R(CHI) has a value of zero when the feature and the class labels are independent.
Figure 3.5 (g) shows the REHD values in the 2D frequency diagram. REHD uses
both the frequency and the discriminative power of the features.

Comparative experiments of Yang and Pedersen (1997) have reported R0 to
be one of the most effective selection functions for text recognition. Motivated by
their study many others (Galavotti et al., 2000; Sebastiani, 2002; Zheng et al.,
2004) adapted it, and as a consequence it has become very popular in that
domain.
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Figure 3.5: The selection scores for various ranking methods. Darker regions corre-
spond to higher scores. Isocontours indicate the same value within the plot. See the
text for discussion. Symmetric measures on the right; their coresponding “positive
only” equivalent on the left.
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CC: The Correlation Coeficient (also called NGL coefficient) was given by Ng et al.
(1997) as

qeo) _ YN® + NOP(fi,®) P(fi, ©) — P, ©) P(fi ®)]
VP(f:) P(f:) P(®) P(S)
As Ng et al. (1997) point out and we demonstrate on Figure 3.5 (g), R(CHD
is a symmetric measure giving equal importance to the positive and negative
features. While for a typical two class problem this can be useful, in many tasks
it can be a drawback. If one of the classes is under-represented, e.g., in the case of
an object-background problem, we cannot expect representative selection of its
features. While RICC)* = RCHD o it keeps many properties of RICHI) R(CO)
is defined to prefer positive correlation between the feature and the positive class

label. Experiments of Ng et al. (1997) show that R is superior to R(CHD),
Scores of RC) are shown in Figure 3.5 (h).

MI: Mutual Information

If the main purpose of our system is to produce a sparse object class represen-
tation, it is best to select a few discriminative and “general” features. Besides
READ our other option is to use the mutual information (Papoulis, 1991) crite-
rion, which ranks features based on their information content for separating the
negative from the positive class. The mutual information between the label set
L ={®,0} and feature F; = {f;, f;} (as two random variables) is defined as

[(F; L) = H(L) — H(L|F),

where H(-) and H(:|-) are Shannon’s entropy (Shannon, 1948) and conditional
entropy respectively. Using our notation the RMD rank is defined as

P(f,1
RMI) _ Z Z P(f,1) - log %
le{®.0} fe{fi.fi}

Figure 3.5 (e) shows the decision surface for RM1). We can observe that R(HD)
(see Figure 3.5 (e)) and RMI) have similar patterns of scores, and likewise in
our experiments (Section 3.3.2) they show similar behavior, yet we found that
RMI) ysually outperforms R(E#D . The positive non-specific but discriminative
features are located in the rightmost part of the lower triangle in the diagrams.
The score pattern of R and R indicate that more features are chosen
from that area compared to R® (Figure 3.5 (d)) and REE) This clearly
displays the preference for more “general”, i.e., frequent, features.

GSS: The GSS coefficient is a scoring method motivated by R(€©). Galavotti et al.
(2000) suggested removing the constant factor v N® + N© as well as the denom-
inator leading to

RESS = P(fi;,®) P(fi,©) — P(f;,0) P(fi, ®).
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Figure 3.6: Selection by (a) Fy-measure and (b) Bi-normal separation. Darker regions
correspond to higher scores. Isocontours indicate the same value across the plot. See
the text for discussion.

In R the \/P(f;) P(f;) in the denominator emphasizes rare features, and
therefore RS9 prefers even more frequent features than R(“). While this can
be an advantage when the number of features is very large, it is not necessar-
ily useful for present computer vision applications. The frequency diagram in
Figure 3.5 (d) shows the modified surface.

F1: The F-measure (van Rijsbergen, 1979) is defined as a harmonic mean of precision

and recall. Tt is often used to compare recall-precision curves, and therefore, it is
one of the most used measures in detection frameworks and information retrieval.
This motivates the direct application of this measure to feature selection. Using
probabilistic notations RU) is defined as

2 P(fil®) P(fi-®) 2 P(fi,®)
P(fil®) P(fi) + P(fi,®) 2P(fi,®)+ P(fi,©)+ P(fi,®)

Its corresponding frequency diagram is shown on Figure 3.6 (left).

RUEL) —

BNS: Bi-normal separation is defined by Forman (2003) as

ROV = | FH(P(fl@) — F(P(f]e)) .

where F is the Normal c.d.f. An alternative interpretation of R(ZNS) is motivated
by ROC threshold analysis. It measures the separation between two standard
Normal curves where their relative positions—the center of the curves—are pre-
scribed by P(f;|®) and P(f;|©). Their study shows improvement for SVM host
classifiers using the R(NS) feature selection. Its frequency diagram shows that
RBNS) neither cuts off features in the top-right and bottom-left corners as dras-
tically as RMD  nor keeps the overly specific features like RO and R(EIK),
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All filter methods that we have introduced so far rank features according to their
individual power. Selection based on these rankings can lead to redundant and thus
less informative sets if we limit the number of selected features. The three additional
methods that we discuss in the following addresses this problem and select features
conditionally on the others.

AB: Adaboost (Freund and Schapire, 1996a,b) combines several classifiers (weak learn-
ers) into an accurate (strong) classifier by an incremental voting procedure. In
our framework the strong classifier labels an image x and is defined as

T
s(x) =Y R h(x),
t=1

a linear combination of weak learners hy(x). hy(x) is defined as a presence (+1)
or absence (—1) of feature ﬁ ]?Z is a binary feature and in our case it is present
on an image if there are at least 6; descriptors of feature f;, where 6; is set
during training to maximize the mutual information between the feature f; and
the image labels Y € {—1,1}. The weight of each weak learner is REAB) and can
be used as a rank for the features. 7" is the number of iterations. At each step t
the Adaboost algorithm selects a weak learner that minimizes the weighted error

Ej:

hjE?‘f

hi(x) = argmine; = ZDt(i)[yi # hj(x;)].

Dy (i) are the weights for each training image in step ¢, which are initialized to
1/K, where K is the number of features. The weight for the chosen classifier is

then set to
t 2 1—r )’

K
Ty = Z Dt(i)ht(l’i)yia
i=1

and the weights for the data are updated

_ Di(i) exp(=R"yih (1))

Dia (i) = 7 .

Zy is a normalization factor chosen so that D;,; is a distribution.

Even though the purpose of Adaboost is to build a strong classifier, given as
the sign of s(x), it can be seen as a feature selection criterion as well, since
weak learners (features) with higher weight have more influence the output of
the strong classifier. In addition, we have not used the aggregation of the weak
learners s(x), only the ranks provided by the algorithm.
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CMIM: Conditional Mutual Information Maximization is used to select a small sub-
set, of features that carries as much information as possible. The mutual infor-
mation for £ and ff conditioned on ff is given as

I(L:F|F,) = H(L) — H(L|F:,F)),

where F; = {f,, f,} is a binary random variable. Our feature set {g"} is con-
structed in the same way as in the previous section (as for R(45)). The ideal
selection would minimize the entropy conditioned on the selected subset of fea-
tures PR R

H(L|3:V(1), RN ?y(n)).

However, as it is based on the joint entropy estimation as in (Yang and Moody,
1999), it is intractable with realistic sizes of training sets. Fleuret (2004) proposes
an iterative solution where a new feature f* is selected only if I(L f*|3") is large
for all F that have been selected before, i.e. f* carries information about the
labels £. Formally R

v(1) = argmax I(L; F,),

i.e., the first feature is chosen by the original R™1) criteria, and all the following
features k + 1 are selected by

<k

v(k 4+ 1) = argmax {minf (L; 5"”\5"1,(1)> } : (3.1)

This solution does not, solve the problem, but offers a trade-off between individual
power and independence and reduces the computational time by two orders of
magnitude. An efficient implementation is given in Fleuret (2004). Even though
we abbreviate this approach as RIMIM) this method rather than assigning rank
(consequtively decreasing score) to each feature, only orders the feature set, and
thus the value RICMIM) jtself cannot be used as a rank. Fleuret (2004) uses
REMIM) wwith naive Bayes classifier for face recognition. Vidal-Naquet and Ullman
(2003) proposes the criterion

v(k + 1) = argmax {Iln<1]£1[ (ff n), |L) —1I (?y(l);L)}

to iteratively select features which is equivalent to (3.1).

SVM: Linear Support Vector Machines (SVM) were first used for feature selection by
Sindhwani et al. (2001), then later by Brank et al. (2002). Mladeni¢ et al. (2004)
generalized the idea for linear classifiers. SVM (Vapnik, 1995) is a classifier that
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finds a maximal margin hyperplane separating two classes of data. The predicted
label for an unseen x is given by

H(x) = sgn[b+ Z i K (%, %)),

which can be rewritten for the linear kernel K(-,-) as

H(x) = sgn[b + w'x], where w = Z X
w = (wy,...,wg) are the weights (the normal to the separating hyperplane)
that are learned during SVM training, and can be accessed directly. Features
with higher absolute weights have more influence on the SVM prediction, and
therefore can be used for feature selection. Shih et al. (2002) also point out that
high |w;| are more influential in determining the width of the margin.

To train the SVM and obtain the weights for our features we use the the feature
set {F}, as for REMIM) and RAB). In our experiments REVM) indicates the
ranking by |w;|

Frequent — Discriminative — Redundant

Some of the measures presented in this chapter prefer frequent features while others
prefer more discriminative ones. RU¢?) does not take discriminative power into ac-
count and R only uses the discriminative power. RMD  REHD and REBNS) yse
both frequency and discriminative power. Choosing the appropriate measure for a
given task is not straightforward. First one should decide if it is necessary to prune,
i.e., significantly reduce, the input space. In those cases feature frequency should play
an important role in the selection. Another alternative for pruning the space is to
reject redundant features that do not provide additional discriminative information.
REVM) R(CC) and REMIM) are examples of such selections. On the other hand, when
accuracy is more important, a combination of many rare but discriminative features
often gives better results. Furthermore, if the number of training examples are lim-
ited, rejection of top ranked features can help to avoid side effects caused by outliers.
The compatibility between the learning framework (classifier) and the feature selection
method is also important. Mladenit et al. (2004) analyzed the relationship for meth-
ods of naive Bayes, perceptron, SVM and for selection methods RMD  ROF) and
REVM) - They found REVM to be superior to others, even for naive Bayes, which is
the most compatible with R For further discussion on compatibility we refer to
Mladeni¢ et al. (2004).

One-Sided or Two-Sided

Scores obtained for the frequency diagrams indicate that some of the scoring tech-
niques are one-sided while others are two-sided. Two-sided techniques treat positive
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and negative features equally while one-sided do not. Among the presented methods
ROB) | REIE) - REC) - RES9) and RV (even when inverted) are one-sided and se-
lect only positive features, and RUed) REHD = RMI) - RIBNS) - RICMIM) = R(AB) and
REVM) are two-sided. In two-class recognition problems with fully supervised training,
a two-sided measure can be a natural choice especially when the task is to discriminate
between two object classes or two different types of scenes. On the other hand, when
one class is the background, or our positive images contain background clutter, select-
ing negative features could be disadvantageous. Even though the presence of negative
features on positive images can be discovered by learning techniques used after fea-
ture selection, due to the lack of sufficient background examples the trained systems
become less transferable to new environments. Those systems might rely on particular
background statistics, and therefore may only be used in specific cases. While Forman
(2003) shows that all feature selection methods degrade when they are converted to
be one-sided, Ng et al. (1997) develops R(€C) from REHD to have a one-sided mea-
sure which then outperforms its two-sided equivalent. Two-sided measures may easily
mislead the user when two-class or multi-class experiments do not contain a separate
background category. Assigning exclusive labels to images two-sided techniques may
lead to excellent performance without actually learning one of the categories. For
example, successful training of a linear SVM classifier (implicit two-sided selection by
RVM)) that separates images of cars and people, may not be used to detect people
on any unseen images. It can easily happen that the trained classifier relies on the
absence of cars when it labels an image as people. We conclude that to choose whether
one- or two-sided technique is more appropriate is task dependent. Since our experi-
ments always have a background category, we only use one-sided, object features only,
selection. This type of selection is also a key property for the localization experiments
in Section 4.2.

