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» Treatment adapted to the (genetic) specificities of the
patient.

E.g. Trastuzumab for HER2+ breast cancer.

» Data-driven biology/medicine

|dentify similarities between patients that exhibit similar
susceptibilities / prognoses / responses to treatment.




Sequencing costs

Cost per Genome

Moore's Law

N I H National Human Genome
Research Institute

genome.gov/sequencingcosts
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THE CANCER GENOME ATLAS
National Cancer Institute

National Human Genome Research Institute

N
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g Cancer Genomics Hub

A resource of the National Cancer Institut

1000 Genomes

A Deep Catalog of Human Genetic Variati

DREAM Challenges







GWAS: Genome-Wide Association Studies
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Which genomic features explain the phenotype?

p = 10° — 107 Single Nucleotide Polymorphisms (SNPs)
n = 10% — 10* samples

» High-dimensional (large p)
» Low sample size (small n)



Google Flu Trends

D. Lazer, R. Kennedy, G. King and A. Vespignani. The Parable of Google Flu: Traps in Big
Data Analysis. Science 2014

» p =50 million search terms
» n=1152 data points

= Google starts estimating

high 100 out of 108 weeks
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» Predictive search terms include keywords related to high
school basketball.



Is extracting information
from this data doomed
from the start?




GWAS successes

Multiple sclerosis HaemGen consortium
Nature Genetics 41, 824 - 828 (2009}

) Nature Genetics 41, 1182 - 1190 (2009
Published online: 14 June 2009 | doi:10.1038/ng.396

)
Published online: 11 October 2009 | doi:10.1038/ng.467
Genome-wide association study identifies new multiple

A genome-wide meta-analysis identifies 22 loci
sclerosis susceptibility loci on chromosomes 12 and 20  associated with eight hematological parameters in the
The Australia and New Zealand Multiple Sclerosis Genetics Consortium HaemGen COnSOI’tiUm
(ANZgene)t

Nicole Soranzo2%, Tim D Spector?#%, Massimo Mangino®%2, Brigitte

Ankylosing spondylitis

(‘ NOVARTIS OurWork  AboutUs — News  Investors
Basel, January 15, 2016 - Novartis announced today that the US Food and Drug Administration
(FDA) has approved Cosentyx® (secukinumab) for the treatment of two new indications - adults

with active ankylosing spondylitis (AS) and active psoriatic arthritis (PsA). AS and PsA arc both

P. Visscher, M. Brown, M. McCarthy, J. Yang. Five years of GWAS discovery. AJHG 2012.



Missing heritability

GWAS fail to explain most of the inheritable variability of
complex traits.

Many possible reasons:
- non-genetic / non-SNP factors
- heterogeneity of the phenotype
~ rare SNPs
- weak effect sizes
- few samples in high dimension(p > n)
- joint.effets of multiple SNPs,
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Integrating prior knowledge

Use additional data and prior knowledge to constrain the
feature selection procedure.

- (Consistant with previously established knowledge
- More easily interpretable
- Statistical power.

Prior knowledge can be represented as structure:
- Linear structure of DNA

- Groups: e.g. pathways

- Networks (molecular, 3D structure).
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Reqularized relevance

Set V of p variables.
» Relevancescore R : 2¥ — R

Quantifies the importance of any subset of variables for the question
under consideration.

Ex : correlation, HSIC, statistical test of association.

» Structured regularizer Q) : 2V — R

Promotes a sparsity pattern that is compatible with the constraint on the
feature space.

Ex: cardinality Q2 : S +— |S|.

» Regularized relevance
arg max R(S) — AQ(S)
SQV
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Network-quided multi-locus GWAS

Goal: Find a set of explanatory SNPs compatible with a given
network structure.
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Network-quided GWAS
» Additive test of association SKAT [Wu et al. 2011]
RS)=> ¢  =(G (y—p);
1€S
» Sparse Laplacian regularization
Q:8m ) > Wi+alS|
€S j¢S
» Regularized maximization of R
arg max Zc, — |S] —A ZZVVW
SLY 1€S s €S y¢S
par5|ty N
association connect|VIty
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Minimum cut reformulation

The graph-regularized maximization of score ) () is equivalent to a s/t-min-cut for a
graph with adjacency matrix A and two additional nodes s and ¢, where A ;; = AW
for 1 <4,j < pand the weights of the edges adjacent to nodes s and ¢ are defined as

ASi:{ci—n ifc; >n and Ait:{n—q— ife; <n

0 otherwise 0 otherwise .

SConES: Selecting Connected Explanatory SNPs.
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Comparison partners

» Univariate linear regression Yk = ap + BGL

» Lasso

. 1 2
argmin L |ly - GBI+ n 13l
BERP N——

loss sparsity

» Feature selection with sparsity and connectivity constraints

argmin Ly, GS) + n [|Bll, + AQ(B)
BERP —_— Y— ~——

loss sparsity  connectivity
- nclasso: network connected Lasso [Li and Li, Bioinformatics 2008]

- Overlapping group Lasso [Jacob et al., ICML 2009]
- grouplLasso: E.g. SNPs near the same gene grouped together
- graphLasso: 1 edge = 1 group.
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CPU runtime [sec] (log-scale)

graphLasso
<«-< ncLasso
— ncLasso (accelerated) 1

+—+ SConES
) *—= linear regression
10 102 103 10* 10° 106

#SNPs (log-scale)

exponential random network (2 % density)
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Experiments: Performance on simulated data

v

Arabidopsis thaliana genotypes

n=500 samples, p=1 000 SNPs
TAIR Protein-Protein Interaction data ~ 50.10° edges

v

Higher power and lower FDR than comparison partners

except for groupLasso when groups = causal structure

v

Fairly robust to missing edges

Fails if network is random.

