Functional Bilevel Optimization for Machine Learning

Julien Mairal
Univ. Grenoble-Alpes, Inria

Collaborators

- I. Petrulionyte, J. Mairal and M. Arbel. Functional Bilevel Optimization for Machine Learning. arXiv:2403.20233. 2024.

Ieva Petrulionyte

Michael Arbel

Bilevel optimization problems

$$
\min _{\omega \in \Omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) \quad \text { s.t. } \quad \theta_{\omega}^{\star}=\underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta)
$$

- Introduced in game theory by von Stackelberg, 1934. Obviously, such a definition requires a unique inner solution for all outer parameter ω (to be discussed later).

Bilevel optimization problems

$$
\min _{\omega \in \Omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) \quad \text { s.t. } \quad \theta_{\omega}^{\star}=\underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta)
$$

- Introduced in game theory by von Stackelberg, 1934. Obviously, such a definition requires a unique inner solution for all outer parameter ω (to be discussed later).

A very natural formulation for model selection in machine learning, where

- θ represents model parameters, and ω hyper-parameters.
- $L_{\text {inner }}$ is a regularized empirical risk on training data, whereas $L_{\text {outer }}$ measures the fit of model θ_{ω}^{\star} on validation data.

Early occurences in machine learning

$$
\min _{\omega \in \Omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) \quad \text { s.t. } \quad \theta_{\omega}^{\star}=\underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta)
$$

- Introduced in machine learning by Bennett et al. [2006]:

Model Selection via Bilevel Optimization

Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang

Abstract-A key step in many statistical learning methods used in machine learning involves solving a convex optimization problem containing one or more hyper-parameters that must be selected by the users. While cross validation is a commonly employed and widely accepted method for selecting these parameters, its implementation by a grid-search procedure in the parameter sbace effectivelv limits the desirable number
are pervasive in data analysis, e.g., they arise frequently in feature selection [16], [2], kernel construction [19], [22], and multitask learning [4], [10]. For such high-dimensional problems, greedy strategies such as stepwise regression, backward elimination, filter methods, or genetic algorithms are used. Yet. these heuristic methods. including grid search.

Early occurences in machine learning: self-advertisement

Task-driven dictionary learning formulation [Mairal et al., 2010]:

$$
\min _{W, D} \mathbb{E}_{(y, x)}\left[\ell\left(y, W \boldsymbol{\alpha}_{D}^{\star}(x)\right)\right]
$$

s.t. $\quad \boldsymbol{\alpha}_{D}^{\star}(x)=\underset{\boldsymbol{\alpha}}{\arg \min } \frac{1}{2}\|x-D \boldsymbol{\alpha}\|^{2}+\lambda\|\boldsymbol{\alpha}\|_{1}+\frac{\gamma}{2}\|\boldsymbol{\alpha}\|^{2}$.

Input x

Early occurences in machine learning: self-advertisement

Task-driven dictionary learning formulation [Mairal et al., 2010]:

$\min _{W, D} \mathbb{E}_{(y, x)}\left[\ell\left(y, W \boldsymbol{\alpha}_{D}^{\star}(x)\right)\right]$

$$
\text { s.t. } \quad \boldsymbol{\alpha}_{D}^{\star}(x)=\underset{\boldsymbol{\alpha}}{\arg \min } \frac{1}{2}\|x-D \boldsymbol{\alpha}\|^{2}+\lambda\|\boldsymbol{\alpha}\|_{1}+\frac{\gamma}{2}\|\boldsymbol{\alpha}\|^{2} .
$$

- derives implicit differentiation for the Lasso/Elastic-Net problem.
- can be seen as backpropagation rules for sparse coding.
- operates at the patch level.

More recent instances in machine learning

Since 2019, more and more applications:

- hyper-parameter tuning [Feurer and Hutter, 2019, Lorraine et al., 2019, Franceschi et al., 2017];
- meta-learning [Bertinetto et al., 2019];
- reinforcement learning [Hong et al., 2023, Liu et al., 2021, Nikishin et al., 2022];
- inverse problems (see previous talk), [Holler et al., 2018];
- invariant risk minimization [Arjovsky et al., 2019, Ahuja et al., 2020].
- automatic data augmentation [Li et al., 2020, Marrie et al., 2023].
-

Basic theory
 from the "well-defined" (strongly convex) world

The workhorse: implicit differentiation

$$
\min _{\omega \in \Omega} \mathcal{L}(\omega):=L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) \quad \text { s.t. } \quad \theta_{\omega}^{\star}=\underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta)
$$

Assumptions:

- $\Theta=\mathbb{R}^{p}$ and $\Omega=\mathbb{R}^{q}$.
- $L_{\text {inner }}$ is twice differentiable and strongly convex with respect to θ.
- $L_{\text {outer }}$ is differentiable.

