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Bilevel optimization problems

min
ω∈Ω

Louter(ω, θ
⋆
ω) s.t. θ⋆ω = argmin

θ∈Θ
Linner(ω, θ).

Introduced in game theory by von Stackelberg, 1934. Obviously, such a definition
requires a unique inner solution for all outer parameter ω (to be discussed later).
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⋆
ω) s.t. θ⋆ω = argmin

θ∈Θ
Linner(ω, θ).

Introduced in game theory by von Stackelberg, 1934. Obviously, such a definition
requires a unique inner solution for all outer parameter ω (to be discussed later).

A very natural formulation for model selection in machine learning, where

θ represents model parameters, and ω hyper-parameters.

Linner is a regularized empirical risk on training data, whereas Louter measures the
fit of model θ⋆ω on validation data.
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Early occurences in machine learning

min
ω∈Ω

Louter(ω, θ
⋆
ω) s.t. θ⋆ω = argmin

θ∈Θ
Linner(ω, θ).

Introduced in machine learning by Bennett et al. [2006]:
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Early occurences in machine learning: self-advertisement

Task-driven dictionary learning formulation [Mairal et al., 2010]:

min
W,D

E(y,x)[ℓ(y,Wα⋆
D(x))]

s.t. α⋆
D(x) = argmin

α

1

2
∥x−Dα∥2 + λ∥α∥1 +

γ

2
∥α∥2.

Input x

Encoder α⋆
D

Sparse Representation

Predictor Output ŷ = Wα⋆
D
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Early occurences in machine learning: self-advertisement

Task-driven dictionary learning formulation [Mairal et al., 2010]:

min
W,D

E(y,x)[ℓ(y,Wα⋆
D(x))]

s.t. α⋆
D(x) = argmin

α

1

2
∥x−Dα∥2 + λ∥α∥1 +

γ

2
∥α∥2.

derives implicit differentiation for the Lasso/Elastic-Net problem.

can be seen as backpropagation rules for sparse coding.

operates at the patch level.
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More recent instances in machine learning

Since 2019, more and more applications:

hyper-parameter tuning [Feurer and Hutter, 2019, Lorraine et al., 2019,
Franceschi et al., 2017];

meta-learning [Bertinetto et al., 2019];

reinforcement learning [Hong et al., 2023, Liu et al., 2021, Nikishin et al., 2022];

inverse problems (see previous talk), [Holler et al., 2018];

invariant risk minimization [Arjovsky et al., 2019, Ahuja et al., 2020].

automatic data augmentation [Li et al., 2020, Marrie et al., 2023].

. . . .
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Basic theory
from the “well-defined” (strongly convex) world
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The workhorse: implicit differentiation

min
ω∈Ω

L(ω) := Louter(ω, θ
⋆
ω) s.t. θ⋆ω = argmin

θ∈Θ
Linner(ω, θ).

Assumptions:

Θ = Rp and Ω = Rq.

Linner is twice differentiable and strongly convex with respect to θ.

Louter is differentiable.

Computing the derivative of L:

∇L(ω) = ∂ωLouter(ω, θ
⋆
ω) + [∂ωθ

⋆
ω]

⊤∂θLouter(ω, θ
⋆
ω),

with
∂θLinner(ω, θ

⋆
ω) = 0.
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The workhorse: implicit differentiation

min
ω∈Ω

L(ω) := Louter(ω, θ
⋆
ω) s.t. θ⋆ω = argmin

θ∈Θ
Linner(ω, θ).

Assumptions:

Θ = Rp and Ω = Rq.

Linner is twice differentiable and strongly convex with respect to θ.

Louter is differentiable.

Computing the derivative of L:

∇L(ω) = ∂ωLouter(ω, θ
⋆
ω) + ∂ω,θLinner(ω, θ

⋆
ω)a

⋆
ω

where a⋆ω = −∂2
θLinner(ω, θ

⋆
ω)

−1∂θLouter(ω, θ
⋆
ω).
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Recap

There are three actors:

An inner-loop:
θ⋆ω = argmin

θ∈Θ
Linner(ω, θ).

An outer-loop:
min
ω∈Ω

L(ω) = Louter(ω, θ
⋆
ω).

A linear system: find a⋆ω such that

∂2
θLinner(ω, θ

⋆
ω)a

⋆
ω + ∂θLouter(ω, θ

⋆
ω) = 0,

and the gradient is:

∇L(ω) = ∂ωLouter(ω, θ
⋆
ω) + ∂ω,θLinner(ω, θ

⋆
ω)a

⋆
ω.
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Questions/Topics

Inexact gradients

Controlling the approximation error, designing approximations: [Ablin et al., 2020,
Blondel et al., 2022]. . .

Dealing with stochastic objectives

algorithm design and optimal rates: [Ghadimi and Wang, 2018, Yang et al., 2021,
Arbel and Mairal, 2022a]. . .

variance reduction for deterministic finite sums: [Dagréou et al., 2022].

Exotic implicit differentiation

non-smooth implicit differentiation [Bolte et al., 2021].
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Dealing with non-convex inner problems
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An ambiguous definition

min
ω∈Ω

Louter(ω, θ
⋆
ω) s.t. θ⋆ω ∈ argmin

θ∈Θ
Linner(ω, θ).

We need a mechanism for selecting θ⋆ω. For example,

Optimistic formulation

min
ω∈Ω

min
θ∈Θ

Louter(ω, θ) s.t. θ ∈ argmin
θ∈Θ

Linner(ω, θ).

Pessimistic formulation

min
ω∈Ω

max
θ∈Θ

Louter(ω, θ) s.t. θ ∈ argmin
θ∈Θ

Linner(ω, θ).