v




17 flowering time phenotypes
[Atwell et al., Nature, 2010]

p ~ 170000 SNPs
(after MAF filtering)
n ~ 150 samples

165
[Sequra et al., Nat Genet 2012]

Correction for

- regress out PCs.
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10.1242/jcs.096941

Arabidopsis thaliana flowering time
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» SConkES selects about as many SNPs as other network-quided
approaches but detects more candidates.
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Arabidopsis thaliana flowering time

Predictivity of selected SNPs
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SConES: Selecting Connected Explanatory SNPs

» selects connected, explanatory SNPs;
» incorporates large networks into GWAS;
» is efficient, effective and robust.

C-A. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara and K. Borgwardt (2013) Efficient
network-guided multi-locus association mapping with graph cuts, Bioinformatics 29
(13),i171-i179 doi:10.1093/bioinformatics/btt238

https://github.com/chagaz/scones
https://github.com/chagaz/sfan
https://github.com/dominikgrimm/easyGWASCore
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https://github.com/chagaz/scones
https://github.com/chagaz/sfan
https://github.com/dominikgrimm/easyGWASCore

Multi-trait GWAS

Increase sample size by jointly performing GWAS for multiple
related phenotypes

X n

Y21 >y = f(x. k)




Toxicogenetics / Pharmacogenomics

Tasks (phenotypes) = chemical compounds

Toxicogenetics Chemical
Challenge Data descriptors
10K attributes
Not Cytotoxicity
available data (EC,) -
Genotypes | RNASeq Training Set | 4 ?:h’
A
i =l ) s
= IS E
I 51 3]s
™ 106 chemicals € 5
lasi transcripts
Test Set
Mot Subchallenge 1 |-
ACTOET available

156 chemicals

F. Eduati, L. Mangravite, et al. (2015) Prediction of human population responses to toxic
compounds by a collaborative competition. Nature Biotechnology, 33 (9), 933-940 doi:
10.1038/nbt.3299



Multi-SConES

T related phenotypes.
» Goal: obtain similar sets of features on related tasks.

T
arg max Z Zci—n|8| —A szj—u|8t_1ASt|

S1,-,87CV ieS ies j¢s ok Sharing

SAS =(SuUS)H\(SNnS) (symmetric difference)
» (an be reduced to single-task by building a meta-network.

$ e
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Multi-SConES: Multiple related tasks
Simulations: retrieving causal features

Viodel 1

08
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Model 3 Single task Single task

M. Sugiyama, C-A. Azencott, D. Grimm, Y. Kawahara and K. Borgwardt (2014) Multi-task
feature selection on multiple networks via maximum flows, SIAM ICDM, 199-207
doi:10.1137/1.9781611973440.23

https://github.com/mahito-sugiyama/Multi-SConES
https://github.com/chagaz/sfan
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https://github.com/mahito-sugiyama/Multi-SConES
https://github.com/chagaz/sfan

Leveraging similarity between tasks

Use prior knowledge about the relationship between the
tasks: 2 € RT>T

argmaxz ch n|S| — )\ZZWZ] “Z Z O

Si,..., SrCy t=1 | ies i€S j¢8 u=11€8;NSy,

task sharing

Can also be mapped to a meta-network.

Code: http://github.com/chagaz/sfan
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http://github.com/chagaz/sfan

Multiplicative Multitask Lasso with Task Descriptors
» Multitask Lasso [Obozinski et al. 2006]

argmin L (ym Z,Bzgmz> + )\Z [18:ll5

BERTXP i=1 i=1

loss task sharing

» Multilevel Multitask Lasso [Lozano and Swirszczw, 2012]

p
argmin L <yfn, > wagfm> + M 1011, + Ao Z Z BH
=1

O€RY ,yERTXP i=1t=1

spar5|ty
loss task sharing

» Multiplicative Multitask Lasso with Task Descriptors

P
arg min L <yfn,20 <Z Oézldt> gml> + ALl0]]; + Az ZZ Jaii|
i=1

OERY ,acRPX L i=11=1

spar5|ty
loss task sharing



Multiplicative Multitask Lasso with Task Descriptors

argmin L <y;,29~ (2 azldt> g,m) 0l 42303 e

GERi,aERPXL i=1 i=1 =1
SparSIty

loss task sharing

» On simulations:

» Sparser solution

» Better recovery of true features (higher PPV)
» Improved stability

» Better predictivity (RMSE).
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Multiplicative Multitask Lasso with Task Descriptors

» Making predictions for tasks for which you have no data.
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False Positives

V. Belldn, V. Stoven, and C-A. Azencott (2016) Multitask feature selection with task
descriptors, PSB.
https://github.com/vmolina/MultitaskDescriptor
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https://github.com/vmolina/MultitaskDescriptor

Limitations of current approaches

» Robustness/stability
Recovering the same SNPs when the data changes slightly.

» Complex epistasis patterns

- Limited to additive or quadrative effects
- Some work on e.g. random forests + importance score.

» Statistical significance

- Computing p-values
- Correcting for multiple hypotheses.
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source: http: //www.flickr.com/photos/wuworks/
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