Usually one-sided measures can easily be converted into two-sided measures, and
visa-versa. Zheng et al. (2003) squares R(O% and R(E99) to introduce the two-sided

ROES) and RES9) - We turn symmetric measures, such as RV RIBNS) “R(AB) "and
REMIM) ope-sided by requiring

P(fil®) > P(filo), (3.2)

and therefore they only select features informative for the object class and not for
the background. We define R(SVM+) by using only the weights (w;), i.e. omitting the
absolute function (| - |) from RSVM). (Note that all binary features f; are positive.)
Figure 3.5 on the left column shows symmetric measures, and on the right their one-
sided equivalents.

Zheng et al. (2004) points out that it is difficult for two-sided measures to obtain
the optimal combination of positive and negative features, especially with unbalanced
data. Forman (2003) solves this by balancing the training data, while Zheng et al.
(2004) select the two kinds of features separately and then explicitly combine them.
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With this combination R performs similarly to R(€“) when the feature set is small
and the set is highly unbalanced.

Multi-class

Similar problems appear in multi-class frameworks. Forman (2004) showed that there
is a pitfall in feature selection methods performing independent scoring whereby they
get distracted from selecting useful features for difficult classes, in the case when there
is a supply of strongly predictive features for easier classes. To avoid such problems
he proposed a solution inspired by a round-robin scheduling technique. Fan and Lu
(2005) integrate linear SVM feature selection into a multi-class framework by appro-
priately combining the ranks of several one-vs-all problems. Their selection method
outperformed traditional kernel space methods for appearance-based face recognition.

Combination of Different Types of Features

Ranking methods offer an elegant way to combine different features, e.g., the output
of different interest point detectors, or different types of region descriptors. If we
assume that the source of our features are independently distributed, we can create
two separate feature sets. To estimate the ranking score for the features of the different
sets, we can adapt equations of different ranking methods to multiple types of features:
the conditional and joint probabilities are computed for the corresponding sets, and
are zero for the components of the other sets. The normalization factors N® and N©
correspond to the total number of unlabeled and negative features over all types. This
provides comparable ranking values for features extracted using different methods.

Expanding the Feature Set

While most filtering techniques assume independence between features, feature sets can
be expanded by constructing conjunctive features or products of features. A feature
that is useless on its own can be useful when combined with others (e.g. xor problem,
chessboard problem).

3.3 Selection for Local Features

In this section we apply the selection techniques introduced in Section 3.2 to images.
First, we describe our feature set and how we estimate the probabilities P(f;|x;). We
then evaluate the scoring methods by experiments which retrieve object features.

3.3.1 Visual Words

Our feature set is based on local patches extracted from images. For our experiments,
images are represented by local descriptors of interest points (Section 2.1). In this
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chapter, our reports mainly use the detector of Kadir and Brady (2001) (ENTR),
together with the SIFT (Section 2.1.2) representation. However, results that can
be obtained by other detectors would lead to similar conclusions. A performance
evaluation of different detectors for object recognition are presented in Chapter 4.

For many vision applications, due to the diversity and high dimensionality of the
descriptors it is necessary to quantize them to generate the actual features. In our
approach, these features, the visual words, are generated as the first step of our training
phase by an unsupervised estimation of a Gaussian mixture model (GMM) (Bishop,
1995) on all descriptors from our training set. We employ a parametric estimation
to model the distribution of our local descriptors. Our method is based on a GMM,
which is a linear combination of Gaussian densities p(x|C})

p(x) = Zp(xwi)P(Ci), (3.3)

where K is the number of Gaussian components within the mixture, P(C;) corresponds
to the mixing parameters and >°» P(C;) = 1. The individual Gaussian components
are of the form

p(x[C;) = N(p;| %), (3.4)

where p, is a d dimensional mean vector and 3; is the d x d covariance matrix for
component C;. In our case d = 128, corresponding to the dimension of the SIFT
descriptors.

The model parameters p,, 3; and P(C;) of (3.3) and (3.4) are computed with the
expectation-mazimization (EM) algorithm (Bishop, 1995). EM is initialized with the
output of k-means and at each iterative M-step we update the parameters as follows:

25:1 Pj71(0i|xn)xn

po= . : (3.5)
>y PIH(Cixm)
N . .
> PIHCx") (x =] ) (x"— )

oo n=l , 3.6

Z >y PG 30
1 N

PIC) = 5D PG, (37)

n=1

where N is the number of unlabeled descriptors x™. We limit the number of free
parameters in the optimization by using diagonal covariance matrices. This restriction
helps to prevent the covariance matrices from becoming singular. The number of
Gaussian mixture components K is chosen manually for each class based on the average
number of interest points in the class. Based on our earlier experience, we select the
largest possible K such that each component contains a sufficient number of descriptors
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to estimate the parameters. Larger values of K permit us to represent the distribution
more accurately. In our experiments (Section 4.1 and Section 3.3.2) the number of
clusters K was 400 for motorbikes and airplanes, 200 for faces and bicycles, 100 for
people and due to the small number of detections only 25 for leaves. The number of
images used for clustering is indicated for each class in the last column of Figure 3.7.

Figure 3.7 displays for several object classes two of the ten highest ranked clusters;
interest regions are detected with ENTR (Kadir et al., 2004) and ranked with the
likelihood ratio described in Section 3.2. We show example image regions which are
most likely assigned to each cluster. We can observe that the clusters typically contain
representative object parts or textures. In the case of airplanes, the nose has a very
characteristic shape as does the tailplane (see Figure 3.7, first row). We also obtained
significant clusters on the fuselage containing small passenger windows, and on the
wing. In the case of bicycles and motorbikes, tires, wheels and tubular parts are
clearly grouped and distinguished. Faces give one of the most impressive results, as
left and right eyes, including the eyebrows, are clustered separately. Sometimes, if
objects have very characteristic textures, their corresponding descriptors are clustered
together as is the case for the wildcats (see sample cluster #1 in Figure 3.7).

During features selection (training), the probabilities P(f;|x;) introduced in Sec-
tion 3.2 are determined by their Gaussian component, and are therefore equivalent to
P(C;|x;). However, to classify a test feature y, we use a hard assignment. y is assigned
to the component ¢* of the Gaussian mixture model with the highest probability:

i* = argmax p(y|C;) P(C5).

This rule defines a separation boundary for each component of the mixture model.
Figure 3.8 shows four examples of separation boundaries based on a GMM with K = 8
components. Note that the figure is just an illustration, in practice the number of
components is much larger and our feature space is high-dimensional (d = 128). We
mark the n components with the highest rank as positive and construct a final classifier.
A descriptor is classified as positive if its closest component (Mazimum A Posteriori)
is marked positive.

3.3.2 Retrieving Object Features

Here, we evaluate how well the descriptors of selected features correspond to the object
class on test images.

Experimental Set-Up

For the following set of experiments we have used the bicycles category from the
Grazl dataset available at http://www.emt.tugraz.at/"pinz/data/GRAZ_01. For
the separation of training and test images we have used the same images as Opelt et al.
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‘ Database ‘ Sample cluster #1 ‘ Sample cluster #2 ‘ # of images
Airplanes 200
Motorbikes 200
Leaves 46
Wildcats 20
Faces 109
Bicycles 100
People 50

Figure 3.7: Illustration of the clustering. We show 2 of the 10 best clusters for ENTR
regions and likelihood ranking (see Section 3.2). The last column indicates the number
of images used for the clustering (i.e. the half of the training set).

(2004). Training is weakly-supervised, i.e., training images are annotated as positive
or negative, but the objects in the positive images are not marked. All object images
contain a large amount of background. We have divided the training set into two
halves: the clustering and the ranking set. The GMM is estimated on the clustering set,
and the feature selection is performed on the ranking set. The n top ranked components
correspond to positive, while the others to negative features. In the following we
evaluate how many of the positively classified points lie on the object. To create the
ground truth we use hand-segmented test images. We consider a selected feature as
true positive if its center is located on the object.

For RVM) and REMIM) we used the implementation of SVM 9 (Joachims, 1999)
and Fleuret (2004) respectively.

Performance Evaluation

Figure 3.9 shows the recall-precision curves for the ENTR detector and for different
ranking methods. The curves are generated by changing n, the number of positive
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Figure 3.8: Illustration of a GMM model with K = 8 components in 2-dimensions. A
classifier is associated with each component. We only show separation boundaries for
4 classifiers.

Recall
0.2]04]06]0.8] 1.0
R(LIK) 83 [ 75| 71|66 ] 53
ROF) 84 | 75 | 70 | 66 | 53
R(BNS+) 84 | 75 | 71| - -
REMIM+) g0 [ 75 | 70 | - | -
RMI) 8 | 72|70 | - -
REC) 8 | 72|70 | 66 | 53
R(GSS) 72 | 71| 70 | 66 | 53

Ranking

RED) 65 | 66 | 64 | 66 | 53
RSVM+) 66 | 64 | 60 | - -
RABH) - - -] -

Rreq) 60 | 60 | 58 | 54 | 53

Table 3.1: Precision values at selected recall levels for different ranking methods on
the bicycle images using ENTR detector.

features. The highest accuracy is achieved by RUEIE) and RO closely followed by
RBNSH) In the legend the ranking methods are listed in the order of their perfor-
mance, and Table 3.1 shows the precision at some selected recall rates. R©% and
REIK) have very similar results, due to their related measures. When the positive
and negative set is unbalanced (which is not the case here) we prefer RZ“/5) because
it performs a separate normalization for the two classes. As we expected, the worst
result is given by R(7°9 performing close to chance, since it does not use the dis-
criminative information at all. Selection methods mixing frequency and discriminative
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Figure 3.9: Precision-Recall curves for different ranking methods on the bicycle im-
ages using ENTR detector. In the legend the ranking methods are ordered by their
performance. The row below compares three subsets of methods separately. On the
left, the ones that are based mostly on discriminative power; in the middle methods
combining discriminative power with frequency; and on the right the three methods
that reduce feature redundancy as well.

power, have slightly lower accuracy, due to the rejection of rare “specific” features. For
feature selection, more quantitative experiments will be presented in the next chapter.
Figure 3.10 shows the frequency diagrams built on the actual bicycle features. The
scores are smoothed over the extracted components, and therefore show which parts
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Figure 3.10: The selection scores for various ranking methods on the actual ENTR
features on the bycicle dataset. Darker regions correspond to locations of features with
high scores. The values are smoothed on the 200 features of the visual vocabulary.
Isocontours indicate the same value within the plot. See the text for discussion.
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Figure 3.11: The top 10 selected features (triangles) with R(SVMH) = RMAB+) = and
REMIMA) o the bycicles dataset with ENTR features and K = 200. We also show
the distribution of all positive features.

of the frequency space have components and which ones have high scores. Peaks along
the horizontal axis show that RUEIE) ROR) “and RBNSH) ((a),(c), and (e)) prefer rare
and discriminative features (cf. Figure 3.10 (a)). On the other hand, the peak in

the bottom right corner indicates that frequency plays an important role for RO+,

REA, RESD and RED ((b), (d), (f), and (g)).

Performance using Only a Few Features

We have seen that with respect to accuracy of retrieving object features (cf. Figure 3.9)
RMIH) and REC) behave very similarly, while R(“%%) and RU") are worse. The real
advantage of these frequency based methods are illustrated in Figure 3.12, where we
show the Fj-measure as a function of the number of selected features. When our
purpose is to build a very sparse representation these methods are preferred. On the
bicycles dataset, R(“%9) performs the best when only a few components are selected,
while above 15 features R(€©) and R(“99) swap places several times. Selection methods
that reject redundant features have curves below these. The lower object coverage
(recall part of Fj-measure) can indicate redundancy, but on the other hand it can
also correspond to poorer features; this is verified in Section 4.1. The top 10 selected
features for the bicycle category are shown in Figure 3.11.

