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Stochastic optimization in machine learning

o Stochastic approximation: min, Eqp[f(x, ()]
» Infinite datasets (expected risk, D: data distribution), or “single pass”
» SGD, stochastic mirror descent, FOBOS, RDA
» O(1/€) complexity

o Incremental methods with variance reduction: min, 1 37, f(x)
» Finite datasets (empirical risk): fi(x) = £(yi, x &) + (1/2)]|x||?
» SAG, SDCA, SVRG, SAGA, MISO, etc.
» O(log1/€) complexity
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Data perturbations in machine learning

o Perturbations of data useful for regularization, stable feature
selection, privacy aware learning

o We focus on data augmentation of a finite training set, for
regularization purposes (better performance on test data), e.g.:

» Image data augmentation: add random transformations of each
image in the training set (crop, scale, rotate, brightness, contrast, etc.)
» Dropout: set coordinates of feature vectors to 0 with probability 6.
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Optimization objective with perturbations

min {F(X) = llvz:Eer[?i(X’p)] + h(X)}

x€ERP

fi(x)=Ep~rlfi(x, p)]
o p: perturbation

©

fi(-, p) is convex with L-Lipschitz gradients

()

o F is p-strongly convex

o h: convex, possibly non-smooth, penalty, e.g. ¢1 norm
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Can we do better than SGD?

min {f(x) = 23 Bl p)]}
i=1

SGD is a natural choice

» Sample index i, perturbation py ~ T
» Update: x; = x¢—1 — e Vi (Xe—1, pt)

©

©

O(02,,/ut) convergence, with o2, = E; [ VF(x*, p)|1?]

o Key observation: variance from perturbations only is small
compared to variance across all examples

Contribution: improve convergence of SGD by exploiting the
finite-sum structure using variance reduction. Yields O(c?/ut)
convergence with

()

E, [IVF(x",0) = VA(x)|?] < 0? < o,

Alberto Bietti Stochastic MISO March 21, 2017

5 /20



Background: MISO algorithm (Mairal, 2015)

Finite sum problem: min, f(x) = 13>, fi(x)

o Maintains a quadratic lower bound model df(x) = §||x — zf[|? + ¢}
on each f;

©

o d! is updated using a strong convexity lower bound on f;:

1

i(x) = filxe1) + (VA(xeo1)ox = xeo1) + Sllx = xeal = (%)

©

Two steps:

(1—a)d 1 (x) +alf(x), ifi=i
d=1(x), otherwise
> Minimize the model: x; = argmin, {D;(x) = 1 37 | df(x)}

» Select iy, update: df(x) = {
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MISO algorithm (Mairal, 2015)

o Final algorithm: at iteration t, choose index i; at random and update:

. {(1 — )zt alxe1 — EVFi(xe)), ifi=i

Z.
1 — .
z,.t L otherwise.
n
1 E t
Xt = — Z,
iz

o Complexity O((n+ L/u)log1/¢), typical of variance reduction
o Similar to SDCA without duality (Shalev-Shwartz, 2016)
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Stochastic MISO

n

min {f(x) - i;EM[E(X, p)l}

o With perturbations,Nwe cannot compute exact strong convexity lower
bounds on f; = E,[fi(-, p)]

o Instead, use approximate lower bounds using stochastic gradient
estimates Vf,(xt—1, pt)

o Allow decreasing step-sizes a; in order to guarantee convergence as in
stochastic approximation
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Stochastic MISO: algorithm

Input: step-size sequence (o )>1;
fort=1,...do
Sample i; uniformly at random, p; ~ I, and update:

Zt - {(1 - at)zit*]- + Olt(Xt—l - %VEt(Xt_l, Pt)), |f / - it
[
Z:

AR otherwise.

1< 1 _
Xt = — E zi = xe—1+ *(Zii - Zitt h).
n i1 n

end for
Note: reduces to MISO for 02 = 0, a; = «, and to SGD for n = 1.
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Stochastic MISO: convergence analysis
Define the Lyapunov function (with z} := x* — in,-(x*))

1 (673 n
Ce = Sl — X2+ S22 12f 2P
i=1

Theorem (Recursion on C;, smooth case)

If (at)e>1 are positive, non-increasing step-sizes with

(6 mins -, ——~<
t= 2202k —1) /"’

with k = L/u, then C; obeys the recursion

2

E[C] < (1 . O,‘:) E[Ce_1] + 2 (‘1‘:)2 %

Note: Similar recursion for SGD with o2, instead of .
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Stochastic MISO: convergence with decreasing step-sizes

Similar to SGD (Bottou et al., 2016).

