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Abstract

In this paper we present a novel approach to the
problem of navigating through a database of color
images. We consider the images as points in a metric
space in which we wish to move around so as to lo-
cate image neighborhoods of interest, based on color
information. The data base images are mapped to
distributions in color space, these distributions are
appropriately compressed, and then the distances
between all pairs I, J of images are computed based
on the work needed to rearrange the mass in the
compressed distribution representing I to that of J.
We also propose the use of multi-dimensional scal-
ing (MDS) techniques to embed a group of images
as points in a two- or three-dimensional Euclidean
space so that their distances are preserved as much
as possible. Such geometric embeddings allow the
user to perceive the dominant axes of variation in the
displayed image group. In particular, displays of 2-d
MDS embeddings can be used to organize and refine
the results of a nearest-neighbor query in a percep-
tually intuitive way. By iterating this process, the
user 1s able to quickly navigate to the portion of the
image space of interest.

1 Introduction

Rummaging through a large catalog of pictures in
search of a particular image is unrewarding and
time-consuming. Image database retrieval research
[Bach et al., 1996, Guibas and Tomasi, 1996, Niblack
et al., 1993, Pentland et al., 1996] attempts to auto-
mate parts of this task. The most popular proposals
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for formulating a query into an image database 1s to
sketch the desired picture or to provide an example
of a similar image. Yet often we do not know the
precise appearance of the desired image(s). We may
want a sunset, but we do not know if sunsets in the
database are on beaches or against a city skyline.
When looking for unknown images, browsing, not
query, is the preferred search mode. And the key
requirement for browsing is that similar images are
located nearby. Current retrieval systems list out-
put images in order of increasing distance from the
query. However, the distances among the returned
images also convey useful information during brows-
ing. In this paper, we present a novel framework for
computing the distance between images, and a set of
tools to visualize an entire image data base or parts
of it during browsing.

The question of image similarity is complex and del-
icate. Semantic similarity (two images with cats are
similar to each other) is still out of the question,
and we must make do with similarity of appearance.
More specifically, in this paper we focus on the over-
all color content of an image as the main criterion for
similarity. The overall distribution of colors within
an image contributes to the mood of the image in
an important way, and is a useful clue for the im-
age’s contents. Sunny mountain landscapes, sunsets,
cities, faces, jungles, candy, and fire fighters scenes
lead to images that have different but characteristic
color distributions. If the pictures in a database can
be arranged in a geometric space so that their loca-
tions reflect differences and similarities in their color
distributions, browsing the database becomes intu-
itively meaningful. In fact, the database is now en-
dowed with a metric structure, and can be explored
with a sense of continuity and comprehensiveness:
all we care, as far as the parts of the database that
have undesired color distributions are concerned, is
that we need not traverse them. On the other hand,
interesting regions can be explored with a sense of
getting closer or farther away from the desired dis-
tribution of colors. In summary, the user can form



a mental, low-detail picture of the entire database,
and a more detailed picture of the more interesting
parts of it. If a picture is worth a thousand words, a
picture of an image database is worth a whole book.

Of course, arrangement criteria other than color dis-
tribution are possible. For instance, information
about the position of colors in the images, as well
as shape and texture, ought to be considered even-
tually. However, color distribution is at the same
time useful in its own right and complex enough to
let us illustrate the main issues. Thus, while we ex-
periment with the notion of similarity in the context
of color information, we define a framework in which
shape and texture descriptors can also be accommo-
dated, leading to a skeletal theory of image database
visualization. In particular, we address the following
questions:

e How do we summarize the color distribution of
an image?

e When do two images have similar color distribu-
tions and, more generally, how do we measure
the ‘distance’” between these distributions?

e How can we arrange a collection of images so
that similar images are near each other?