Computing the derivative of \mathcal{L} :

$$
\nabla \mathcal{L}(\omega)=\partial_{\omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right)+\left[\partial_{\omega} \theta_{\omega}^{\star}\right]^{\top} \partial_{\theta} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right)
$$

with

$$
\partial_{\theta} L_{\text {inner }}\left(\omega, \theta_{\omega}^{\star}\right)=0
$$

The workhorse: implicit differentiation

$$
\min _{\omega \in \Omega} \mathcal{L}(\omega):=L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) \quad \text { s.t. } \quad \theta_{\omega}^{\star}=\underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta)
$$

Assumptions:

- $\Theta=\mathbb{R}^{p}$ and $\Omega=\mathbb{R}^{q}$.
- $L_{\text {inner }}$ is twice differentiable and strongly convex with respect to θ.
- $L_{\text {outer }}$ is differentiable.

Computing the derivative of \mathcal{L} :

$$
\nabla \mathcal{L}(\omega)=\partial_{\omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right)+\left[\partial_{\omega} \theta_{\omega}^{\star}\right]^{\top} \partial_{\theta} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right)
$$

with

$$
\partial_{\omega, \theta} L_{\text {inner }}\left(\omega, \theta_{\omega}^{\star}\right)+\left[\partial_{\omega} \theta_{\omega}^{\star}\right]^{\top} \partial_{\theta}^{2} L_{\text {inner }}\left(\omega, \theta_{\omega}^{\star}\right)=0
$$

The workhorse: implicit differentiation

$$
\min _{\omega \in \Omega} \mathcal{L}(\omega):=L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) \quad \text { s.t. } \quad \theta_{\omega}^{\star}=\underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta)
$$

Assumptions:

- $\Theta=\mathbb{R}^{p}$ and $\Omega=\mathbb{R}^{q}$.
- $L_{\text {inner }}$ is twice differentiable and strongly convex with respect to θ.
- $L_{\text {outer }}$ is differentiable.

Computing the derivative of \mathcal{L} :

$$
\begin{aligned}
\nabla \mathcal{L}(\omega) & =\partial_{\omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right)+\partial_{\omega, \theta} L_{\text {inner }}\left(\omega, \theta_{\omega}^{\star}\right) a_{\omega}^{\star} \\
\quad & \text { where } \quad a_{\omega}^{\star}=-\partial_{\theta}^{2} L_{\text {inner }}\left(\omega, \theta_{\omega}^{\star}\right)^{-1} \partial_{\theta} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) .
\end{aligned}
$$

Recap

There are three actors:

- An inner-loop:

$$
\theta_{\omega}^{\star}=\underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta) .
$$

- An outer-loop:

$$
\min _{\omega \in \Omega} \mathcal{L}(\omega)=L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) .
$$

- A linear system: find a_{ω}^{\star} such that

$$
\partial_{\theta}^{2} L_{\text {inner }}\left(\omega, \theta_{\omega}^{\star}\right) a_{\omega}^{\star}+\partial_{\theta} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right)=0,
$$

Recap

There are three actors:

- An inner-loop:

$$
\theta_{\omega}^{\star}=\underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta) .
$$

- An outer-loop:

$$
\min _{\omega \in \Omega} \mathcal{L}(\omega)=L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right)
$$

- A linear system: find a_{ω}^{\star} such that

$$
\partial_{\theta}^{2} L_{\text {inner }}\left(\omega, \theta_{\omega}^{\star}\right) a_{\omega}^{\star}+\partial_{\theta} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right)=0,
$$

and the gradient is:

$$
\nabla \mathcal{L}(\omega)=\partial_{\omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right)+\partial_{\omega, \theta} L_{\text {inner }}\left(\omega, \theta_{\omega}^{\star}\right) a_{\omega}^{\star} .
$$

Questions/Topics

Inexact gradients

- Controlling the approximation error, designing approximations: [Ablin et al., 2020, Blondel et al., 2022]...

Dealing with stochastic objectives

- algorithm design and optimal rates: [Ghadimi and Wang, 2018, Yang et al., 2021, Arbel and Mairal, 2022a]...
- variance reduction for deterministic finite sums: [Dagréou et al., 2022].

Exotic implicit differentiation

- non-smooth implicit differentiation [Bolte et al., 2021].

Dealing with non-convex inner problems

An ambiguous definition

$$
\min _{\omega \in \Omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) \quad \text { s.t. } \quad \theta_{\omega}^{\star} \in \underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta) .
$$

An ambiguous definition

$$
\min _{\omega \in \Omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) \quad \text { s.t. } \quad \theta_{\omega}^{\star} \in \underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta) .
$$

We need a mechanism for selecting θ_{ω}^{\star}. For example,
Optimistic formulation

$$
\min _{\omega \in \Omega} \min _{\theta \in \Theta} L_{\text {outer }}(\omega, \theta) \quad \text { s.t. } \quad \theta \in \underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta)
$$

Pessimistic formulation

$$
\min _{\omega \in \Omega} \max _{\theta \in \Theta} L_{\text {outer }}(\omega, \theta) \quad \text { s.t. } \quad \theta \in \underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta) \text {. }
$$