Figure 3.13 shows the selected regions for different selection methods and varying
number n of components. As we expect the top n classifiers select more regions with
methods that use frequency (R REC) RESS) and RUV). This confirms the
results obtained in Figure 3.12. Among the methods that conditionally rank features
(RGVMA) - ROMIME) " RAB+)) - RICMIME) gelected the most descriptors in total. This
again indicates the explicit preference of frequent features using mutual information.

Depending on the dataset and the visual vocabulary, different ranking methods may
lead to similar ordering of the features, and therefore similar results. Using a different
dataset, the People set from Grazl, Figure 3.15 shows a situation when the limited
number of training examples fail to provide frequent and sufficiently discriminative
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Figure 3.12: Fj-measures in the selected features for different ranking methods on the
bycicle images using ENTR, detector. See text for details.

features. Notice the lack of points close to the bottom right corner in the frequency
diagram (a). Figure 3.15 (b and c) shows the R and RMIH) scores on the actual
features. The similar locations of the peaks indicate that similar features are selected
and therefore similar performance can be expected. We believe that in order to obtain
“general” discriminative components for such a difficult class as people, more training

examples are necessary.
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Figure 3.13: Feature selection (with non-conditional methods) for
bicycle dataset. Regions are extracted with the ENTR detector.
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RCMIM+) R(SVM+)

R(AB+)

2 points 8 points 26 points 46 points

Figure 3.14: Feature selection with conditional methods for increasing n for the bicycle
dataset. Regions are extracted with the ENTR detector.

3.4 Discussion

In this chapter, we have introduced appearance-based class-discriminative feature se-
lection for object recognition.

Many different ranking techniques have been compared for selecting discrimina-
tive parts and dominant textures of object classes. Comparisons have shown that
likelihood and odds ratios are well suited for object recognition and detection, while
methods combining frequency with discriminative power, such as mutual information
and chi-square are more appropriate for sparse representation and for focus of atten-
tion mechanisms (rapid localization based on a few classifiers). To further increase
the sparsity of our feature set we have shown methods that reject redundant features.
However, the benefits of these methods for real applications are yet to be evaluated (see
Chapter 4). Table 3.2 summarizes the different properties of the discussed methods.

In this chapter have also shown how to create features (visual words) that are
suitable for the selection task. Our constructed visual features are based on local
descriptors, thus providing robustness to occlusion and cluttered backgrounds. In out
experiments the local descriptors are partially labeled by marking their source images
as positive or negative, so the demonstrated selection system is trained in a weakly-
supervised fashion, while the learning of the parts (model estimation) is completely
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Figure 3.15: Feature selection on the people dataset. Regions are extracted with the
ENTR detector. The top plot shows the distribution of all features; the next row the
REIE) and RMIH) selections indicate that the best ranked features are similar; and
the last rows give an example image with increasing the number of selected features,
n.
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Ranking Method | Two Sided | Discr. | Freq. | Rej. Redu.
Frequency v Il v 0
Odds Ratio U v U U
Log Odds Ratio Squared v v U U
Chi Square v v v i
Correlation Coefficient 0 v v 0
GSS 0 v v O
Squared GSS v v v i
Fi-measure [l v v [l
Likelihood U v U U
Mutual Information v v v 0
Bi-Normal Separation v v Vel 0
SVM hyperplane coefficients U v F v
SVM hp. coef. (absolute value) v v 7 v
Conditional Mutual Information v v v v
Adaboost v v v v

Table 3.2: Summary of ranking methods and their main properites. Two sided mea-
sures selects both negative and positive features.

*Originally a two sided measure, however with the requirement in (3.2) can be used
to select only positive features.

TBNS uses frequency, but in our experiments it still selects rare features when they
are overly disciminative.

'SVM hyperplane coefficients does not explicitly use frequency, but many rare
features can be rejected because of their redundancy. The rejection of rare features
also depends on the generalization properties (cf. the ¢ parameter) of linear SVMs.

unsupervised.

This chapter has already illustrated the importance of feature selection and has
shown good results for descriptor classification. In the following chapter we integrate
the introduced framework into appearance-based object classification and object class
localization system.
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FOURTH CHAPTER

Classification and Localization of
Object Classes

O BJECT CLASS recognition and localization are challenging problems in computer vi-
sion. The main difficulty is to design a method which can efficiently detect instances
of a class under various image transformations without responding to clutter. Different
instances of the category often vary in appearance or can be observed under different
imaging conditions. Occlusions and highly textured background are also common fac-
tors in every day applications. In existing approaches these difficulties are addressed by
the appropriate image representations and learning methods. In the last few years part-
based representations have become popular, since they can deal with intra-class varia-
tion and occlusions. Some of these methods are limited to fixed size windows or require
manually labeled parts (Mahamud and Hebert, 2003; Mohan et al., 2001). As we show
in earlier chapters, interest point detectors (Kadir et al., 2004; Lindeberg and Garding,
1994; Lowe, 2004; Matas et al., 2002; Mikolajczyk and Schmid, 2004b) provide an ef-
ficient way to extract informative features of different sizes and therefore, permit au-
tomatic selection of information-rich parts for local representations of images.

In this chapter, we combine local features introduced in Chapter 2 and feature se-
lection methods discussed in Chapter 3 with state-of-the-art learning techniques from
computer vision to develop framework for object class classification and localization.
Our main goal is to demonstrate and to evaluate the methods introduced in the previ-
ous chapters. In this chapter we discuss two different tasks. The first one is object class
classification, where the system aims to decide whether an instance of a class is present
or absent in a test image. This task is often referred to image classification. The second
task is object class localization, where feature selection improves an existing method
estimating the exact location of class instances within test images. The two different
systems share a common core: first we extract scale- and affine-invariant local features
from images and construct a vocabulary of visual words to train a model. Then feature
selection is used to order these visual words according to their discriminative power.
The classification approach is “weakly supervised” in the sense that images are labeled
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as positive and negative, but the objects in the positive images are not marked or
segmented, and are present in arbitrary non-registered locations in cluttered scenes.
The introduced system is invariant to viewpoint changes, without requiring alignment
or pre-normalization of images. For the localization framework we restrict the invari-
ance only for similarity transformations and use full supervision: object instances are
marked by their rectangular bounding boxes on the positive training images. For both
the classification and the localization tasks, each positive training image may contain
multiple instances of the same object class in cluttered background.

Related Work

Many state-of-the-art methods perform an exhaustive search on location and scale with
a sliding window to determine the presence of an object class (Agarwal and Roth, 2002;
Dalal and Triggs, 2005; Papageorgiou and Poggio, 2000; Schneiderman and Kanade,
2000; Viola et al., 2003). These methods have three main disadvantages. First, they
have to deal with a huge number of negative windows, and thus have to be developed
for very low false positive rates. Furthermore, they usually require an additional
step to reject multiple detections for the same object. And finally, searching the
entire scale- and location-space with a strong classifier can be inefficient, sometimes
impossible within a reasonable time. They not only require fast feature extractors,
but also classifiers that can be evaluated very rapidly. The most popular classifiers
are based on Support Vector Machines. Both Papageorgiou and Poggio (2000) and
Dalal and Triggs (2005) use SVM within a sliding window framework. The former
uses wavelets, and the latter uses histograms of oriented gradients as a representation.

Some recent methods represent the objects in a more flexible manner. Weber et al.
(2000b) use localized image patches and explicitly compute their joint spatial prob-
ability distribution, yet does not explicitly deal with different scales. Fergus et al.
(2003) extend their model by learning the explicit global structure of object classes
based on scale-invariant image regions. While this method permits automatic part
detection and object localization, the complexity of its joint probability estimations
limits its applicability to a small number of parts. They only report results for image
classification, and they are compared to ours in Section 4.1.3. Fei-Fei et al. (2003)
introduce a Bayesian version of the previous model, which by incorporating priors
permits the method to be trained with a limited number (1 — 5) of example images.
Felzenszwalb and Huttenlocher (2000) manually build the spatial relations between
parts which are stored in a tree-based structure rather than representing their full
joint probability (Weber et al., 2000b; Fergus et al., 2003). Their efficient search for
global matches in the recognition phase is recently used by Crandall et al. (2005) defin-
ing a simple probabilistic model with a similar performance to Fergus et al. (2003).
Bouchard and Triggs (2005) introduce a two-layered star-based hierarchical model to
allow rapid training and testing as well as soft intra-class variation of parts and sub-
parts of objects. Their model can profit from the large number of detected features, and
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is therefore particularly useful for objects captured at high resolutions. Agarwal et al.
(2004) learn a vocabulary of parts, determine spatial relations for these parts, and
use them to train a Sparse Network of Winnows (SNoW) Learning Architecture.
Leibe and Schiele (2004), learn a vocabulary of local appearance and relative spa-
tial positions of individual parts. They use a voting scheme to combine these parts
and probabilistically segment unseen images. In Section 4.2.1 we improve their voting
scheme. We show that by integrating a discriminative feature selection, the predicted
location of the voting significantly improves, owing to the elimination of votes of non-
discriminative parts. Results are comparable to their full method (Leibe and Schiele,
2004) which includes verification by segmentation. Our approach does not contain any
additional verification step and therefore, does not require the segmentation map of
the training images.

A few recent methods using local features are available for classification tasks,
i.e., deciding about the presence of an object class instance in a test image. Their
main advantage is that they can profit from, and often deliver excellent results using
the object features together with contextual information. Two of these approaches,
Opelt et al. (2004) and Willamowski et al. (2004), have been mentioned in the pre-
vious chapters. The bag of keypoints method (Willamowski et al., 2004) was used
as a baseline approach for evaluation in Section 2.4. Winn et al. (2005) extend the
previous method by refining the visual vocabulary. They automatically determine
the size of the vocabulary by merging elements of an initially large dictionary. This
permits to produce a more compact, yet still discriminative representation. The bag-
of-keypoint representation is also used by Sivic et al. (2005). They represent object
categories by topics determined with probabilistic Latent Semantic Analysis (pLSA)
and show that simple categories such as faces, motorbikes, airplanes, and cars can
be separated automatically. Opelt et al. (2004) use AdaBoost to select discriminative
features and build a strong classifer for image classification. We compare our results
with Willamowski et al. (2004) as well as Opelt et al. (2004) in Section 4.1.3.

Overview

In Section 4.1 we present an approach for object class classification. We compare
different interest point detectors and evaluate the selection methods from Chapter 3.
Section 4.2 introduces an approach for object localization. We demonstrate how to
improve the performance of a state-of-the-art method by feature ranking and selection.
We show results on three different, recently proposed and widely used datasets.

4.1 Object Class Classification with Discriminative Features

Image classification—often used as evaluation criterion in the literature—decides if an
object is present or absent in an image. In this section, we build a simple classifier
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Figure 4.1: The final classifier, a Gaussian mixture model with K = 8 components,
four of which are selected. See Figure 3.8 for the individual classifiers. The separation
boundary indicates if a test feature is classified as positive (object) or as background.

based on different feature rankings. This allows us (1) to show the efficiency of dis-
criminative feature selection and (2) to evaluate the discriminative quality for each
selection method. Experiments in this section are performed on two-class problems,
i.e., object vs. background. The extension to multi-class is straightforward; a set of
two class classifiers can be constructed, where each one is trained for a given object
class.