Summarization of color distribution has to do with
perceptual significance, invariance, and efficiency at
the same time. Colors should be represented in a
way that reflects a human’s appreciation of similar-
ities and differences. At the same time, the distri-
bution of colors in an image should be represented
by a collection of data that is small, for efficiency,
but rich enough to reproduce the essential informa-
tion. The issue of relevance to human perception
has been resolved by the definition of appropriate
color representations, among which we choose the
CIE-LAB standard. Section 2 addresses the issue of
summarization by presenting a new, efficient clus-
tering scheme based on k-d trees. This scheme buys
efficiency at the expense of reduced guarantees about
the size of the output. While more expensive algo-
rithms may guarantee a minimal number of clusters,
this i1s an unnecessary requirement for our applica-
tion. The result of this method is a small collec-
tion of (weighted) points in color space which rep-
resent well the full distribution; we call this set of
points a (color) signature. Section 3 introduces the
Earth Mover’s Distance (EMD) [Stolfi, 1994] as a
useful and flexible measure of distance between sig-
natures, and presents an efficient algorithm for its
computation based on linear programming. This

distance endows the image database with an appro-
priate metric, thereby addressing the question of im-
age similarity. Section 4 addresses the third question
above, and shows how to use the technique of Multi-
Dimensional Scaling (MDS) [Kruskal, 1964] in order
to visualize either the entire database or just the
part of it returned in response to a query in a two-
or three-dimensional space. The resulting compos-
ite image properly reflects the distribution of color
distributions within the database. Finally, section
5 argues that the techniques and issues introduced
in this paper generalize to other aspects of image
description.

2 Color Signatures

The color information of each image is reduced to a
compact representation that we call the signature of
the image. In general a signature contains a vary-
ing number of points in a Euclidean space where a
weight 1s attached to each point. In the case of color
images, the points represent clusters of similar col-
ors and the weight of a point is the fraction of the
image area with that color.

To compute the signature of a color image, we first
slightly smooth each band of the image’s RGB repre-
sentation in order to reduce possible color quantiza-
tion and dithering artifacts. We then transform the
image into the CIE-LAB color space [Wyszecki and
Styles, 1982] using D65 as the reference white. This
nonlinear transformation deforms the RGB color
space so that the resulting Euclidean distance be-
tween color coordinates approximates how well col-
ors are discriminated by humans.

Each image implies a distribution of points in the
three-dimensional CIE-LAB color space where a
point corresponds to a pixel in the image. We co-
alesce this distribution into clusters of similar col-
ors. We define these as clusters that do not ex-
ceed 30 units in any of the L a,b axes. Because
of the large number of images to be processed in a
typical database, clustering must be performed effi-
ciently. To this end, we devised a novel two-stage
algorithm based on a k-d tree [Bentley, 1975]. In
the first phase, approximate clusters are found by a
balanced partition of color space through a k-d tree.
Subdivision stops when a cell becomes smaller than
the allowed cluster size. This process can result in
excessive subdivision. The second phase then tries
to merge close clusters computed in the first phase
by performing a second k-d tree clustering on points
which represent the centroids of the clusters that are
produced in the first phase, after shifting the space



coordinates by one half of the minimal allowed cell
size. Each cluster contributes a pair (p,w,) to the
signature representation of the image where p is the
average color of the cluster and wy, is its weight which
is the fraction of image pixels that are in that clus-
ter. Figure 2 shows examples of color signatures for
three images.

The signatures thus obtained are compact: the color
distribution of an entire image is summarized by a
handful of points, typically eight to twelve. Because
of the clustering algorithm used, signatures repre-
sent well the image’s overall color distribution. Since
signatures represent distributions in the CIE-LAB
color space, they are perceptually significant, in that
Euclidean distances between points are strongly cor-
related with perceptual differences. Because of clus-
tering, small variations in the colors of an image have
little effect on signatures, thereby providing a mod-
erate degree of invariance to changes of viewpoint
and lighting. Finally, signatures are simple and flex-
ible abstractions for which we can define meaningful
metrics, as shown in the following section.