An ambiguous definition

$$
\min _{\omega \in \Omega} L_{\text {outer }}\left(\omega, \theta_{\omega}^{\star}\right) \quad \text { s.t. } \quad \theta_{\omega}^{\star} \in \underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta) .
$$

We need a mechanism for selecting θ_{ω}^{\star}. For example,
Optimistic formulation

$$
\min _{\omega \in \Omega} \min _{\theta \in \Theta} L_{\text {outer }}(\omega, \theta) \quad \text { s.t. } \quad \theta \in \underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta)
$$

Pessimistic formulation

$$
\min _{\omega \in \Omega} \max _{\theta \in \Theta} L_{\text {outer }}(\omega, \theta) \quad \text { s.t. } \quad \theta \in \underset{\theta \in \Theta}{\arg \min } L_{\text {inner }}(\omega, \theta)
$$

Problems: may be meaningless for model selection in machine learning, especially with overparametrized deep networks.

A first solution: Bilevel Games with Selection [Arbel and Mairal, 2022b]

$$
\min _{\omega \in \Omega} \mathcal{L}_{\varphi}(\omega, \theta):=L_{\text {outer }}(\omega, \varphi(\omega, \theta)), \quad \min _{\theta \in \Theta} L_{\text {inner }}(\omega, \theta) .
$$

Definition of selection maps φ :

- Criticality: $\varphi(\omega, \theta)$ is a critical point of $L_{\text {inner }}(\omega,$.$) .$
- Consistency: if θ is a critical point of $L_{\text {inner }}(\omega,),. \varphi(\omega, \theta)=\theta$.

Goal: Finding an equilibrium point $\left(\omega^{\star}, \theta^{\star}\right)$ such that

$$
\partial_{\omega} \mathcal{L}_{\varphi}\left(\omega^{\star}, \theta^{\star}\right)=0 \quad \text { and } \quad \partial_{\theta} L_{\text {inner }}\left(\omega^{\star}, \theta^{\star}\right)=0 .
$$

A first solution: Bilevel Games with Selection [Arbel and Mairal, 2022b]

$$
\min _{\omega \in \Omega} \mathcal{L}_{\varphi}(\omega, \theta):=L_{\text {outer }}(\omega, \varphi(\omega, \theta)), \quad \min _{\theta \in \Theta} L_{\text {inner }}(\omega, \theta) .
$$

Definition of selection maps φ :

- Criticality: $\varphi(\omega, \theta)$ is a critical point of $L_{\text {inner }}(\omega,$.$) .$
- Consistency: if θ is a critical point of $L_{\text {inner }}(\omega,),. \varphi(\omega, \theta)=\theta$.

Example:

- if strongly-convex, $\varphi(\omega, \theta)=\theta_{\omega}^{\star}$ (classical bilevel).
- more interesting: limit of a gradient flow, initialized at θ, under (rather strong) geometric assumptions called parametric Morse-Bott.

A first solution: Bilevel Games with Selection [Arbel and Mairal, 2022b]

$$
\min _{\omega \in \Omega} \mathcal{L}_{\varphi}(\omega, \theta):=L_{\text {outer }}(\omega, \varphi(\omega, \theta)), \quad \min _{\theta \in \Theta} L_{\text {inner }}(\omega, \theta) .
$$

Definition of selection maps φ :

- Criticality: $\varphi(\omega, \theta)$ is a critical point of $L_{\text {inner }}(\omega,$.$) .$
- Consistency: if θ is a critical point of $L_{\text {inner }}(\omega,),. \varphi(\omega, \theta)=\theta$.

Example:

- if strongly-convex, $\varphi(\omega, \theta)=\theta_{\omega}^{\star}$ (classical bilevel).
- more interesting: limit of a gradient flow, initialized at θ, under (rather strong) geometric assumptions called parametric Morse-Bott.

Consequences:

- justify iterative differentiation in the non-convex setting with degenerate critical points. Provides a correction for better gradient approximation.

Go functional!

[Petrulionyte, Mairal, and Arbel, 2024]

A different point of view, specific to machine learning

$$
\min _{\theta \in \Theta} \mathbb{E}\left[\ell_{\text {inner }}\left(\omega, h_{\theta}(x), y\right)\right]
$$

- A typical inner-loop problem, where h_{θ} is a neural network with parameters θ.
- (y, x) represent data pairs in supervised learning.
- $\ell_{\text {inner }}$ is a classical convex loss function including a regularization term.

A different point of view, specific to machine learning

$$
\min _{\theta \in \Theta} \mathbb{E}\left[\ell_{\text {inner }}\left(\omega, h_{\theta}(x), y\right)\right]
$$

- A typical inner-loop problem, where h_{θ} is a neural network with parameters θ.
- (y, x) represent data pairs in supervised learning.
- $\ell_{\text {inner }}$ is a classical convex loss function including a regularization term.