4.1.1 Classifier for Objects Presence

In Chapter 3 we have built a classifier for each feature (equivalent to a Gaussian com-
ponent). We have seen that the ranking order of features reflects their discriminative
power for a given category. By marking the n components with the highest rank as
positive (cf. Chapter 3), a final classifier (see Figure 4.1) can be constructed. A
descriptor is classified as positive if its closest component is marked positive. Note
that this classifier may act as an initial step for localizing an object (see Figure 4.2).
However, to make a decision on the existence of an object, an additional condition
is required. In the following we classify an image as positive, if there are at least p
positive detections, i.e., at least p regions assigned to the n selected components. This
number p is automatically determined from the training set and n is the only parame-
ter of our method. The parameter p depends on the number of selected components n,
the feature type, and the appearance of the object class. If an object class contains a
few unique discriminative components, i.e., can be described by a few visual words, p is
low. Examples are the faces and the leaves categories. On the other hand, in the case
of texture-like object classes, such as wildcats, the most discriminative components
are textons, which appear multiple times on the object, and therefore p is high.



4.1 Object Class Classification with Discriminative Features 83

ENTR H-Lap H-Lap-Aff

n at
EER

Figure 4.2: Feature selection with RK) for the detectors ENTR, H-Lap and H-
Lap-Aff. The top row shows the detected interest regions. The bottom row displays
the regions corresponding to the n highest ranked components. The parameter n is
chosen at the equal error rate point of the ROC curve. This example demonstrates
that feature selection can act as an initial step step for recognition and localization by
identifying discriminative object parts.

4.1.2 Experimental Set-Up

For our recognition experiments we have used seven categories, see Figure 4.3. The
categories airplanes, faces, motorbikes, and leaves are from the Caltech dataset. Train-
ing and test images are the same as in (Fergus et al., 2003; Weber et al., 2000a), but
we have added half of the background images to our training set. The Caltech dataset
may be downloaded from http://www.robots.ox.ac.uk/~vgg/data.html, and the wild-
cats are from the Corel Image Library. The categories bicycles and people are from
the Grazl dataset and available at http://www.emt.tugraz.at/~pinz/data/GRAZ_01.
We use exactly the same training and test images as (Opelt et al., 2004). Note that
this dataset is more challenging than the Caltech dataset, as it contains significant
changes in viewpoint and scale as well as large amounts of background clutter. Fur-
thermore, the intra-class variation of people is high due to the changes in clothing and
pose.

Note that there is a bias in the Caltech dataset, as there are significantly more
interest points for images of motorbikes, airplanes, and faces as for their corresponding
Caltech background. This potentially influences the classification results. Appendix A
examines the influence of the number of interest points on image classification and
shows that our method does not rely more than others on this bias.

Let us recall that the training is weakly-supervised, i.e., training images are anno-
tated as positive or negative, but the objects in the positive images are not marked.
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Figure 4.3: Images examples of the different categories used in our experiments.

We have divided the training set into two sets: the clustering and the ranking set. The
GMM is estimated with the clustering set, and feature selection is performed with the
ranking set. The minimum number of positive detections p is also determined on the
ranking set. Half of the positive images are randomly assigned to the clustering set,
the other half to the ranking set. All negative images are assigned to the ranking set.
In general, we do not assign negative images to the clustering set, as the background
clutter in the positive images allows to form negative clusters. The only exception is
the bicycles dataset where all negative images contain people and the positive images
do not. In this case we have added half of the negative training images to our cluster-
ing set. Note that the results are very similar if the entire training set is used for both
clustering and ranking.

Receiver Operating Characteristic (ROC) curves measure the performance as the
rate of correct detections with respect to the incorrect ones. To compare ROC curves
we report their equal error rates, i.e., the points on the curve for which the rate of
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true positives and true negatives are equal: p(True Positive) = 1 — p(False Positive),

where
Correctly classified positive images

True Positive) =
o ve) Total number of positive images ’

and
Incorrectly classified negative images

False Positive) =
p(False Positive) Total number of negative images

4.1.3 Experiments: Image classification

In the following we first evaluate the performance of the individual detectors and then
compare the different selection criteria introduced in Chapter 3. Finally, we compare
our approach to existing results in the literature. In this section, for image classification
we use the method described in Section 4.1.1, and refer to it as our simple classifier.

Comparison of detectors

The results for different detectors are summarized in Table 4.1. We compared them
using both our simple classifier and the bag of keypoints method. On average our
new detector, H-MSLSD performs the best, closely followed by ENTR, L-MSLSD, H-
Har, and H-Lap. Apart from the leaves dataset—which we address later—these two
Harris-based detectors, not surprisingly, show similar behavior. On the other hand,
H-Lap performs better than ENTR for three categories, while ENTR is better than
the Harris based detectors for four categories. This confirms that ENTR and H-Lap
are complementary. The performance of H-Lap-Aff is similar to H-Lap, yet in most
of the cases slightly below. This can be explained by the relatively small viewpoint
changes in our datasets, and by the instability of the affine adaption process.

When further analyzing the results, the largest difference between ENTR and H-
Lap detectors can be observed for leaves. The performance of H-Lap is exceptionally
low, as only a very few H-Lap points are detected on the leaves, and most of those
detections lie on the border of the objects, i.e., the characteristic regions contain a
significant portion of background, see Figure 4.4 for an example. Figure 4.5 plots the
equal error rate with respect to p for the two detectors showing the difference between
H-Lap and ENTR.

For the bicycles the ENTR detector performs better than H-Lap, which can be
explained by ENTR’s good performance for the discriminative tire regions. Figure 4.6
shows that ENTR detects a large number of regions around the tire. For bicycles the
results for H-Lap-Aff are significantly worse than H-Lap, because the affine estimation
adjusts the ellipse on the background between the spokes or on rich texture right next
to the tire and other tubular parts.

DoG and LoG detectors, apart from a few exceptions, have similar results. The two
blob-like detectors outperform on average H-Gen and MSER. Unfortunately the IBR
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Classification with estimated required parts (p)
Detector |Airplanes|Faces | Motorbikes | Wildcats | Leaves || Bicycles | People | Avg.
H-Lap 97.25 199.07 98.00 91 65.60 84 76 | 87.27
H-Lap-Aff | 96.00 | 100 98.28 92 68.82 64 74 | 84.73
H-Har 96.50 [99.54 97.25 92 93.55 76 78 190.41
H-Gen 94.00 |91.71 96.00 79 65.59 74 60 | 80.04
ENTR 96.00 |96.77| 98.50 80 98.92 90 80 |91.46
LoG 94.75  |95.85 97.50 82 93.55 70 68 | 85.95
DoG 95.00 [99.08 97.00 84 86.02 72 74 1 86.73
IBR - - - - - 84 66 | 75.00
MSER 87.00 |83.41 92.25 92 74.19 76 24 | 75.55
H-MSLSD | 98.25 [99.08 97.75 93 93.55 84 78 191.94
L-MSLSD 94.25 |98.15| 98.50 82 94.62 82 56 | 86.50
Bag of Keypoints

Detector |Airplanes|Faces | Motorbikes | Wildcats | Leaves || Bicycles | People | Avg.
H-Lap 97.75 100 98.25 92 77.42 92 86 |91.92
H-Lap-Aff | 96.25 100 98.00 92 80.65 88 78 190.41
H-Har 97.75 100 97.25 94 93.55 86 78 192.36
H-Gen 97.00 [95.39 97.75 82 81.72 88 72 | 87.69
ENTR 98.25 |97.24| 99.00 83 97.84 94 76 192.19
LoG 98.75 |98.16 98.75 86 92.47 90 78 191.73
DoG 99.50 | 100 98.50 96 90.32 92 74 19290
IBR - - - - - 88 80 | 84.00
MSER 91.50 |85.32 98.50 93 82.80 84 72 186.73
H-MSLSD | 99.25 ]99.53 98.50 96 95.69 94 86 |95.57
L-MSLSD 98.75  99.08 98.75 86 95.70 92 80 {92.90

Table 4.1: Comparison of different detectors. Equal-error-rates for likelihood ranking.
Results are shown for two classifiers: the simple decision the estimated p (feature
selection), and the general bag of keypoints approach.

Figure 4.4: H-Lap and ENTR detections for a leave image.
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Figure 4.5: Classification accuracy (true positive rate) at the equal-error rate for the
leaves.

Figure 4.6: Selection results on the bicycle database. The ENTR detector output is
shown on the left, and the selected discriminative features are shown on the right.

detector does not give any response on many images from the CalTech background set
(due to their sizes), and therefore we have excluded it from those comparisons. On the
Graz datasets IBR has not reached the top rates, but compares favorably with many
others.

We have verified that results with estimated p are only slightly lower than the best
achievable results, if p would have been estimated on the test set. This confirms that
the estimation of the parameter p is robust.

Comparison of different ranking methods

Table 4.2 compares feature rankings with different methods introduced in Chapter 3.
The EER results are given for five best detectors (cf. Table 4.1). For the bicycles these
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Ranking Bicycles
ENTR | H-Lap [ H-MSLSD [ IBR [ L-MSLSD [ RND
R(LIK) 90 84 84 84 82 80
ROR) 90 84 84 84 82 80
R(BNSH) 88 82 84 82 84 70
RCMIM+) 92 80 84 86 78 72
ROMIH) 80 80 70 84 78 46
REO) 80 80 72 86 60 64
R(GSS) 80 76 74 82 76 70
R 80 70 60 72 70 70
R(SVM+) 92 72 78 74 74 72
R(AB+) 92 78 76 82 84 76
R(Freq) 80 62 66 70 62 72
Ranking People
ENTR | H-Har | H-MSLSD | H-Lap [ LoG [| RND
R(LIK) 80 78 78 76 68 84
ROF) 80 78 78 76 68 84
RBNS+) 74 78 82 74 66 84
RCMIM+) 78 72 74 80 66 86
ROITT) 82 76 82 76 64 84
R(CEC) 76 76 82 78 64 84
R(GSS) 74 78 80 72 64 84
RUED) 54 52 48 54 42 62
RSV M) 64 68 68 62 64 86
R(AB+) 76 74 74 76 56 80
REFreq) 22 26 38 28 36 56

Table 4.2: Comparison of different ranking methods on the Grazl dataset. Reports
are recognition rates at EER for classifiers with estimated p.

are ENTR, H-Lap, IBR and the new detectors from Chapter 2, and for the people
dataset ENTR, H-Har, H-MSLSD, H-Lap and LoG. Ranking methods are listed (from
top to bottom) based on their object feature retrieval performance for the ENTR
detector for the bicycles database (cf. Figure 3.9). In overall, R“15) which is the best
for retrieval, performs also well for classification. Large improvements compared to
the experiments of Section 3.3.2 can be observed for REVM+H) RAB) - and REMIM)
These selection methods compare favorably to RU“/5). This also clarifies and confirms
that these methods reject the discriminative features which are considered redundant
for the discrimination task. We have two additional remarks concerning these three
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methods. First, these methods have not been compared before, not even in the context
of text classification, and our test shows remarkably good performance for R(CMIM+),
REMIMA) always outperforms or gives the same results as the other two. Second, these
methods usually select less features for comparable performance than RE/5). However,
this seems to be dependent on the number of features and the dataset. Several times
the number of selected components (n with fixed p) are similar to RETE) | possibly
indicating no irrelevant discriminative features.

In the last column of the tables we compare the selection methods on randomly
chosen points leading to similar conclusions. Random points are an indiscriminatively
selected subset of 100 regions per image from the entire collections of regions at all
scales and locations. As a surprise, random points on the people database performed
better than ENTR, because interest point detectors often miss important features on
people. For better results on this dataset probably the detector thresholds need to be
adjusted. As a remark for the randomly selected patches, they may provide sufficient
coverage for appearance based bag of features like representation and recognition, but
to further incorporate them to use spatial relations, such as in Section 4.2, is much
more challenging if not impossible.

The discussed feature selection methods with linear SVM classifiers on these seven
databases have never improved our results, i.e., without exception we always achieved
the best performance when all features are used in the classifier. This is due to the
implicit feature selection of linear SVM (R(SVM)),

Combination of detectors and comparison with existing methods.