3 Distance Between Color
Signatures

In image retrieval, it is important to define a sim-
ilarity measure between two color distributions or,
in particular, between two color signatures. When
considering only the color content of images, and 1g-
noring the actual positions of the pixels within the
image, this problem is known as the color indexing
problem which was introduced by Swain and Bal-
lard [Swain and Ballard, 1991] and was approached
in several ways by others [Hafner et al., 1995,
Stricker and Orengo, 1995, Werman et al., 1985].
Our approach is closest to, but more general and at
the same time more efficient than that of [Werman et
al., 1985). The other methods are bound to retrieve
false positives [Stricker and Orengo, 1995]. We de-
fine the distance between two signatures to be the
minimum amount of ‘work’ needed to transform one
signature into the other (figure 1). The work needed
to move a point, or a fraction of a point, to a new
location is the portion of the weight being moved,
multiplied by the Euclidean distance between the
old and the new locations. When changing one sig-
nature to another, the work is the sum of the work
done by moving the weights of the individual points
of the source signature to those of the destination
signature. We allow the weight of a single source sig-
nature point to be partitioned among several desti-
nation signature points, and vice versa. We call this
distance function the earth mover’s distance. This

is a name suggested by Stolfi [Stolfi, 1994], by anal-
ogy with some CAD programs for road design which
have a function that computes the optimum earth
displacement from roadcuts to roadfills. As com-
pared with the match distance of [Werman et al.,
1985], our distance is more general because it allows
fractional /partial matches. Furthermore, it can be
computed much more efficiently, as we now show.

The earth mover’s distance computation can be for-
malized as
the following linear programming problem: Given
two signatures: p = {(p1, wp,), .- -, (Pm, wp,, )} and

q = {(¢1,wq), .., (gn,wg,)} where p; and ¢; are
points in some Euclidean space, the CIE-LAB color

space in our case, and wy,, wy; are the correspond-
ing weights of the points, find an m X n cost matrix
C where Cj; is the amount of weight op p; matched
to ¢;, that will minimize the function:

m n
>0 Cijllpi — gl
i=1j=1

(|| - || is the Euclidean distance) subject to the fol-
lowing constraints:

Cy = 0 1<i<m, 1<j<n(])

> Ciy < wg  1<j<n (2)
i=1

ZC’” < wp, 1<i<m (3)
j=1

ZZC@ = min(wp, wq) - (4)
i=1j=1

where wp, = YL, wy, and wg = Z;:l wg;. The
earth mover’s distance is defined as the normalized
distance between points p and q:

Yoy 2= Cijllpi — 45l
Doy 25—y Cij
2 ier 21 Cijllpi — 45l

min(wp, wq)

EMD(p,q) =

Constraint 1 allows only for positive amounts of
‘earth’ to be moved. Constraints 2 and 3 limit the
capacity of ‘earth’ a point can contribute to the
weight of the point. Constraint 4 forces at least one
of the signatures to use all of its capacity, otherwise
a trivial solution is not to move any ‘earth’ at all.

The earth mover’s distance has many desirable prop-
erties relevant to our application. As long as the
total weight of each of our signatures is the same,
the earth mover’s distance 1s symmetric and satisfies



Figure 1: The earth mover’s distance in 2D belween
a signature with three points (black) and one with
two (white). Bold and italic numbers are the weights
of the points and the weights moved between points,
respectively.

the triangle inequality — thus we really work with
a metric space. The ‘optimal assignment’ problem
which the earth mover’s distance computes also gives
us a way to ‘morph’, or continuously transform, two
distributions into each other: simply imagine the ap-
propriate weight fractions moving at constant rates
along the segments joining the corresponding source
and destination points in color space. During the
morph the centroid of the morphing distribution will
move continuously from the centroid of the source to
that of the destination signature. This shows that
the distance between the centroids of the two signa-
tures involved, i1s a lower bound on the earth mover’s
distance: Assuming that wp = wq = w then

EMD(p, q) Z ||pave - qaveH

where

1 m
Pave = E Z; Wp,; Pi
1=

n

1
Qave = Ezwqj(b' .

j=1

This i1s useful for quickly recognizing dissimilar dis-
tributions.

Notice that in our formulation we do allow the total
weights of the two signatures to be different. This is
useful for content-based image retrieval systems for
example, when a color query specifies only a part
of the wanted color distribution, leaving the rest as
“don’t care”. In this case, of course, the EMD is not
a true distance and the lower bound we show does

not hold.