Functional point of view: this is an approximate solution of a more general one

$$
\min _{h \in \mathcal{H}} \mathbb{E}\left[\ell_{\text {inner }}(\omega, h(x), y)\right]
$$

where \mathcal{H} is a Hilbert space such as L^{2}. Ex:

$$
\min _{h \in \mathcal{H}} \mathbb{E}\left[\|y-h(x)\|^{2}\right]+\omega\|h\|_{\mathcal{H}}^{2} .
$$

Why do we care?

$$
\begin{equation*}
\min _{\omega \in \Omega} \mathbb{E}\left[\ell_{\text {outer }}\left(\omega, h_{\omega}^{\star}\left(x^{\prime}\right), y^{\prime}\right)\right] \quad \text { s.t. } \quad h_{\omega}^{\star}=\underset{h \in \mathcal{H}}{\arg \min } \mathbb{E}\left[\ell_{\text {inner }}(\omega, h(x), y)\right] . \tag{FBO}
\end{equation*}
$$

- Strong convexity with respect to h is a mild assumption.
- No ambiguity to define h_{ω}^{\star}.
- Compatible with deep neural networks used for function approximation.

Why do we care?

$$
\begin{equation*}
\min _{\omega \in \Omega} \mathbb{E}\left[\ell_{\text {outer }}\left(\omega, h_{\omega}^{\star}\left(x^{\prime}\right), y^{\prime}\right)\right] \quad \text { s.t. } \quad h_{\omega}^{\star}=\underset{h \in \mathcal{H}}{\arg \min } \mathbb{E}\left[\ell_{\text {inner }}(\omega, h(x), y)\right] . \tag{FBO}
\end{equation*}
$$

- Strong convexity with respect to h is a mild assumption.
- No ambiguity to define h_{ω}^{\star}.
- Compatible with deep neural networks used for function approximation.

What is the price to pay?

- Need to develop theory and algorithms for (FBO).
- Differentiability in infinite dimension is ... tricky.

Parenthesis: differentiability in infinite dimension

Fréchet derivative: Given $F: U \rightarrow Y$ where X, Y are Banach spaces and U is an open subset, F is differentiable at $h \in U$ if there exists a bounded linear operator $A: X \rightarrow Y$ such that

$$
F(h+\varepsilon)=F(h)+A \cdot \varepsilon+o(\varepsilon) .
$$

Parenthesis: differentiability in infinite dimension

Fréchet derivative: Given $F: U \rightarrow Y$ where X, Y are Banach spaces and U is an open subset, F is differentiable at $h \in U$ if there exists a bounded linear operator $A: X \rightarrow Y$ such that

$$
F(h+\varepsilon)=F(h)+A \cdot \varepsilon+o(\varepsilon) .
$$

Good news: implicit differentiation works for twice Fréchet differentiable functionsm

Parenthesis: differentiability in infinite dimension

Fréchet derivative: Given $F: U \rightarrow Y$ where X, Y are Banach spaces and U is an open subset, F is differentiable at $h \in U$ if there exists a bounded linear operator $A: X \rightarrow Y$ such that

$$
F(h+\varepsilon)=F(h)+A \cdot \varepsilon+o(\varepsilon) .
$$

Good news: implicit differentiation works for twice Fréchet differentiable functionsm

Is it such a good news?

Parenthesis: differentiability in infinite dimension

Consider an objective $F: L^{2}[0,1] \rightarrow \mathbb{R}$ of the form

$$
F(h)=\int \ell(h(x)),
$$

where h is in $L^{2}([0,1])$ and assume that $\ell(u)=\sum_{i=0}^{n} a_{i} u^{i}$ is a polynomial function with $a_{n} \neq 0$ and $n>2$.

Parenthesis: differentiability in infinite dimension

Consider an objective $F: L^{2}[0,1] \rightarrow \mathbb{R}$ of the form

$$
F(h)=\int \ell(h(x)),
$$

where h is in $L^{2}([0,1])$ and assume that $\ell(u)=\sum_{i=0}^{n} a_{i} u^{i}$ is a polynomial function with $a_{n} \neq 0$ and $n>2$. Consider ε in $L^{2}[0,1]$ such that $\varepsilon(x)=\frac{1}{x^{1 / 3}}\left(\right.$ not in $\left.L^{3}\right)$

$$
\begin{aligned}
F(\varepsilon) & =\int_{x=0}^{1} \sum_{i=0}^{n} a_{i} \frac{1}{x^{i / 3}} \\
& =a_{0}+\frac{3 a_{1}}{2}+3 a_{2}+\left[a_{3} \log (x)+\sum_{i=4}^{n} a_{i} \frac{3}{(3-i) x^{i / 3-1}}\right]_{x=0}^{1}=\operatorname{sign}\left(a_{n}\right) \infty .
\end{aligned}
$$

ℓ needs to be quadratic!