In this section we perform image classification experiments with the combination of
two complementary detectors, H-Lap and ENTR. Table 4.3 shows the performance of
the individual detectors as well as their combination on the seven object databases.
As expected, a combination of detectors gives overall better performance than the
individual ones. For motorbikes, airplanes, faces, and people it improves the individual
results and for leaves it selects features from the better detector leading to the same
results. First, we can observe that ENTR -+ H-Lap gives better results than each of the
individual detectors, if H-Lap and ENTR perform about equally well and both have
“good” discriminative components, see Figure 4.7. The combination of detectors also
shows reduced sensitivity to the choice of p, and provides a useful protection against
detectors that perform poorly on certain databases. Figure 4.5 shows that the COMB
curve almost strictly follows the ENTR one, and in Table 4.3 COMB gives exactly the
same results as ENTR alone. However, combining detectors does not always lead to
improved results. In some cases poor quality of detection and additional noise may
result in an overall performance in between the individual ones. An example is the
wildcats category, for which the combination performs worse than H-Lap, but better
than ENTR.
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Table 4.3: Equal-Error-Rates for H-Lap + ENTR (COMB) and likelihood ranking.

REIE) ranking
Database Individual COMB Others
H-Lap |ENTR | p | % %
Databases with CalTech background
Al\rplanes o795 | 9600 |28 | ogs | 940 (Fergus), 88.9 (Opelt),
ﬁ ' ' ' 96.25 (Willamowski)
Faces
96.8 (Fergus), 93.5 (Opelt),
Q | 9907 | 9677 | 29| 9953 100 (Willamowski)
P
Motorbikes
SER | 9800 | 9850 | 24 995 96.0 (Fergus), 92.2 (Opelt),
D 98 (Willamowski)
Wildcats
90.0 (Fergus),
E 910 80.0 113 87.0 92.0 (Willamowski)
Leaves
84 (Weber),
& | OO0 | 98928 9892 g 65 (Willamowski)
TU-Grazl Databases
Bicycl
Ay 84 | 90.0 | 14| 88.0 865 (Opelt),
u ' ' 88.0 (Willamowski)
Peopl
L | 6 | s00 |13] 880 50.8 (Opelt),
ﬂ : : 78.0 (Willamowski)

To compare our approach with existing methods, Table 4.3 also presents the re-
sults reported by their authors (Fergus et al., 2003; Opelt et al., 2004; Weber et al.,
2000a; Willamowski et al., 2004). Only in the case of (Willamowski et al., 2004) we
have reimplemented the method to report comparable results on the same datasets.
We can see that overall our method performs the best. However, we have run the
bag-of-keypoints + linear SVM method (Willamowski et al., 2004) on exactly features
and vocabulary as our classifier, see Table 4.1 (bottom). This shows that SVM can
outperform our simple classifier. However, the difference is in general not very large,
i.e., around 5 — 6%. It is also important to emphasize that our classifier only selects
object features, while BoK uses a two-sided selection mechanism. We conclude that
many times, when only the decision whether an object is present or absent is impor-
tant, an SVM classifier is the best solution, and there is no need to precede the learning
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Figure 4.7: On the left, the ROC curves of different detectors for the motorbikes and
“estimated p”. On the right, the equal-error-rate curves for varying p.

by an additional feature selection. However, when we plan to extend our system, an
explicit selection may still help to understand the features and improve performance.
The next section shows an example.

4.2 Object Localization with Discriminative Features

In this section we address the problem of object localization, which aims to determine
the presence and exact locations of objects. Even though feature rankings can often
correctly localize pieces of objects, there is no straightforward way to find the bound-
aries or bounding rectangles around the objects (cf. Figure 4.2 and 4.6). If we have
more supervision by marking the locations on training images, spatial constrains can
be learnt corresponding to the structure of the object class. In this section we show how
to integrate feature selection into an existing system proposed by Leibe and Schiele
(2004). Section 4.2.1 briefly describes the approach, the integration, as well as an ex-
tension for rotation invariant learning and localization. Section 4.2.2 discusses several
parameters, the effect of selection, and experimentally evaluates those on a popular
benchmarking dataset from Agarwal and Roth (2002), and on the bicycle dataset used
earlier in Sections 4.1.2, 2.4, and 3.3.2. Our results on the PASCAL Visual Object
Class Challenge (VOC2005) are summarized in Section 4.2.3. Finally Section 4.2.3
validates our method on butterflies taken under various viewpoints.

4.2.1 The Localization Approach

In this section we describe our approach for localizing object classes. The method can
be divided into two parts: training and testing, preceded by the feature extraction
step, which is detailed in Section 3.3.1. In the following we discuss the training and
the localization steps separately.
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Figure 4.8: At learning stage, for each detected part 4 properties are calculated accord-
ing to the bouding box. (a) shows the properties in case of scale invariance learning,
while (b) assumes both scale and rotation invariance. See text form more detail.

Training

Our training consists of three steps. First we learn a vocabulary from the scale-
invariant features (Section 3.3.1) and similarly to the image classification task we
assign a rank to each cluster based on its discriminative power on the training data.
Our criterion that we use in this section is R“/%). From Section 3.2, recall that the
advantage of using this score over the classification likelihood (R“/5)) is that we can
easily integrate it into probabilistic systems because its values lie within the range 0
to 1. After the ranking we learn a spatial distribution of the object positions and scales
for each feature (cluster). For each training image, we assign all descriptors inside an
object bounding rectangle to its feature (by MAP), and record the center (x,y) and the
scale (width w and height h) of the rectangle with respect to the related feature; see
Figure 4.8(a). This step is equivalent to (Leibe and Schiele, 2004) with the difference
that we collect the width and height separately, and that we do not require nor store
any information of the figure-ground segmentation of the object.

A straightforward way to impose rotation invariance during training would be
to learn the spatial direction of the center relatively to a given direction for the object
(e.g. the direction of the head in the case of people). To be able to handle rotated
objects on test images, the distribution of the main direction has to be learned addi-
tionally for each feature by taking into account an estimated main gradient direction
for each patch. This would not only increase the dimension of our parameter space
to 5 (z, y, width, height and object orientation) but also require additional labeling
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Figure 4.9: Three examples of clusters using cars as object class for training. First
line shows example patches of the chosen cluster. The presence of these clusters on
one training image is shown in the second line. The third line plots the learned
distribution of the object centers relative to the presence of the clusters (marked with
an arrow in the middle of the graph). For the estimation we used many car images
and for visualization the density function was projected (to two dimensions lower) to
the location space by taking the maximum values over dimensions of object width and
height.

from the user. Unfortunately, in most of the rotation invariant applications this main
object direction is not available. As an example Figure 4.13 shows some representative
training data of butterflies with simple bounding-boxes. Notice, that we do not have
any information about the orientation of the butterflies within the bounding boxes.
We therefore propose another solution. We could call the following approach quasi-
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rotation invariant, but for the sake of simplicity, we refer to it as rotation invariant in
the rest of this chapter. Figure 4.8(b) illustrates the 4 dimensions (note same complex-
ity) of our parameter space with rotation invariance. The relative center position is still
normalized by the scale (o) of the descriptor, and now we also transform it according
to the dominant gradient estimated prior to the descriptor computation (marked with
a black solid arrow within the part detection). In this case the relative center position
is described by p (relative direction) and [ (relative distance). The relative width and
height are additionally projected on the line defined by the estimated gradient. (We
omited the projection of the width from the figure, since it is too large, but it can be
done similarily to the height.)

As a summary, the output of the training phase is a list of features with the
following properties:

e the mean and variance representing the appearance distribution of the feature,
e a probabilistic score for its discriminative power,
e and a spatial distribution of the object positions and scales.

Figure 4.9 shows examples from the output of our training process. Three example
features were chosen for the car class. The first line shows sample patches for the
features. On the second line we marked some feature-members on a chosen training
image. In practice, as the example shows, it often happens that we have multiple
detections of a given feature on an image. Arrows pointed to the center of object,
indicate that we used these relations to learn a density function displayed in the last
row. For the density estimate we use several car images with multiple detections of
those features.

Testing by Probabilistic Hough Voting

The localization procedure on a test image is similar to the initial hypothesis gen-
eration of Leibe and Schiele (2004). The difference here is that we incorporate the
discriminative score into the voting scheme. First, we allow only the most discrimina-
tive clusters to participate in the decision of predicted object locations, and second,
we integrate our probabilistic score in the voting scheme. These steps allow better
confidence estimations for the different hypotheses. Our algorithm is the following.
The extracted scale-invariant descriptors of the test image are assigned to the closest
visual world (codebook entry) by appearance (MAP). Then, the chosen feature places
its votes to possible object locations and scales (4D space). In practice we simplified
the voting scheme from (Leibe and Schiele, 2004) by only allowing one feature per
descriptor to vote, and extended their formulation by weighting each vote with the
discriminative score obtained from RU/K). Furthermore, to eliminate votes of non-
discriminative features, we limit the voting only for the ones that received the top
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n highest scores. The predicted object locations and scales are found as maxima in
the 4D voting space using the Mean-Shift (Comaniciu and Meer, 1999) algorithm with
a scale-adaptive balloon density estimator (Comaniciu et al., 2001). The confidence
level for each detection is determined by the peak value of the kernel density estimate.

4.2.2 Evaluation of Different Parameters
Experimental Setup

In this section we evaluate the influence of different parameters of our system using
a popular and publicly available car database, as well as the bicycle set from Grazl
that we have used in the previous chapters. For the cars, we train our system on
scale-invariant features extracted from 50 images with hand-segmented cars (bounding
boxes only). This training set has been introduced by Leibe and Schiele (2004). We
run the localization process on the UIUC test II (Agarwal and Roth, 2002) dataset
which consists of 108 images containing 139 cars of different sizes. Test images are
of different resolutions often with highly textured background and include instances
of partially occluded cars and cars with low contrast compared to their background.
Notice, that our training and test sets are completely independent datasets, which
allows us to even better evaluate the generalization capabilities for cars.

As for the bicycles, we use the same setup as earlier in Sections 4.1.2, 2.4, and 3.3.2.
For the training and the evaluation we naturally use bounding-boxes instead of the
pixel-wise segmentation from Section 3.3.2. The Grazl bicycles dataset was originally
collected for image classification by the authors, and therefore, several images are not
very suitable to evaluate object localization (e.g. large number of multiple bicycle
instances overlap in a parking lot). Even though, we have marked these images as
good as possible, and have kept the same training and testing set as before, we expect
reasonable, yet a bit lower performance on this set.

For a test image, the output of our method is a list of possible locations of the
object class together with a confidence level, obtained as the value of the kernel density
estimate. A location is given by a bounding box B = (¢;, ¢j, w, h) with the position
of the center, and the width and height of the object. To be considered a correct
detection, the area of the overlap ¢ between the predicted (B,) and the ground truth
(By) locations must exceed 50% specified as:

area(B, N By)

area(B, U By)
Furthermore, we only accept one correct detection per objects and count each addi-
tional predicted bounding boxes as false detections on the same object.

The false and correct detections are counted for each confidence level to draw the
recall-precision curve, where

L=

# correct detections
# detections

# correct detections .
- ; Precision =
# objects

Recall =
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There are several ways to compare two recall-precision curves. In this chapter we
used the same as Everingham et al. (2005), the average precision (AP). It is used by
TReC and is defined as the arithmetic mean of 11 interpolated precision p(r) values
determined on thresholds of recall r € {0,0.1,...,0.9,1}. The interpolated precision
p(r) is defined as the mazimum precision for which the corresponding recall is greater
than or equal to the threshold . We used this measure in order to be comparable
with the results of the PASCAL challenge in Section 4.2.3.