Theorem (Convergence of Lyapunov function)

Let the sequence of step-sizes (cit)¢>1 be defined by

2n fory >0 s.t <m'n{1 n }
oy = —— L. & | =0 U .
Tyt 7= L= 27226 — 1)
Fort >0,
12
ElGl < ——
[t]_’7+t+1’
where

802
v = max {/ﬁ,('y+ 1)C0} .

Q: How can we get rid of the dependence on Cy?
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Practical step-size strategy

o Following Bottou et al. (2016), we keep the step-size constant for a
few epochs in order to quickly “forget” the initial condition Cy

o Using a constant step-size &, we can converge linearly near a
= qo2 [+ .
constant error C = 2,?;2 (in practice: a few epochs)
o We then start decreasing step-sizes with ~ large enough s.t.
a1 =2n/(y+ 1) = &, no more (p in the convergence rate!

o Overall, complexity for reaching E[||x; — x*||?] < e

2

0 ((n +L/p) log CEO) +0 (ﬁ‘;) |

o For E[f(x;) — f(x*)] < ¢, the second term becomes O(Lo?/u?€) via
smoothness. Iterate averaging brings this down to O(c?/ pe).
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Extensions

o Composite objectives (h # 0, e.g., {1 penalty)
» MISO extends to this case by adding h to lower bound model (Lin
et al., 2015)
» Different Lyapunov function (||x; — x*||? replaced by an upper bound)
» Similar to Regularized Dual Averaging when n=1
o Non-uniform sampling
» Smoothness constants L; of each f; can vary a lot in heterogeneous
datasets
» Sampling “difficult” examples more often can improve dependence in L
from Limax t0 Laverage
o Same convergence results apply (same Lyapunov recursion, decreasing
step-sizes, iterate averaging)

Alberto Bietti Stochastic MISO March 21, 2017 13 /20



Experiments: dropout

Dropout rate § controls the variance of the perturbations.

gene dropout, § = 0.30 100 gene dropout, § = 0.10 gene dropout, § = 0.01
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Experiments: image data augmentation

Random image crops and scalings, encoding with an unsupervised deep
convolutional network. Different conditioning, controlled by .
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Conclusion

o Exploit underlying finite-sum structures in stochastic optimization
problems using variance reduction

o Bring SGD variance term down to the variance induced by
perturbations only

o Useful for data augmentation (e.g. random image transformations,
Dropout)

o Future work: application to stable feature selection?

o C++/Eigen library with Cython extension available:
http://github.com/albietz/stochs
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Acceleration by iterate averaging

o For function values, averaging helps bring the complexity term
O(Lo?/u?€) down to O(o?/ e)

o Similar technique to Lacoste-Julien et al. (2012), but allows small
initial step-sizes
Theorem (Convergence under iterate averaging)
Let the step-size sequence (at)s>1 be defined by

2n

= fory>1 st <min{1 n}
IR R Gl
We have
_ . 2 - 1)G 1602
Elf(xr) — f(x")] < 20 DG

TCy+T-1) wp2y+T-1)

where X1 1= ﬁ ZtT:_ol(’Y + t)Xe.
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Stochastic MISO (composite, non-uniform sampling)

Input: step-sizes (a)¢>1, sampling distribution g;
fort=1,...do

Sample an index iy ~ g, a perturbation p; ~ I', and update:

t—1

Z-t — {(1 - %)zi + ?;1( -1 = *Vﬁt(Xt 1,,0t)) if i = it

A otherwise

1
Et:sz =Z 1+ = (z —z )

Xy = prOXh/H(Zt).

end for

Note: Similar to RDA for n =1 when a; = 1/t.
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General S-MISO: analysis

o Lyapunov function

noe - 1 t *12
7_”2/ -z

j=1 1

Cﬁ = F(X*) — Dt(Xt) + ?

o Bound on the iterates
L E[lx — x*|!] < E[F(x*) = Di(x)].

o Recursion

2
E[CY] < (1 . O“) E[C ] +2 (O‘f>2 %a
= n t—1 n ,ua

2
. 2 _ 1 g;
with og = £ i
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