Parenthesis: differentiability in infinite dimension

Intuition why twice Fréchet differentiability is a very strong assumption in L^{2} : Assuming it is the case for F below and ℓ is in C^{3} (not necessarily polynomial).

$$
F(h)=\int \ell(h(x))
$$

Then, for any h, ε in L^{2} (not necessarily in L^{3})

$$
F(h+\varepsilon)=F(h)+\left\langle\ell^{\prime} \circ h, \varepsilon\right\rangle+\frac{1}{2}\left\langle\left(\ell^{\prime \prime} \circ h\right) \varepsilon, \varepsilon\right\rangle+\int_{x} \frac{1}{2} \int_{0}^{1}(1-t)^{2} \ell^{\prime \prime \prime}(h(x)+t \varepsilon(x)) \varepsilon(x)^{3} .
$$

Parenthesis: differentiability in infinite dimension

Intuition why twice Fréchet differentiability is a very strong assumption in L^{2} :
Assuming it is the case for F below and ℓ is in C^{3} (not necessarily polynomial).

$$
F(h)=\int \ell(h(x))
$$

Then, for any h, ε in L^{2} (not necessarily in L^{3})

$$
F(h+\varepsilon)=F(h)+\left\langle\ell^{\prime} \circ h, \varepsilon\right\rangle+\frac{1}{2}\left\langle\left(\ell^{\prime \prime} \circ h\right) \varepsilon, \varepsilon\right\rangle+\int_{x} \frac{1}{2} \int_{0}^{1}(1-t)^{2} \ell^{\prime \prime \prime}(h(x)+t \varepsilon(x)) \varepsilon(x)^{3} .
$$

Hard to ensure that the last term is finite for any h, ε, unless ℓ is quadratic.

Parenthesis: differentiability in infinite dimension

Intuition why twice Fréchet differentiability is a very strong assumption in L^{2} : Assuming it is the case for F below and ℓ is in C^{3} (not necessarily polynomial).

$$
F(h)=\int \ell(h(x))
$$

Then, for any h, ε in L^{2} (not necessarily in L^{3})

$$
F(h+\varepsilon)=F(h)+\left\langle\ell^{\prime} \circ h, \varepsilon\right\rangle+\frac{1}{2}\left\langle\left(\ell^{\prime \prime} \circ h\right) \varepsilon, \varepsilon\right\rangle+\int_{x} \frac{1}{2} \int_{0}^{1}(1-t)^{2} \ell^{\prime \prime \prime}(h(x)+t \varepsilon(x)) \varepsilon(x)^{3} .
$$

Hard to ensure that the last term is finite for any h, ε, unless ℓ is quadratic.
Exercise for Gabriel: Does twice Fréchet differentiable implies quadratic here? Which assumptions are needed for that to be true? (see Nemirovski and Semenov, 1973).

Parenthesis: differentiability in infinite dimension

Fréchet is too strong for the second derivative, because L^{2} may contain sequences of "nasty perturbations" (unit ball is not compact).

Parenthesis: differentiability in infinite dimension

Fréchet is too strong for the second derivative, because L^{2} may contain sequences of "nasty perturbations" (unit ball is not compact).

- Gâteaux?: perturbations along fixed directions: not strong enough!

Parenthesis: differentiability in infinite dimension

Fréchet is too strong for the second derivative, because L^{2} may contain sequences of "nasty perturbations" (unit ball is not compact).

- Gâteaux?: perturbations along fixed directions: not strong enough!
- The solution: Hadamard! (\approx perturbations in compact sets). Sufficient to derive an implicit differentiation theorem.

Computing the gradient

Consider the problem

$$
\min _{\omega \in \Omega} \mathcal{L}(\omega):=L_{\text {outer }}\left(\omega, h_{\omega}^{\star}\right) \quad \text { s.t. } \quad h_{\omega}^{\star}=\underset{h \in \mathcal{H}}{\arg \min } L_{\text {inner }}(\omega, h) .
$$

Assume

- $L_{\text {outer }}$ is Fréchet differentiable.
- $L_{\text {inner }}$ is μ-strongly convex w.r.t. h and Fréchet differentiable w.r.t. ω.
- $\partial_{h} L_{\text {inner }}$ is Hadamard differentiable.

Then, \mathcal{L} is differentiable and

$$
\nabla \mathcal{L}(\omega)=\nabla_{\omega} L_{\text {outer }}\left(\omega, h_{\omega}^{\star}\right)+\nabla_{\omega, h} L_{\text {inner }}\left(\omega, h_{\omega}^{\star}\right) a_{\omega}^{\star},
$$

where

$$
a_{\omega}^{\star}=\underset{a \in \mathcal{H}}{\arg \min } L_{\mathrm{adj}}(\omega, a):=\frac{1}{2}\left\langle a, \nabla_{h}^{2} L_{\text {inner }}\left(\omega, h_{\omega}^{\star}\right) a\right\rangle_{\mathcal{H}}+\left\langle a, \nabla_{h} L_{\text {outer }}\left(\omega, h_{\omega}^{\star}\right)\right\rangle_{\mathcal{H}} .
$$

1st ingredient: stochastic approximations

Consider \mathcal{H} to be an L^{2} space with the previous machine learning objectives, and $\Omega=\mathbb{R}^{p}$. We still have three actors:

- An inner-loop:

$$
h_{\omega}^{\star}=\underset{h \in \mathcal{H}}{\arg \min } L_{\text {inner }}(\omega, h) .
$$

- An outer-loop:

$$
\min _{\omega \in \Omega} L_{\text {outer }}\left(\omega, h_{\omega}^{\star}\right) .
$$

- A linear system (quadratic objective in \mathcal{H}):

$$
a_{\omega}^{\star}=\underset{a \in \mathcal{H}}{\arg \min } L_{\mathrm{adj}}(\omega, a) .
$$

1st ingredient: stochastic approximations

Consider \mathcal{H} to be an L^{2} space with the previous machine learning objectives, and $\Omega=\mathbb{R}^{p}$. We still have three actors:

- An inner-loop:

$$
h_{\omega}^{\star}=\underset{h \in \mathcal{H}}{\arg \min } \mathbb{E}\left[\ell_{\text {inner }}(\omega, h(x), y)\right] .
$$

- An outer-loop:

$$
\min _{\omega \in \Omega} \mathbb{E}\left[\ell_{\text {outer }}\left(\omega, h_{\omega}^{\star}\left(x^{\prime}\right), y^{\prime}\right)\right] .
$$

- A linear system (quadratic objective in \mathcal{H}):

$$
\begin{aligned}
& a_{\omega}^{\star}=\underset{a \in \mathcal{H}}{\arg \min } \frac{1}{2} \mathbb{E}\left[a(x) \partial_{2}^{2} \ell_{\text {inner }}\left(\omega, h_{\omega}^{\star}(x), y\right) a(x)\right] \\
&+\mathbb{E}\left[a(x) \partial_{2} \ell_{\text {outer }}\left(\omega, h_{\omega}^{\star}\left(x^{\prime}\right), y^{\prime}\right)\right] .
\end{aligned}
$$

1st ingredient: stochastic approximations

Consider \mathcal{H} to be an L^{2} space with the previous machine learning objectives, and $\Omega=\mathbb{R}^{p}$. We still have three actors:

- An inner-loop:

$$
h_{\omega}^{\star}=\underset{h \in \mathcal{H}}{\arg \min } \mathbb{E}\left[\ell_{\text {inner }}(\omega, h(x), y)\right] .
$$

- An outer-loop:

$$
\min _{\omega \in \Omega} \mathbb{E}\left[\ell_{\text {outer }}\left(\omega, h_{\omega}^{\star}\left(x^{\prime}\right), y^{\prime}\right)\right] .
$$

- A linear system (quadratic objective in \mathcal{H}):

$$
\begin{aligned}
& a_{\omega}^{\star}=\underset{a \in \mathcal{H}}{\arg \min } \frac{1}{2} \mathbb{E}\left[a(x) \partial_{2}^{2} \ell_{\text {inner }}\left(\omega, h_{\omega}^{\star}(x), y\right) a(x)\right] \\
&+\mathbb{E}\left[a(x) \partial_{2} \ell_{\text {outer }}\left(\omega, h_{\omega}^{\star}\left(x^{\prime}\right), y^{\prime}\right)\right] .
\end{aligned}
$$

The first ingredient is naturally the use of stochastic approximations.

2nd ingredient: function approximation

Since directly optimizing over \mathcal{H} is too difficult (unless it is an RKHS), we consider a $\operatorname{map} \theta: \Theta \rightarrow \mathcal{H}$ (e.g., a deep neural network) and optimize over Θ.

- We do that both for $L_{\text {inner }}$ and $L_{\text {adj }}$.
- Optimizing w.r.t. θ may yield multiple solutions (not a problem).
- Overall algorithm can be seen as SGD with inexact gradients.
- The larger the neural network, the better the approximation of the functional bilevel formulation (use overparametrized deep neural networks).

The algorithm

```
Algorithm 1 FuncID
    Input: initial outer, inner, and adjoint parameter \(\omega_{0}, \theta_{0}, \xi_{0}\); warm-start option WS.
    for \(n=0, \ldots, N-1\) do
        \# Optional warm-start
        if \(\mathbf{W S}=\) True then \(\left(\theta_{0}, \xi_{0}\right) \leftarrow\left(\theta_{n}, \xi_{n}\right)\) end if
        \# Inner-level optimization
        \(\hat{h}_{\omega_{n}}, \theta_{n+1} \leftarrow \operatorname{InnerOpt}\left(\omega_{n}, \theta_{0}, \mathcal{D}_{i n}\right)\)
        \# Adjoint optimization
        \(\hat{a}_{\omega_{n}}, \xi_{n+1} \leftarrow\) AdjointOpt \(\left(\omega_{n}, \xi_{0}, \hat{h}_{\omega_{n}}, \mathcal{D}\right)\)
        \# Outer gradient estimation
        Sample a mini-batch \(\mathcal{B}=\left(\mathcal{B}_{\text {out }}, \mathcal{B}_{\text {in }}\right)\) from \(\mathcal{D}=\left(\mathcal{D}_{\text {out }}, \mathcal{D}_{\text {in }}\right)\)
        \(g_{\text {out }} \leftarrow \operatorname{TotalGrad}\left(\omega_{n}, \hat{h}_{\omega_{n}}, \hat{a}_{\omega_{n}}, \mathcal{B}\right)\)
        \(\omega_{n+1} \leftarrow\) update \(\omega_{n}\) using \(g_{\text {out }}\);
    end for
```


Applications and experiments

(1) instrumental variable regression.
(2) model-based reinforcement learning.