Performance of Different Feature Detectors

The following experiments use three of the most popular detectors and the new ones
introduced in Chapter 2. H-Lap has excellent repeatability in location (cf. Section 2.3)
and its extracted regions are very rich in structures. On the other hand, the detected
corner-like structures often lie on the boundary of the objects, and thus, the extracted
features are less reliable for recognition of objects particularly with small sizes. Blobs
extracted by LoG and DoG are well localized structures, but due to their homogen-
ity, the information content can be poor in the center of the region. To enrich this
information, a common practice is to enlarge the neighborhood by a factor of 2 or 3,
as we also did in our experiments for H-Lap, LoG, and DoG detectors. Due to the
different nature of these detectors it is interesting to compare them in our object class
localization approach. Figure 4.10 shows the results of our system trained on different
types of features using the setup described in above. For the cars LoG performs the
best, followed by our new detectors. H-Lap and and DoG come last. This can be
explained by, first, on average a larger percentage of detected points (> 35%) lie on
the cars, while in the case of the other two detectors this ratio is slightly lower ( 30%).
Furthermore, LLoG and L-MSLSD also detect larger number of points which could lead
to better defined peaks in the voting space. Apart from the DoG and L-MSLSLD
detectors’ improved performance, the detectors perform similarly on the bicycles. Due
to the difficulty of this dataset the best result (L-MSLSD) is lower than the one on
the car set. For both datasets, we also believe that the poor performance of some
detectors can also be caused by the imprecise estimation of scales which is often un-
stable on e.g. corner-like structures like Harris points. In our scale-invariant approach
the learned object properties (location of the center and the scale) are relative to the
characteristic scale of detected points. As a consequence, the individual scales are
essential parameters and the method can substantially suffer from their noisy or im-
precise estimation. This is the reason why H-MSLSD outperforms H-Lap. The leading
performances of LoG and L-MSLSD are partially due to the good scale estimation on
blob-like structures.
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Detector AP
DoG 0.427
H-Lap 0.527

L-MSLSD | 0.575

H-MSLSD | 0.601
LoG 0.753

Detector AP
H-Lap 0.377

H-MSLSD | 0.412
LoG 0.412
DoG 0.419

L-MSLSD | 0.428

Figure 4.10: Recall-Precision curve of our localization approach on the UIUC test II
(top) and the Grazl bicycles (bottom) sets for different interest point detectors. The

tables on the right show the average precision computed on the curves.

Importance of Feature Selection

To measure the improvement and discuss the advantages of the integrated feature
selection, we perform three different experiments with each of the interest point de-

tectors.

(A) We use all the 100 features in our vocabulary and for each, we learn the spatial
distribution of the object positions and scales. We do not perform any feature
selection. (The baseline method.)

(B) Same as in (A), but we only use the top 25 features determined by REIK) 16 vote.
We do not integrate RU“75) scores in the voting.

(C) Same as in (A), using all the 100 features, but we also compute the discriminative
scores RUETE) for each feature, and use it to weight its votes in the mean-shift

space.

(D) Similar to (C), but we only use only the top 25 features to vote. (Combination

of (B) and (C).)
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| H-Lap | DoG [ LoG [ H-MSLSD | L-MSLSD |
UIUC Cars I1
no f.sel., no weights (A) | 0.414 | 0.162 | 0.389 0.452 0.402
best 25, no weights (B) | 0.503 | 0.368 | 0.689 |  0.516 0.447
no f.sel., weights by REK) (C) | 0.441 | 0.383 | 0.512 |  0.498 0.406
best 25, weights by REE) (D) | 0.527 | 0.427 | 0.753 0.601 0.575
Grazl Bicycles
no f.sel., no weights (A) | 0.417 | 0.423 | 0.432 0.432 0.434
best 25, no weights (B) | 0.330 | 0.419 | 0.409 0.410 0.423
no f.sel., weights by REK) (C) | 0.405 | 0.419 | 0.432 |  0.430 0.431
(D) | 0.377 | 0.419 | 0.428 |  0.412 0.428
DoG (Cars) LoG (Cars)
1 L|I‘—ws... P
) 0.9 L
) ; 08 ‘*LL
| / o8| S
| e %S A
DN T RSO . b DR o TR .
03| {5} " RO - 03 | {§) b
‘ 0 01 02 03 04 05 06 0.7 0 01 02 03 04 05 06 0.7 . 0 0102030405060.70.80.9
Recall Recall Recall
H-MSLSD (Cars) L-MSLSD (Cars)
0.8 : 0.8 o
07 0.7 "/"%t%”
06 06 i i
0 % S 0 % i
82 (D) e 8:23 (D) e L‘k !
. 0 010203040506 0.708 ‘ 0 01 02 03 04 05 06 0.7
Recall Recall

Figure 4.11: The effect of ranking and selection for different interest point detectors.
For the cars each recall-precision curve shows the results of the object localization
without feature selection (A), using only the top 25 clusters to vote (B), using the
discriminative score for voting with all the features (C), and additionally to the weights
select the top 25 clusters to vote (D). The table above shows the average performances
for the cars and the bicycles datasets.

The results are summarized in Figure 4.11. For the cars, version (D), the feature
selection together with the weighting, shows significant improvement for each detec-
tor. The sample detection in Figure 4.12 helps understanding why feature selection is
so important for the voting phase. In general the best results can be achieved with
the detector that delivers the most points on the objects. In our case the LoG de-
tector selects the most points and delivers the best results. On the other hand, we
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H-Lap DoG LoG

Figure 4.12: Example detection on two different test images (first and second row).
Blue detections were eliminated by the top 25 discriminative cluster selection, their
votes were not included in the mean-shift space. Yellow circles indicate points that
actually participated in the selection of the most probable object location (yellow
rectangle). Violet points voted for some other centers. Non-yellow bounding boxes
indicate further possible solutions with lower confidence.

prefer few background points, because they add noise to the voting space. The best
possible way to benefit from the increased detections on the objects is to reject the
non-discriminative, and non-object features. As the examples show the pre-selection
of the 25 most discriminative clusters reject a huge amount of points (indicated by
blue circles). This clearly shows the advantage of discriminative feature selection. On
the bicycles dataset, the feature selection does not show the same improvement. This
is due to the nature of the database: several bicycles that are localized correctly are
sideviews covering a huge part of the images, while others can never be found due
to their previously unseen viewpoint or to their occlusion by other bikes. On this
set, feature selection and weighting cannot improve the results, moreover it sometimes
caused weaker object estimates due to the fewer number of points.

Comparison of Different Feature Selection Methods

As we did earlier for object feature retrieval (Section 3.3.2) and for image classification
(Table 4.2) we compare the different selection techniques, here, for object localization.
Unlike RETK) - many of the introduced method do not offer a straightforward con-
version to probabilistic scores. Therefore, the following set of experiments do not
take advantage of feature weighting as before; we only select the top 25 features and
equally weight their contributions during the voting phase. Note that this is equivalent
to experiments (B) from the previous section.
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Ranking Cars
H-Lap | DoG | LoG [ H-MSLSD [ L-MSLSD |
R(LIK) 0.503 | 0.368 | 0.689 0.516 0.447
ROR) 0.503 | 0.368 | 0.689 0.516 0.447
R(BNSH) 0.481 | 0.370 | 0.710 0.486 0.395
REMIME) 1 0.432 | 0.390 | 0.765 0.529 0.388
RMI+) 0.504 | 0.421 | 0.694 0.539 0.410
REO) 0.502 | 0.437 | 0.735 0.510 0.408
R(GSS) 0.499 | 0.420 | 0.726 0.528 0.403
R 0.474 | 0.388 | 0.628 0.534 0.482
RSVM) 0.440 | 0.353 | 0.773 0.506 0.348
R(AB+) 0.397 | 0.446 | 0.691 0.531 0.275
R(Freq) 0.063 | 0.133 | 0.441 0.357 0.352
Ranking Bicycles
H-Lap | DoG | LoG [ H-MSLSD [ L-MSLSD |
RUETK) 0.330 | 0.419 | 0.409 0.410 0.423
ROF) 0.330 | 0.419 | 0.409 0.410 0.423
RIBNSE) 0.417 | 0.412 | 0.417 0.428 0.426
REMIME) 10415 | 0.417 | 0.418 0.428 0.445
RMI+) 0.409 | 0.411 | 0.414 0.415 0.360
R(CC) 0.418 | 0.430 | 0.413 0.415 0.442
R(GSS) 0.412 | 0.412 | 0.439 0.415 0.437
R 0.415 | 0.402 | 0.327 0.368 0.401
R(SVM+) 0.422 | 0.423 | 0.315 0.427 0.419
R(AB) 0.429 | 0.369 | 0.302 0.401 0.409
R(Freq) 0.401 | 0.396 | 0.420 0.386 0.413

Table 4.4: Comparison of different ranking methods on the cars and the bicycles
dataset. Reports are the Average Precision rates using the best (highest ranked) 25
components.

Table 4.4 details the average performance of each selection method for the same
detectors as before. Even though, the best performances are several times achieved by
REVME) or RAB) on average RE), REI9) and RMIH) perform best (in this order).
Notice that these three methods are non-conditional, i.e., select features independently
of what has been selected before, and mix frequency with discriminative power. The
benefit of discriminative features is that they help to remove noise from the voting
space, while frequent parts, as they appear more often, have better estimation dur-
ing the training, and therefore they lead to better object class models. Conditional
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Class Train Test 1 Test 2
motorbikes || 214 | 217 || 216 | 220 || 202 | 227
bicycles || 114 | 123 || 114 | 123 || 279 | 399
people || 84 | 152 || 84 | 149 || 526 | 1038
cars || 272 | 320 || 275 | 341 || 275 | 381

Table 4.5: The number of training and test images/objects in the PASCAL VOC2005
Challenge database.

selection methods may provide sufficient number of parts to well localize the objects
(e.g. the LoG detector for cars), but on the other hand the rejected, and individually
discriminative features could be missing, as they could still contribute to more precise
location estimates (e.g. Harris based detectors for cars). Even though REMIM) g
a conditional method, for the bicycle dataset it performed the best, and for the car
dataset it performed better then R(SVM+) and RMAB) RIEMIM) gimilarly to RE),
RESS) and RMIH) | explicitly takes the feature frequency into account.

From all these we conclude that for object localization based on part distribution
estimates, discriminative feature selection may improve the results, and techniques
based on individual filtering that take into account both discriminative power and
frequency are the most suitable.

4.2.3 Additional Results: PASCAL Challenge, Butterfiles

In this section we present results for the PASCAL Visual Object Classes Challenge
(VOC2005)" dataset and the butterfly dataset. Results on the PASCAL Challenge
allow to compare our method to the state-of-the-art. The butterfly dataset validates
our approach to rotation invariance.

In the PASCAL Challenge dataset there are four different object categories: mo-
torbikes, bicycles, people and cars. Table 4.5 shows the the number of images and
objects per category. We train our detector for each class with the given training set;
we used 1200 clusters and descriptors extracted by LoG (the detector performed best
on cars in our previous localization experiments). For localization we run the 4 object
class detectors with 100 selected clusters, with weights computed by RETE) | separately
on the testl and the test2 sets. Note, that each detector is tested on all test images
i.e., 689 images for testl and 1282 for test2. The testl set is taken from the same
distribution of images as the training data, i.e., same type of scene and conditions,
while the test2 set provides a “more difficult” set of specifically collected images for
the challenge.

Dataset, description and report of other methods on the same set are available at
http://www.pascal-network.org/challenges/VOC/.
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Black
Admiral | Swallow- | Machaon Monarch | Monarch Peacock Zebra
tail closed open
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Figure 4.13: The butterfly database (Lazebnik et al., 2004). Example images from
each of the seven categories. Bouding boxes indicate the hand-segmented groundtruth.
Last line shows the number of images in the training/test sets.

