
Stochastic Optimization with Variance Reduction
for Infinite Datasets with Finite Sum Structure

Alberto Bietti Julien Mairal

Inria Grenoble (Thoth)

March 21, 2017

Alberto Bietti Stochastic MISO March 21, 2017 1 / 20



Stochastic optimization in machine learning

Stochastic approximation: minx Eζ∼D[f (x , ζ)]
I Infinite datasets (expected risk, D: data distribution), or “single pass”
I SGD, stochastic mirror descent, FOBOS, RDA
I O(1/ε) complexity

Incremental methods with variance reduction: minx
1
n
∑n

i=1 fi (x)
I Finite datasets (empirical risk): fi (x) = `(yi , x>ξi ) + (µ/2)‖x‖2

I SAG, SDCA, SVRG, SAGA, MISO, etc.
I O(log 1/ε) complexity
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Data perturbations in machine learning

Perturbations of data useful for regularization, stable feature
selection, privacy aware learning
We focus on data augmentation of a finite training set, for
regularization purposes (better performance on test data), e.g.:

I Image data augmentation: add random transformations of each
image in the training set (crop, scale, rotate, brightness, contrast, etc.)

I Dropout: set coordinates of feature vectors to 0 with probability δ.
Invariant SVM using Selective Sampling

Figure 6: This figure shows 16 variations of a digit with all the transformations cited here.

3.2.5 Large translations

All the transformations described above are small sub-pixel transformations. Even though
the MNIST digit images are roughly centered, experiments indicate that we still need to
implement invariance with respect to translations of magnitude one or two pixels. Thus we
also apply randomly chosen translations of one or two pixels. These full-pixel translations
come on top of the sub-pixel translations implemented by the random deformation fields.

4. Application

This section reports experimental results achieved on the MNIST database using the tech-
niques described in the previous section. We have obtained state-of-the-art results using 10
SVM classifiers in one-versus-rest configuration. Each classifier is trained using 8 million
transformed examples using the standard RBF kernel < x, x′ >= exp(−γ∥x − x′∥2). The
soft-margin C parameter was always 1000.

As explained before, the untransformed training examples and their two translation
tangent vectors are stored in memory. Transformed exemples are computed on the fly and
cached. We allowed 500MB for the cache of transformed examples, and 6.5GB for the cache
of kernel values. Indeed, despite the favorable characteristics of our algorithm, dealing with
millions of examples quickly yields tens of thousands support vectors.

13

2 Data Augmentation via Lévy Processes

(a) Gaussian noise

The colorful Norwegian city of
Bergen is also a gateway to majes-
tic fjords. Bryggen Hanseatic Wharf
will give you a sense of the local cul-
ture – take some time to snap photos
of the Hanseatic commercial build-
ings, which look like scenery from a
movie set.

The colorful of gateway to fjords.
Hanseatic Wharf will sense the cul-
ture – take some to snap photos the
commercial buildings, which look
scenery a

(b) Dropout noise

Figure 1.1: Two examples of transforming an original input X into a noisy, less
informative input eX. The new inputs clearly have the same label but contain less
information and thus are harder to classify.

is most likely still about travel. In both cases, the “expert knowledge” amounts

to a belief that a certain transform of the features should generally not a↵ect an

example’s label.

One popular strategy for encoding such a belief is data augmentation: generat-

ing additional pseudo-examples or “hints” by applying label-invariant transforma-

tions to training examples’ features (Abu-Mostafa, 1990; Schölkopf et al., 1997;

Simard et al., 1998). That is, each example (X(i), Y (i)) is replaced by many pairs

( eX(i,b), Y (i)) for b = 1, . . . , B, where each eX(i,b) is a transformed version of X(i).

This strategy is simple and modular: after generating the pseudo-examples, we can

simply apply any supervised learning algorithm to the augmented dataset. Fig-

ure 1.1 illustrates two examples of this approach, an image transformed to a noisy

image and a text caption, transformed by deleting words.