Instrumental variable regression (IV)

Example courtesy of Arthur Gretton, from his AISTATS'23 keynote

Price tickets A; Seats sold Y.

Instrumental variable regression (IV)

Example courtesy of Arthur Gretton, from his AISTATS'23 keynote

Instrumental variable regression (IV)

Example courtesy of Arthur Gretton, from his AISTATS'23 keynote

- We assume $Y=f_{\text {struct }}(A)+\varepsilon$ with $\mathbb{E}[\varepsilon]=0$ and we want to recover $f_{\text {struct }}$.
- An unobserved counfounder ε affects both Y, A making direct regression vacuous.

Instrumental variable regression (IV)

Example courtesy of Arthur Gretton, from his AISTATS'23 keynote

- X is an observed instrumental variable, independent of ε, that affects Y through A.

Two-stage least squares regression (2SLS)

- Instrumental Variable regression exploits the problem structure to learn $f_{\text {struct }}$.
- Classical approach in econometrics and recent interest in ML [Singh et al., 2019, Xu et al., 2021] with bilevel formulations.
- In practice, we need to find an instrumental variable X that strongly influences A without being affected by ε (this is hard).

Two-stage least squares regression (2SLS)

- Given the model $Y=f_{\text {struct }}(A)+\varepsilon$, we have $\mathbb{E}\left[f_{\text {struct }}(A) \mid X\right]=\mathbb{E}[Y \mid X]$.
- This suggests the regression problem:

$$
\min _{\omega \in \Omega} \mathbb{E}\left[\left\|Y-\mathbb{E}\left[f_{\omega}(A) \mid X\right]\right\|^{2}\right] .
$$

Two-stage least squares regression (2SLS)

- This suggests the regression problem:

$$
\min _{\omega \in \Omega} \mathbb{E}\left[\left\|Y-\mathbb{E}\left[f_{\omega}(A) \mid X\right]\right\|^{2}\right]
$$

- but note that $\mathbb{E}\left[f_{\omega}(A) \mid X\right]$ is the optimal least-square estimator, which suggests

$$
\left.\left.\min _{\omega \in \Omega} \mathbb{E}\left[\| Y-h_{\omega}^{\star}(X)\right] \|^{2}\right] \quad \text { with } \quad h_{\omega}^{\star}=\underset{h \in \mathcal{H}}{\arg \min } \mathbb{E}\left[\| h(X)-f_{\omega}(A)\right] \|^{2}\right] .
$$

Two-stage least squares regression (2SLS)

Experiment on the dpsrite dataset from Xu et al. [2021]:

- advantage over AID/ITD (no conditioning problem due to degenerate Hessians).
- close to DFIV (same perf with different sample size).

Model-based reinforcement learning

We rely on the bilevel RL formulation of Nikishin et al. [2022]. Consider a Markov decision process (MDP):

- $x=(s, a)$ represents a state s and an action a taken by an agent.
- current state/action $x=(s, a)$ yields a future reward r^{\prime} and next state s^{\prime}, modeled by the joint probability distribution $\left(x, r^{\prime}, s^{\prime}\right) \sim \mathbb{P}$.

Model-based reinforcement learning

We rely on the bilevel RL formulation of Nikishin et al. [2022]. Consider a Markov decision process (MDP):

- $x=(s, a)$ represents a state s and an action a taken by an agent.
- current state/action $x=(s, a)$ yields a future reward r^{\prime} and next state s^{\prime}, modeled by the joint probability distribution $\left(x, r^{\prime}, s^{\prime}\right) \sim \mathbb{P}$.
- We need to learn a model with parameters ω that can predict the next state $s_{\omega}(x)$ and reward $r_{\omega}(x)$ given x.

Model-based reinforcement learning

We rely on the bilevel RL formulation of Nikishin et al. [2022]. Consider a Markov decision process (MDP):

- $x=(s, a)$ represents a state s and an action a taken by an agent.
- current state/action $x=(s, a)$ yields a future reward r^{\prime} and next state s^{\prime}, modeled by the joint probability distribution $\left(x, r^{\prime}, s^{\prime}\right) \sim \mathbb{P}$.
- We need to learn a model with parameters ω that can predict the next state $s_{\omega}(x)$ and reward $r_{\omega}(x)$ given x.
- We also need to learn an action-value function h_{ω}^{\star} that estimates the expected cumulative reward given a action/state pair $x=(s, a)$.

$$
h_{\omega}^{\star}=\underset{h \in \mathcal{H}}{\arg \min } \mathbb{E}_{x}\left[\ell\left(h(x), r_{\omega}(x), s_{\omega}(x)\right)\right],
$$

where ℓ is the Bellman error (lots of details hidden under the carpet).