The earth mover’s distances between the images in
figure 2 can be summarized by the following sym-

metric distance matrix:

0 19.46 71.94
19.46 0 60.03
71.94 60.03 0

As expected, the first two images are relatively close
since they contain similar colors (blues and greens).
The third 1mage is relatively far from the first two
but somewhat closer to the second image because
the colors of the house and the trees in the second
image are similar to the colors of the sunset in the
third image.

4 Database Visualization

A metric for color signatures is crucial for image re-
trieval, because i1t quantifies the intuitive notion of
image similarity. If the metric corresponds to per-
ceptual similarity, retrieving images in response to a
given query amounts to returning images whose dis-
tance from the query is small in the space of color
signatures. While the earth mover’s distance is in-
deed at the core of our image retrieval system, and
has proven very effective, in this paper we want to
emphasize a related but distinct use of the signa-
ture metric defined in the previous section. When
browsing an image database, we often have only a
vague idea of what our target images look like. This
is especially true when we have not seen the images
in the database beforehand. The standard format
of interaction with the database, that is, iterations
of a query answered by the presentation of a list of
images, is not satisfactory in this case. First, one
would like to have a global view of the returned im-
ages. As figure 3 (a) shows, images in the returned
list can be related to one another and yet appear
at separate places in the list. The returned images
should be displayed not only in order of their dis-
tance from the query, but also arranged according
to their mutual distances. In brief, the user of the
system would benefit from a more coherent view of
the query results.

Second, browsing and navigating in a large database
is disorienting unless the user can form a mental pic-
ture of the entire database. Only having an idea of
the surroundings can offer an indication of where
to go next. The wider the horizon, the more se-
cure navigation will be. How can such a global pic-
ture of an image database be created? Signatures
offer once again a solution. Our earth mover’s dis-
tance quantifies the perceptual difference that sepa-
rates two signatures. Consequently, each signature
can be represented by a single point in a suitably
high-dimensional space, such that distances between



these points are equal to the earth mover’s distances
between the corresponding signatures. The compu-
tation of the coordinates of these high-dimensional
points is called an embedding. However, humans can
only visualize low-dimensional spaces, typically in
two or three dimensions. We then look for an ap-
proximate embedding, rather than for an exact one.

The approximate embedding problem was formal-
ized by Kruskal [Kruskal, 1964] into the so-called
Multi-Dimensional Scaling (MDS) problem. Given
a set of n objects together with the matrix of dis-
tances d;; between them, and given a (small) di-
mension d, the problem is to find a set of n points
in d-dimensional space whose distances {S”} are as
close as possible to the original distances {d;;}. The
choice of closeness that was suggested by Kruskal is
to minimize:

. 57 1/2

STRESS = M :
Zi,j di;

Rigid transformations and reflections can be applied

to the MDS result without changing the STRESS.

Using MDS can assist navigation in the space of im-

ages both locally and globally, as we now illustrate.

4.1 Local MDS

Performing MDS on the images returned from a
query gives us a better way to display the query re-
sults. Instead of the traditional one-dimensional list
of images sorted by their distances from the query,
we can display a two or three dimensional map of
the images, where each image is positioned accord-
ing to the MDS result. In this way we are presenting
information reflecting (g) distances, instead of only
n in the traditional method. In addition to visu-
ally representing the relative distances between all
pairs of images, images with similar color content
tend to group together. Figure 3 shows the result
from a sample query into our image retrieval system.
The query asked for images with 20% blue and 80%
don’t care and requested only the ten best match-
ing images. Figure 3(a) shows the traditional way of
displaying the resulting images as a one-dimensional
list sorted by the distances from the query, while fig-
ure 3(b) shows the same images arranged according
to a two-dimensional MDS. In the MDS display, sim-
ilar 1mages of desert scenes with yellowish ground
group together at the top left, images with green
plants group at the bottom, and the two other im-
ages — a desert image with a white ground and an im-
age of a statue, are to the right. An all-blue image is
comparatively dissimilar from the others, and is ac-

cordingly relegated to the far right. In this iterated-
query framework, navigation can proceed by choos-
ing a promising area in the MDS display and using
a representative image out of that area as the next
query.