Dropout training (Srivastava et al., 2014) is an instance of data augmentation

that, when applied to an input feature vector, zeros out a subset of the features ran-

domly. Intuitively, dropout implies a certain amount of signal redundancy across

features—that an input with about half the features masked should usually be

classified the same way as a fully-observed input. In the setting of document clas-

Figure: Data augmentation on MNIST digit (left), Dropout on text (right).
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Optimization objective with perturbations

min
x∈Rp

{
F (x) = 1

n

n∑
i=1

Eρ∼Γ[f̃i (x , ρ)] + h(x)
}

fi (x)=Eρ∼Γ[f̃i (x , ρ)]
ρ: perturbation
f̃i (·, ρ) is convex with L-Lipschitz gradients
F is µ-strongly convex
h: convex, possibly non-smooth, penalty, e.g. `1 norm
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Can we do better than SGD?

min
x∈Rp

{
f (x) = 1

n

n∑
i=1

Eρ∼Γ[f̃i (x , ρ)]
}

SGD is a natural choice
I Sample index it , perturbation ρt ∼ Γ
I Update: xt = xt−1 − ηt∇f̃it (xt−1, ρt)

O(σ2
tot/µt) convergence, with σ2

tot := Ei ,ρ[‖∇f̃i (x∗, ρ)‖2]
Key observation: variance from perturbations only is small
compared to variance across all examples
Contribution: improve convergence of SGD by exploiting the
finite-sum structure using variance reduction. Yields O(σ2/µt)
convergence with

Eρ
[
‖∇f̃i (x∗, ρ)−∇fi (x∗)‖2

]
≤ σ2 � σ2

tot
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Background: MISO algorithm (Mairal, 2015)

Finite sum problem: minx f (x) = 1
n
∑n

i=1 fi (x)
Maintains a quadratic lower bound model d t

i (x) = µ
2‖x − z t

i ‖2 + ct
i

on each fi
d t

i is updated using a strong convexity lower bound on fi :

fi (x) ≥ fi (xt−1) + 〈∇fi (xt−1), x − xt−1〉+ µ

2 ‖x − xt−1‖2 =: l ti (x)

Two steps:

I Select it , update: d t
i (x) =

{
(1− α)d t−1

i (x) + αl ti (x), if i = it
d t−1

i (x), otherwise
I Minimize the model: xt = argminx{Dt(x) = 1

n
∑n

i=1 d t
i (x)}
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MISO algorithm (Mairal, 2015)

Final algorithm: at iteration t, choose index it at random and update:

z t
i =

{
(1− α)z t−1

i + α(xt−1 − 1
µ∇fi (xt−1)), if i = it

z t−1
i , otherwise.

xt = 1
n

n∑
i=1

z t
i

Complexity O((n + L/µ) log 1/ε), typical of variance reduction
Similar to SDCA without duality (Shalev-Shwartz, 2016)
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Stochastic MISO

min
x∈Rp

{
f (x) = 1

n

n∑
i=1

Eρ∼Γ[f̃i (x , ρ)]
}

With perturbations, we cannot compute exact strong convexity lower
bounds on fi = Eρ[f̃i (·, ρ)]
Instead, use approximate lower bounds using stochastic gradient
estimates ∇f̃it (xt−1, ρt)
Allow decreasing step-sizes αt in order to guarantee convergence as in
stochastic approximation
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Stochastic MISO: algorithm

Input: step-size sequence (αt)t≥1;
for t = 1, . . . do
Sample it uniformly at random, ρt ∼ Γ, and update:

z t
i =

{
(1− αt)z t−1

i + αt(xt−1 − 1
µ∇f̃it (xt−1, ρt)), if i = it

z t−1
i , otherwise.

xt = 1
n

n∑
i=1

z t
i = xt−1 + 1

n (z t
it − z t−1

it ).

end for
Note: reduces to MISO for σ2 = 0, αt = α, and to SGD for n = 1.
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Stochastic MISO: convergence analysis
Define the Lyapunov function (with z∗i := x∗ − 1

µ∇fi (x
∗))

Ct = 1
2‖xt − x∗‖2 + αt

n2

n∑
i=1
‖z t

i − z∗i ‖2.

Theorem (Recursion on Ct , smooth case)
If (αt)t≥1 are positive, non-increasing step-sizes with

α1 ≤ min
{1
2 ,

n
2(2κ− 1)

}
,

with κ = L/µ, then Ct obeys the recursion

E[Ct ] ≤
(
1− αt

n

)
E[Ct−1] + 2

(
αt
n

)2 σ2

µ2 .

Note: Similar recursion for SGD with σ2
tot instead of σ2.
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Stochastic MISO: convergence with decreasing step-sizes

Similar to SGD (Bottou et al., 2016).