Model-based reinforcement learning

- We need to learn an action-value function h_{ω}^{\star} that estimates the expected cumulative reward given a action/state pair $x=(s, a)$.

$$
h_{\omega}^{\star}=\underset{h \in \mathcal{H}}{\arg \min } \mathbb{E}_{x}\left[\ell\left(h(x), r_{\omega}(x), s_{\omega}(x)\right)\right],
$$

where ℓ is the Bellman error (lots of details hidden under the carpet).

- The parameters of the MDP model are learned by also minimizing the Bellman error, with true samples from \mathbb{P} this time:

$$
\min _{\omega \in \Omega} \mathbb{E}_{x, r^{\prime}, s^{\prime}}\left[\ell\left(h_{\omega}^{\star}(x), r^{\prime}, s^{\prime}\right)\right] .
$$

Model-based reinforcement learning

Figure 2: Average reward on an evaluation environment vs. training iterations on the CartPole task. (Left) Well-specified model. (Right) Misspecified model with 3 hidden units. Both plots show mean reward over 10 runs where the shaded region is the 95% confidence interval.

Conclusion

- The functional point of view solves many conceptual issues for bilevel optimization in machine learning.
- It is fully compatible with deep neural networks.
- Despite the infinite dimension, it comes with concrete algorithms with reasonable complexity.

We are just scratching the surface.
This is perhaps a new playground for machine learners/optimizers!

References I

Pierre Ablin, Gabriel Peyré, and Thomas Moreau. Super-efficiency of automatic differentiation for functions defined as a minimum. In International Conference on Machine Learning (ICML), 2020.
Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk minimization games. International Conference on Machine Learning (ICML), 2020.
Michael Arbel and Julien Mairal. Amortized implicit differentiation for stochastic bilevel optimization. International Conference on Learning Representations (ICLR), 2022a.
Michael Arbel and Julien Mairal. Non-convex bilevel games with critical point selection maps. Advances in Neural Information Processing Systems, 35:8013-8026, 2022b.
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv preprint 1907.02893, 2019.
Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang. Model selection via bilevel optimization. IEEE International Joint Conference on Neural Network Proceedings, 2006.

References II

Luca Bertinetto, João F. Henriques, Philip H.S. Torr, and Andrea Vedaldi. Meta-learning with differentiable closed-form solvers. International Conference on Learning Representations (ICLR), 2019.
Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. Advances in Neural Information Processing Systems (NeurIPS), 2022.
Jérôme Bolte, Tam Le, Edouard Pauwels, and Tony Silveti-Falls. Nonsmooth implicit differentiation for machine-learning and optimization. Advances in neural information processing systems, 34:13537-13549, 2021.
Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel optimization that enables stochastic and global variance reduction algorithms. Advances in Neural Information Processing Systems, 35, 2022.
Matthias Feurer and Frank Hutter. Hyperparameter optimization. Springer International Publishing, 2019.

References III

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse gradient-based hyperparameter optimization. International Conference on Machine Learning (ICML), 2017.
Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. Optimization and Control, 2018.
Gernot Holler, Karl Kunisch, and Richard C. Barnard. A bilevel approach for parameter learning in inverse problems. Inverse Problems, 34(11):115012, 2018.
Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM Journal on Optimization, 33(1):147-180, 2023.
Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy Hospedales, Neil M Robertson, and Yongxin Yang. Differentiable automatic data augmentation. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXII 16, pages 580-595. Springer, 2020.

References IV

Risheng Liu, Xuan Liu, Shangzhi Zeng, Jin Zhang, and Yixuan Zhang. Value-function-based sequential minimization for bi-level optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 45:15930-15948, 2021.
Jonathan Lorraine, Paul Vicol, and David Kristjanson Duvenaud. Optimizing millions of hyperparameters by implicit differentiation. International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
Juliette Marrie, Michael Arbel, Diane Larlus, and Julien Mairal. SLACK: Stable learning of augmentations with cold-start and KL regularization. In Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
A.S. Nemirovski and S.M. Semenov. On polynomial approximation of functions on hilbert space. Mathematics of the USSR-Sbornik, 21(2):255, 1973.
Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon. Control-oriented model-based reinforcement learning with implicit differentiation. AAAI Conference on Artificial Intelligence, 2022.

References V

leva Petrulionyte, Julien Mairal, and Michael Arbel. Functional bilevel optimization for machine learning. arXiv preprint arXiv:2403.20233, 2024.
Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. Advances in Neural Information Processing Systems, 32, 2019.

Liyuan Xu, Heishiro Kanagawa, and Arthur Gretton. Deep proxy causal learning and its application to confounded bandit policy evaluation. Advances in Neural Information Processing Systems, 34:26264-26275, 2021.
Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. Advances in Neural Information Processing Systems, 34:13670-13682, 2021.