The butterfiles (Lazebnik et al., 2004) database consist of seven different categories
of butterflies. For the training and the localization we use our extension to rotation
invariance (Section 4.2.1), because both on the training and on the testing images the
butterflies are in different pose and direction. The seven categories with examples
can be found in Figure 4.13. The butterflies database has the following challenging
properties:

e rotation invariance (in reality there are also 3-D viewpoint changes),
e similarities between different classes of butterflies,
e less rigidity, due to their wings,

e monarch open and monarch closed are two different categories with the same
type of butterflies.

Please note, that we have only used grey-scaled images with SIF'T descriptors in the
following experiments, to keep our local representation consistent throughout the the-
sis, we believe that adding color information may significantly improve the results.
Similarly to the PASCAL Challenge, we used the LoG detector, and weight our votes
by REE) scores. For the butterflies we select 50 features out of 300. We split the
multi-class problem into seven two-class localizers, and we allow multiple labels on
the test images. Even though we do not have images in our set in which two or more
different types of butterflies occur, our system is built to be able to localize or all of
them. In each experiment we use the same test images. Detected instances of other
butterflies and multiple detections of the same butterfly are counted as false positives.
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TEST 1
Ours | Darmstadt Fr.Telecom Inria-Dalal Edinburgh
motorbikes | 0.824 0.886 0.729 0.490 0.470
bicycles | 0.355 - - - 0.119
people | 0.103 - - 0.013 0.002
cars | 0.456 0.489 0.353 0.613 0.000
TEST 2
Ours | Darmstadt Fr.Telecom Inria-Dalal Edinburgh
motorbikes | 0.245 0.341 0.289 0.124 0.116
bicycles | 0.209 - - - 0.113
people | 0.021 - - 0.021 0.000
cars | 0.110 0.181 0.106 0.304 0.028

Table 4.6: Average precision rates on the four different categories of the PASCAL
VOC2005 challenge dataset. Our performance is compared to the four competing
institutions’ best results. Empty cells indicate that the competitor did not run their
method(s) on given test set.

Results

Table 4.6 compares our performance with the best results of the challenge. Most of
the competitors submitted several results of different methods. Here, we always take
their best results for comparison, for more detail which method they used we refer
to the book chapter dedicated to the challenge(Everingham et al., 2006). Figure 4.14
shows our recall-precision curves on the different categories. Example detections are
shown in Figure 4.15.

In categories of bicycles and people (testl) our method outperformed all existing
results while in the other cases it showed comparable performance. The method of
Darmstadt is based on (Leibe and Schiele, 2004) and is only slightly better then ours’.
Their algorithm includes two additional verifications steps. One, based on the figure-
ground segmentation requiring additional segmentation masks, while the other one
is an SVM-based step to reject false detections. It is remarkable that the simple
voting algorithm used together with our feature selection can compete with theirs. An
additional advantage of the proposed solution is the gain in execution time due to the
elimination of unnecessary votes by feature selection.

Figure 4.16 shows the average precision rates on the different butterfly categories,
using the same evaluation criteria. Our rotation invariant localization correctly re-
trieve (recall) around 70 — 80% of the butterflies. As we may have expected, the main
difficulty is to separate between different categories. This is the main reason of the
poor precision for the Admirals and the Black Swallowtails. Our Machaon detector
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Figure 4.14: Recall-Precision curves on the PASCAL VOC2005 Challenge dataset.
Each plot shows a different category. For each category two curves are showed for the
two different test sets.

also falsely detects many other butterflies, but due to the Machaons’ particular and
discriminative patterns in their middle stripe our system assigns a much higher confi-
dence for correct instances. Monarch closed and open are two different categories, and
unfortunately a substantial performance drop is due to mixing them up. Even though
Peacocks have a particular pattern at the end of their wings using the LoG detector
the rest of the butterflies (middle wings and body) remain almost featureless. While
those few number of parts—mnot so discriminative without color—provide some correct
detections, the lack of features leads to very few, weak (in confidence) localizations.
The Zebra butterflies have a lots of detection along their stripes leading to outstanding
precision on all recall rates.

4.3 Implementation Details

In this section we give more insight and detail about the implementation and the
parameters used over our experiments. In Section 2.5 we have already discussed the
details of the interest point detectors used in Chapter 2. These are the same here
as well. For the other detectors, ENTR, DoG, IBR, and MSER, we use the publicly
available binaries from the authors with their default parameters.
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Motorbikes Bicycles Cars

Figure 4.15: Example detections for the PASCAL Challenge (2005) dataset. First row
shows images from the testl while the second row from the test2 set. Blue points
are eliminated due to feature selection, and yellow points are voted for the best so-
lution (yellow rectangle). Non-yellow rectangles indicate false detections with lower
confidence.

o
j<b]
— . .
[ Adm1ral‘BlaCk SwallowtaluMachaon‘Monarch closed‘l\/{onarch openPeacock‘Zebra
s | 0.218 | 0.297 | 0622 [ 0348 |  0.308 0.037 [0.731
<
Admiral Black Swallowtail Machaon Monarch closed

1 1 1 1

08 08 08 08 /]
n 06 06 A 06 M 06 / 2
% 4 s Uy ‘ ‘ )
SE 0.4 "‘l 0.4 0.4 0.4
= 02 b 02 =y 02 02
© 0 [ 0 T 0 ! 0
: 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
g Recall Recall Recall Recall
o Monarch open Peacock Zebra
[a'sf 1 1 1 e —
:': 08 08 08 Lo
% 06 f} 06 06 LLI
5 0.4 ﬂylm = 0.4 0.4
L 02 y 02 02 |
ol o, 0 * 0

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Recall Recall Recall

Figure 4.16: Results on the butterfly database.
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Object Class Classification Experiments

After extracting interest points and computing the local SIF'T descriptors, we proceed
with EM clustering to estimate a GMM for each class. Notice, that all experiments are
two-class problems, an object category vs. background. We create a vocabulary for
each class independently. EM algorithms are initialized with kmeans, where the num-
ber of clusters, and therefore the number of modes of the GMM is 400 for motorbikes
and airplanes, 200 for bicycles and faces, 50 for wild cats, and 25 for leaves. These
numbers are chosen manually, according to the size of the database. The EM-loop
quickly converge within the first 5 — 20 iterations. The clustering is done on one half
of the training set. The other half is used to compute feature ranks for each center
(Gaussian mode). While for the ranking we use soft feature assignment, i.e., the ac-
tual probabilities from the GMM, at testing time we hard assign each descriptor to
the most probable cluster. The features (clusters) are ordered based on their ranking,
and the top n are marked as object features. n is a parameter of the system and
the variable in our ROC curves. When all descriptors of a test image are assigned to
their clusters we count how many of them fall into an object cluster. If this number is
greater than p, we classify the image as positive. The p parameter is learned during
training by optimizing the classifier to the highest EER on the ranking set.

For the bag-of-keypoint experiments we use similar setting as described Section 2.5.
The number of clusters is the same as for the previous classifier.

Object Class Localization Experiments

In general, the first steps of these experiments are identical to previous ones. We ex-
tract interest points, compute SIFT descriptors and cluster the descriptors to create
the visual vocabulary. The number of clusters is 100 for cars, 1200 for the PAS-
CAL challenge, and 300 for the butterflies. For the PASCAL challenge and butterflies
databases we use one-one common vocabulary for all categories. Each feature (cluster)
is ranked by the likelihood ratio criterion. Unless it is stated otherwise, the best n fea-
tures are selected, and the distribution of the object positions relative to these features
are learned. We use non-parametric distributions, and basically store all occurrences
of object centers and scales (width + height) for each feature. Note that both location
and object scale values are normalized by the scale of the descriptor. At detection
time, each local descriptor is hard-assigned to its closest cluster, which places its votes
to the 4D voting space. All votes are weighted by the discriminative power of its clus-
ter, i.e., the sum of the placed votes per descriptor equals to the REE) score of its
assigned cluster. The final predicted object locations and scales are found as maxima
in the 4D voting space using the scale-adaptive Mean-Shift (Comaniciu and Meer,
1999; Comaniciu et al., 2001) algorithm. The confidence level for each detection is
determined by the peak value of the kernel density estimate.
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4.4 Discussion

In this chapter, we have shown two different tasks which use discriminative feature se-
lection. Our image classification is based purely on the number of selected features for
a given object class. For this task, we have found RETE) (and R(OR)) the best suited
selection methods as they retrieve the most trusted features. Note that this agrees
with our earlier results in Chapter 3 where these methods provide the best object cov-
erage. However, the RUETK) and ROB are followed by REVMH) RAB) and REMIM),
providing low object coverage (cf. Section 3.3.2), yet good discrimination. These
experiments confirm our earlier observation, that these three methods provide fewer
features on the objects, because they reject redundant discriminative components.

In the object localization experiments each feature has a (non-parametric) prob-
ability estimate for the relative object position. Frequent features have more stable
estimates, due to more training examples, and therefore on average the leading feature
selection methods are R(CC) RESS) - and RMIH) - The other selection methods may
also provide good performance—as they do in our experiments—when the selected
features (accidentally) have enough statistics. This explains that RVM) and R(AP)
several times are the leading methods, but on average they are below the trio that
takes the frequency explicitly into account. For the same reason among the condi-
tional methods RIEMIM) performs the best.

Image classification experiments has shown that by using only feature selection
our system provide competitive results on popular datasets. As for the localiza-
tion we have shown how to improve both speed and accuracy of the voting phase
of Leibe and Schiele (2004) by the integration of discriminative feature selection. We
have also generalized their method to general similarity transformations by adding ro-
tation invariance without requiring any pre-normalizatioin (pre-rotation) of the train-
ing images.
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FirTH CHAPTER

Conclusion and Future Work

ECOGNITION of object categories is a challenging task. Learning algorithms have

to generalize over all specific instances of an object class, and at the same time
they have to learn enough distinctive information to separate the objects from the
background. A system which solves such a challenging goal has to rely on a high
quality image representation as well as appropriate learning methods. This thesis has
addressed these key features by proposing a novel scale-invariant keypoint detection
method, and by investigating class-discriminative feature selection.

We have introduced a new technique, called the Maximally Stable Local Descrip-
tion, to provide more stable local descriptors, and consequently a better appearance
based representation for images. We have applied MSLD for scale selection on key-
points extracted on multiple scales by the Harris and the Laplacian operators. The
algorithm uses description stability as criterion for scale selection: the characteristic
scale for each location is chosen such that the corresponding representation (in our
experiments SIFT) changes the least with respect to scale. The informative content
and repeatability of the detections are guaranteed by the keypoint detectors, while
description stability is preserved by MSLD scale selection. This balanced solution has
demonstrated competitive results, many times outperforming the Laplacian selection.
We have particularly found MSLD scale selection beneficial in the following situations.

While the new detectors may have weaker repeatability rates in standard image
matching environments, they can provide additional robustness, invariance, and there-
fore improved performance in challenging conditions. For example, due to the inherent
property of SIFT, i.e., being invariant to affine light changes, we have demonstrated
improved performance for image matching under different lighting conditions.

The stability of the bag-of-keypoints representation rely on the stability of the local
descriptors. Since our method enforces this stability it has consistently demonstrated
better results on textures and materials, as well as several times improvements on
object categories.

Recent works on object recognition mostly reported a decrease in performance when
imposing additional levels of invariance, such as rotation. The standard explanation is
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that more invariance makes descriptors more similar, and therefore they loose distinc-
tiveness. On texture databases we have shown in several experiments that their poor
performance is mainly due to the instability in the parameter estimation, and that
our new criterion, which maximizes stability, can overcome those challenges. Adding
rotation invariance has consistently improved our results using our new detectors.