Theorem (Convergence of Lyapunov function)
Let the sequence of step-sizes (αt)t≥1 be defined by

αt = 2n
γ + t for γ ≥ 0 s.t. α1 ≤ min

{1
2 ,

n
2(2κ− 1)

}
.

For t ≥ 0,
E[Ct ] ≤ ν

γ + t + 1 ,

where
ν := max

{
8σ2

µ2 , (γ + 1)C0

}
.

Q: How can we get rid of the dependence on C0?
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Practical step-size strategy

Following Bottou et al. (2016), we keep the step-size constant for a
few epochs in order to quickly “forget” the initial condition C0

Using a constant step-size ᾱ, we can converge linearly near a
constant error C̄ = 2ᾱσ2

nµ2 (in practice: a few epochs)
We then start decreasing step-sizes with γ large enough s.t.
α1 = 2n/(γ + 1) ≈ ᾱ, no more C0 in the convergence rate!
Overall, complexity for reaching E[‖xt − x∗‖2] ≤ ε:

O
(

(n + L/µ) log C0
ε̄

)
+ O

(
σ2

µ2ε

)
.

For E[f (xt)− f (x∗)] ≤ ε, the second term becomes O(Lσ2/µ2ε) via
smoothness. Iterate averaging brings this down to O(σ2/µε).
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Extensions

Composite objectives (h 6= 0, e.g., `1 penalty)
I MISO extends to this case by adding h to lower bound model (Lin

et al., 2015)
I Different Lyapunov function (‖xt − x∗‖2 replaced by an upper bound)
I Similar to Regularized Dual Averaging when n = 1

Non-uniform sampling
I Smoothness constants Li of each f̃i can vary a lot in heterogeneous

datasets
I Sampling “difficult” examples more often can improve dependence in L

from Lmax to Laverage

Same convergence results apply (same Lyapunov recursion, decreasing
step-sizes, iterate averaging)
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Experiments: dropout

Dropout rate δ controls the variance of the perturbations.
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Experiments: image data augmentation

Random image crops and scalings, encoding with an unsupervised deep
convolutional network. Different conditioning, controlled by µ.
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Conclusion

Exploit underlying finite-sum structures in stochastic optimization
problems using variance reduction
Bring SGD variance term down to the variance induced by
perturbations only
Useful for data augmentation (e.g. random image transformations,
Dropout)
Future work: application to stable feature selection?
C++/Eigen library with Cython extension available:
http://github.com/albietz/stochs
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Acceleration by iterate averaging
For function values, averaging helps bring the complexity term
O(Lσ2/µ2ε) down to O(σ2/µε)
Similar technique to Lacoste-Julien et al. (2012), but allows small
initial step-sizes

Theorem (Convergence under iterate averaging)
Let the step-size sequence (αt)t≥1 be defined by

αt = 2n
γ + t for γ ≥ 1 s.t. α1 ≤ min

{1
2 ,

n
4(2κ− 1)

}
.

We have

E[f (x̄T )− f (x∗)] ≤ 2µγ(γ − 1)C0
T (2γ + T − 1) + 16σ2

µ(2γ + T − 1) ,

where x̄T := 2
T (2γ+T−1)

∑T−1
t=0 (γ + t)xt .
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Stochastic MISO (composite, non-uniform sampling)

Input: step-sizes (αt)t≥1, sampling distribution q;
for t = 1, . . . do
Sample an index it ∼ q, a perturbation ρt ∼ Γ, and update:

z t
i =

{
(1− αt

qi n )z t−1
i + αt

qi n (xt−1 − 1
µ∇f̃it (xt−1, ρt)), if i = it

z t−1
i , otherwise

z̄t = 1
n

n∑
i=1

z t
i = z̄t−1 + 1

n (z t
it − z t−1

it )

xt = proxh/µ(z̄t).

end for
Note: Similar to RDA for n = 1 when αt = 1/t.
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General S-MISO: analysis

Lyapunov function

Cq
t = F (x∗)− Dt(xt) + µαt

n2

n∑
i=1

1
qin
‖z t

i − z∗i ‖2.

Bound on the iterates
µ

2 E[‖xt − x∗‖2] ≤ E[F (x∗)− Dt(xt)].

Recursion

E[Cq
t ] ≤

(
1− αt

n

)
E[Cq

t−1] + 2
(
αt
n

)2 σ2
q
µ
,

with σ2
q = 1

n
∑

i
σ2

i
qi n .
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