4.2 Global MDS

Performing MDS on a large set of images can help
the user understand the space of color images of the
set. In figure 4 we see the MDS map of 500 images.
It is easy to see that images group by their aver-
age chroma. For example, blue images are at the
top-left, green images are at the top-middle, yellow
images are at the top-right, and so forth. The im-
ages are also ordered from bottom-right to top-left
by their average lightness, dark images are at the
bottom-right and bright images are at the top-left.
Higher dimensional MDS can be done on the image
database where different characteristics of the im-
ages will be revealed, such as their average chroma
(the projection of the images on the appropriate axes
gives the chromaticity diagram), average lightness,
the colorfulness of the images, and so forth. Now
when we look for a sunset we see immediately where
to go. At a glance, we can write off most of the
database, and home in to the “sunset-looking” part
of it. At the same time, we form a mental picture
of the entire database. We see everything in coarse
detail, and we have the impression of grasping the
overall database content, at least in terms of color
distributions. Given a joystick that lets us get closer
to the area of interest, we have at the same time fo-
cus, because nearby images are large on the display,
and context, because all or most other images are
still visible at a distance. As we move about, we have
the comforting impression that the whole database
is there all the time, rather than being handed down
to us in small fragments.

5 Conclusions

The methods presented in this paper open a novel
set of tools and possibilities for image data-base nav-
igation and visualization. The color signatures we
have defined and the earth mover’s distance between
them seem to capture well the perceptual similarity
or dissimilarity of images based on their color con-
tent. Furthermore, the low-dimensional geometric
embeddings we compute using MDS techniques pro-
vide an intuitive way for the user to refine his/her
query and to continue exploring interesting neigh-
borhoods of the image space — or to see large por-
tions of it all at once.



All image query system are ultimately based on com-
putational approximations to perceptual image dis-
tance — approximations whose quality we are often
asked to take for granted. Our approach appears to
be the first one to allow the user to explore, in an
intuitive way, the area of the image space beyond
what the system considers the neighborhood of the
query. Such an exploration can provide increased
confidence that what is wanted will not be missed.

Clearly much remains to be done. It is likely that
distances between similar images provide much more
information than distances between images which
have little in common. Yet currently we compute
large distances as accurately as small ones. As indi-
cated in Section 3, we can gain significant speed-
ups by simply using lower bounds for the earth
mover’s distance when the corresponding images are
far apart. A major extension of our work will be
to apply the concepts of signature and the earth
mover’s distance to other modalities which also con-
vey information about the content of the image, such
as shape and texture. The principle of our approach
will remain that we measure the distance between
images by the minimum ‘work’ needed to make their
signatures the same. Thus the data in a signature
need not be fully homogeneous, as long as we pro-
vide a set of modification operations, with associated
costs, for each type of data present. We consider
this ability to combine different kinds of feature sets
and modalities (both in building the image database
index and in computing the appropriate geometric
embeddings) to be a unique advantage of our ap-
proach.

For the intuitive use of the geometric embeddings
computed by MDS methods, it is crucial that the
‘axes of variation’ be perceptually clear to the user.
This worked well for us in the case of color, in part
because we started from data in a geometric color
space whose axes have a familiar significance. Get-
ting the same effect in the case of shape and texture
seems more of a challenge. We intend to explore
how to ‘advise’ MDS algorithms about what are de-
sired coordinate axes to use. We also need to study
more the relations between the axes chosen by MDS
for related or overlapping image sets. Knowing the
correspondence between these ‘local charts’ (in the
sense of topology) of the image space can greatly
help in providing a globally stable and consistent
sense of navigation.
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Figure 2: Three (color) images together with their color signatures. The left image contains mostly greens
and blues, the middle image contains mostly greens, blues and browns, and the right image contains mostly
yellows, browns and blacks.
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Figure 3: The top ten images for a query that asked for 20% blue and 80% don’t care. (a) Traditional
display. (b) MDS map.



Figure 4: 2D MDS map of 500 images.