Experiments on object localization matches the features by appearance to a code-
book entry, and it explicitly uses the scale estimation (the region shape) to normalize
all distances to learn the spatial configuration of the object class. Therefore, both
repeatability (location + scale) as well as description stability is crucial for this task.
Our detectors have shown competitive results: while the 3D Laplacian detector (LoG)
performs better than our scale estimation on 2D Laplacian points, MSLSD (Maxi-
mally Stable Local SIFT Description) on Harris corners is consistently better than
Harris-Laplace. The reason is two-fold. First, probably for both cases the appearance
matches are improved with MSLSD, and second, for Harris points, the scale estimates
are less stable, i.e., less repeatable, using Laplacian.

In this thesis, we have also adopted several feature filtering techniques from the
text literature. We have shown how to use them for class-discriminative feature selec-
tion and ranking. Several properties have been analyzed and explained. One major
difference is whether the selection of positive and negative features are treated equally
or not. Consequently, we have shown how to convert one-sided measures to two-sided,
and vise versa. Some selection methods (e.g., mutual information, chi-square) explic-
itly take into account feature frequency, while others (e.g., likelihood, odds ratio) are
based only on discriminative power. We have also listed three different methods, SVM
coefficient, AdaBoost, and conditional mutual information maximization which reject
redundant features. On practical terms, where visual features are quantized distribu-
tion of sparsely extracted local descriptors, we have observed that all these methods
select class-discriminative locally consistent object-parts (e.g., tires of cars, eyes of
faces, etc.) and dominant textures (e.g., pattern of wild cats). We have evaluated the
selection methods in three different scenarios, and have come up with the following
recommendations (see Figure 5.1).

The purely appearance based object coverage problem tries to retrieve as many
features on objects as possible while minimizing the number of background features.
This is a typical scenario when only the discriminative power of the features are impor-
tant, and even special features, i.e., features that corresponds to some special usually
rare object structures, are very valuable besides the frequent ones. Our experimental
results confirming the use of classification likelihood and odds ratios for such tasks.

Our image classification scenario has used purely an appearance based represen-
tation to decide about the presence of an object instance in an image. In our sim-
ple classifier—where we have required a predefined number of object features for the
presence of an object—Ilikelihood and odds ratio have shown the best performance.
The runners-up are SVM coefficients, AdaBoost, and conditional mutual information,
which is the group of methods that reject redundant features. Our experiments have
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Scenario ‘ Aim ‘ Relevant properties ‘ Recommendations
object retrieve as many ob- | discriminative power; | likelihood ratio, odds ra-
coverage | ject features as possi- | include  redundant | tio
ble (Chapter 3) : features
image presence/absence discriminative power; | likelihood ratio, odds
classifi- | test of object in- | redundant features | ratio, SVM coef., Ad-
cation stances; appearance- | less important aBoost, conditional
based (Chapter 4) mutual information
maximization
object determine the posi- | discriminative power; | chi-square, correlation
class tion & scale of object | frequency to support | coef., GSS, mutual in-
localiza- | instances in a scene; | statistics of spatial | formation; conditional
tion appearance -+ spatial | distributions mutual information max-
relations (Chapter 4) imization  (if  sparser
representation required)

Figure 5.1: Recommendations for feature selection in three different scenarios. For each
scenario we list the main properties of the features (third column) and the selection
methods that performed the best, and therefore are recommended (last column).

also shown that a more sophisticated classifier, a linear SVM which includes implicit
selection based on SVM coefficients, outperforms our simple classifier on average, but
at the same time has also confirmed the success of the selection method by SVM
coefficients.

The demonstrated object class localization method estimates the spatial distribu-
tion of different features, and therefore sufficient statistics also play an important role.
Even though we have used non-parametric estimates, our experimental results have
indicated that good features must be supported by sufficient training examples. Con-
sequently, the most appropriate selection methods are chi-square (and its derivatives,
correlation coefficient and GSS) and mutual information. If a sparser representation
is preferred, with the price of loss in accuracy, redundant features can be most effi-
ciently rejected by conditional mutual information maximization, since it also ensures
the sufficient frequency of the selected features. In general, we have shown that class-
discriminative feature selection plays an important role in object localization. The
combination of existing methods have led to a simple framework which outperforms
or obtain comparable results to state-of-the-art methods. Our integration of feature
selection in the voting framework provides the following advantages:

e While keeping the background features nearly constant, the number of object
descriptors can be increased, e.g., by adding more interest point detectors (cues)
or lowering the thresholds of existing ones. More object features usually improves
the performance of localization.
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e The spatial (foreground) model is learned on object features, i.e., is not built on
features that may often appear on the background, providing a better model for
the object class.

e The speed of the final detection on new images is significantly improved due to
the removed non-discriminative object and background features.

Future Work

The presented work has many possible extensions. In the following we summarize our
ideas for such future work.

Extensions for MSLD

In the following we describe three possible extensions for our MSLD criterion. The
first is to initialize the scale selection by different types of regions, the second is to
embed different types of descriptors, and finally an extension to develop scale-invariant
dense representations.

Scale selection via Maximally Stable Local Description can be applied on different
types of regions, such as Hessian points or extremal regions, etc. In most cases this
is straightforward, e.g., for Hessian points it can be done in the same way as we have
shown for the Harris corners; for extremal regions the MSER, detector shape stability
(region area or boundary length) can be replaced by descriptor stability. Various
initial conditions, e.g., interest point detectors, constrain the search space differently.
It would be interesting to analyze what types of final regions are selected by the MSLD
scale selection in these different environments.

While the SIFT descriptor is one of the most successful general descriptors, using
other image features can be beneficial: scale selection, and consequently interest point
detection, can be improved by adding different levels of invariance. SIFT provides
invariance for changes in light conditions; other descriptors may provide other invari-
ance, e.g., to certain color changes, or to specific types of noise. Embedding these
descriptors in the detector, MSLD can provide more robust detections in those specific
conditions. Moreover, invariance is obtained locally on several parts of the image, and
therefore more powerful than a global preprocessing of the image.

Scale selection on each pixel provides a scale-invariant dense representation. Using
MSLD for scale estimation may provide a particularly stable local description, and
therefore could be very useful for representing textures and patterns.

Future Prospects of Discriminative Feature Selection

In the following we describe unsolved problems and possible extensions for discrim-
inative feature selection. First we mention the problem of choosing the number of
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features. We then discuss an extension to a dense feature space. After that, we also
point out the benefits of integrating codebook creation and feature selection. Dis-
cussion on the types of selected features motivates us to investigate more in textured
objects. Finally, we present the possibility to generalize our appearance based appli-
cations towards object structures and other types of features.

Typically feature selection has one parameter (we have called it n), the number of
components. Many times the complexity of the learning model limits this parameter,
and sometimes it can be set intuitively (e.g., likelihood ratios are meaningful values).
It can be a main parameter of the task (such as in image classification, the ROC
curves has been plotted respectively to n), but many times is has to be appropriately
chosen (e.g., for localization). If no intuition and no previous experience is available it
might be set by cross-correlation, however, it would be interesting to investigate more
sophisticated ways.

In this thesis we have focused on sparse image representations. Keypoint detectors
reduce the complexity, i.e., the number of local features to deal with, by smart sam-
pling of the space. Reduced memory consumption and systematically sampled data
allow to deal with more training examples, and therefore lead to better statistics and
performance. Feature selection as an immediate first step could efficiently sample the
descriptor space as well. This requires to run feature selection on the quantized space
of dense descriptors (descriptors extracted at every pixel and at every scale). Exist-
ing quantization methods, and the selection techniques discussed in this thesis allow
this computation with linear complexity on the descriptor space. In practice, this is
possible for dense multi-scale features. The resulting selection of descriptors would
be a sparse set of mostly object features, where the sparsity is set by the number of
selected features. Since the distribution of the discriminative points are very different
from the existing keypoint detectors, such a new representation should be throughly
tested and the learning methods should be adapted.

This thesis has demonstrated feature selection on (pre)extracted visual words. Cou-
pling the two steps, codebook creation and feature selection, could be beneficial for
the following reasons.

e From our experiments we have learned that various tasks have different needs.
Many special discriminative features support the best object coverage, while
frequent features are necessary for distribution estimates. We can select the re-
quired features with the appropriate techniques as shown in this thesis. However,
the performance could be improved by constraining the feature creation (code-
book construction) to satisfy these additional requirements. These requirements
can be derived from the feature selection.

e Creating codebook entries that can later be used to better separate object and
background features may lead to better foreground appearance model, and there-
fore, improved performance. Feature selection can guide codebook creation to
obtain more discriminative features. In practice this leads to (semi-)supervised
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clustering, because the available class labels are used by discriminative feature
selection.

Our experiments have shown that feature selection methods select discriminative
object parts as well as dominant texture features. However, we believe that recognition
methods, like the one we have used for localization, can benefit from these two types of
features differently. On rigid objects, the part-type features have more precise relative
spatial distribution to the object center, while texture-type features should be grouped
together for efficient spatial estimates. An interesting extension would be to learn to
distinguish between these two types of features.

This thesis has applied class-discriminative feature selection to codebooks of ap-
pearance. This, of course, can be extended to select object structures, i.e., spatially
constrained tuples of object parts. Creating features that encode small or large parts,
loose or strong relationship of appearance based features may allow to determine object
class specific rigid and less rigid geometrical structures.



Appendix A

Influence of the number of interest points

Our method for image classification relies on the parameter p, the threshold on the
number of positively classified interest points. To evaluate the bias of our approach,
we examine the influence of the number of points on image classification. Note that a
bias exists for almost any classification method, i.e. a low information content or low
image resolution of the negative images can influence their classification results. The
following study therefore also evaluates the difficulty of the databases.

In the following we evaluate the performance of a classifier based on the number of
interest points. An image is classified as positive, i.e. containing the object category,
if the number of detections are higher than a certain threshold ¢. Changing this
parameter ¢ determines an ROC curve, on which we report the equal-error-rates in
Table A.1. The experimental set-up is the same as in Section 4.1.2.

Table A.1 shows the results for HL and ENTR detectors as well as for the combi-
nation HL. + ENTR. In each case the first column gives the average number of interest
points on the foreground and background images. The second column shows the equal-
error-rate. Results with HL are very good for airplanes, faces, motorbikes and wild
cats. For these categories significantly more points are detected on the object images
than on the background ones; on average for these databases the EER of our approach
only slightly increases. Results are at chance-level for leaves, bicycles, and people; for
them our approach increases the EER significantly. Results with the entropy detector
lead to similar conclusions. Note the classification performance for people are below
chance-level, as more points are detected on the background. The results for the com-
bination are again very good for the Caltech dataset, and the results for the Graz
database are at chance-level. This shows that the Caltech dataset is biased, whereas
the Graz dataset is not. Background images of the Graz dataset are of the same size
as object images and contain a significant amount of clutter, whereas Caltech back-
ground images have lower resolution and contain less clutter. In conclusion, when
images containing the object class are consistently more informative than the back-
ground, the extracted number of interest points can help image classification to find
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Table A.1: Equal-Error-Rate for image classification based on the number of interest
points.

HL ENTR HL+ENTR

Database AE[ég.%gI.P EER % A\%:/:B%g.IP EER. % A%Z/#g.lp EER %
CalTech Databases
Airplanes 119/25 88.2 90/54 70.4 209/79 78.7

Faces 311/25 98.9 115/54 76.2 426/79 92.9
Motorbikes | 199/25 95.8 207/54 89.8 406/79 95.3
Wild Cats'| 125/25 90.9 164/54 80.7 290/79 86.7

Leaves 23/25 53.6 96/54 73.1 119/79 89.1
TU-Grazl Databases
Bicycles 243/219 52.0 254/138 84.0 498 /357 66.0
People 219/241 56.0 137/201 30.0 357/441 44.0

the right category. As a consequence, “badly” constructed datasets can bias the results
which can influence any image based classification method. Note that our method is
independent of the bias, as it allow to obtain excellent results on the unbiased Graz
database.
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