Problems: may be meaningless for model selection in machine learning, especially
with overparametrized deep networks.
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A first solution: Bilevel Games with Selection [Arbel and Mairal, 2022b]

min
ω∈Ω

Lφ(ω, θ) := Louter(ω, φ(ω, θ)), min
θ∈Θ

Linner(ω, θ).

Definition of selection maps φ:

Criticality: φ(ω, θ) is a critical point of Linner(ω, .).

Consistency: if θ is a critical point of Linner(ω, .), φ(ω, θ) = θ.

Goal: Finding an equilibrium point (ω⋆, θ⋆) such that

∂ωLφ(ω
⋆, θ⋆) = 0 and ∂θLinner(ω

⋆, θ⋆) = 0.
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min
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Lφ(ω, θ) := Louter(ω, φ(ω, θ)), min
θ∈Θ

Linner(ω, θ).

Definition of selection maps φ:

Criticality: φ(ω, θ) is a critical point of Linner(ω, .).

Consistency: if θ is a critical point of Linner(ω, .), φ(ω, θ) = θ.

Example:

if strongly-convex, φ(ω, θ) = θ⋆ω (classical bilevel).

more interesting: limit of a gradient flow, initialized at θ, under (rather strong)
geometric assumptions called parametric Morse-Bott.

Consequences:

justify iterative differentiation in the non-convex setting with degenerate critical
points. Provides a correction for better gradient approximation.
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Go functional!
[Petrulionyte, Mairal, and Arbel, 2024]
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A different point of view, specific to machine learning

min
θ∈Θ

E[ℓinner(ω, hθ(x), y)].

A typical inner-loop problem, where hθ is a neural network with parameters θ.

(y, x) represent data pairs in supervised learning.

ℓinner is a classical convex loss function including a regularization term.

Functional point of view: this is an approximate solution of a more general one

min
h∈H

E[ℓinner(ω, h(x), y)],

where H is a Hilbert space such as L2. Ex:

min
h∈H

E
[
∥y − h(x)∥2

]
+ ω∥h∥2H.
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Why do we care?

min
ω∈Ω

E[ℓouter(ω, h⋆ω(x′), y′)] s.t. h⋆ω = argmin
h∈H

E[ℓinner(ω, h(x), y)]. (FBO)

Strong convexity with respect to h is a mild assumption.

No ambiguity to define h⋆ω.

Compatible with deep neural networks used for function approximation.

What is the price to pay?

Need to develop theory and algorithms for (FBO).

Differentiability in infinite dimension is . . . tricky.
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Parenthesis: differentiability in infinite dimension

Fréchet derivative: Given F : U → Y where X,Y are Banach spaces and U is an
open subset, F is differentiable at h ∈ U if there exists a bounded linear operator
A : X → Y such that

F (h+ ε) = F (h) +A.ε+ o(ε).

Good news: implicit differentiation works for twice Fréchet differentiable functionsm

Is it such a good news?
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Is it such a good news?

17 / 34



Parenthesis: differentiability in infinite dimension
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Parenthesis: differentiability in infinite dimension

Consider an objective F : L2[0, 1] → R of the form

F (h) =

∫
ℓ(h(x)),

where h is in L2([0, 1]) and assume that ℓ(u) =
∑n

i=0 aiu
i is a polynomial function

with an ̸= 0 and n > 2.

Consider ε in L2[0, 1] such that ε(x) = 1
x1/3 (not in L3)

F (ε) =

∫ 1

x=0

n∑
i=0

ai
1

xi/3

= a0 +
3a1
2

+ 3a2 +

[
a3 log(x) +

n∑
i=4

ai
3

(3− i)xi/3−1

]1

x=0

= sign(an)∞.

ℓ needs to be quadratic!
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Parenthesis: differentiability in infinite dimension

Intuition why twice Fréchet differentiability is a very strong assumption in L2:
Assuming it is the case for F below and ℓ is in C3 (not necessarily polynomial).

F (h) =

∫
ℓ(h(x)).

Then, for any h, ε in L2 (not necessarily in L3)

F (h+ ε) = F (h)+ ⟨ℓ′ ◦h, ε⟩+ 1

2
⟨(ℓ′′ ◦h)ε, ε⟩+

∫
x

1

2

∫ 1

0
(1− t)2ℓ′′′(h(x)+ tε(x))ε(x)3.

Hard to ensure that the last term is finite for any h, ε, unless ℓ is quadratic.

Exercise for Gabriel: Does twice Fréchet differentiable implies quadratic here? Which
assumptions are needed for that to be true? (see Nemirovski and Semenov, 1973).
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Exercise for Gabriel: Does twice Fréchet differentiable implies quadratic here? Which
assumptions are needed for that to be true? (see Nemirovski and Semenov, 1973).

19 / 34



Parenthesis: differentiability in infinite dimension
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Parenthesis: differentiability in infinite dimension

Fréchet is too strong for the second derivative, because L2 may contain sequences
of “nasty perturbations” (unit ball is not compact).

Gâteaux?: perturbations along fixed directions: not strong enough!

The solution: Hadamard! (≈ perturbations in compact sets).
Sufficient to derive an implicit differentiation theorem.
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Computing the gradient

Consider the problem

min
ω∈Ω

L(ω) := Louter(ω, h
⋆
ω) s.t. h⋆ω = argmin

h∈H
Linner(ω, h).

Assume

Louter is Fréchet differentiable.

Linner is µ-strongly convex w.r.t. h and Fréchet differentiable w.r.t. ω.

∂hLinner is Hadamard differentiable.

Then, L is differentiable and

∇L(ω) = ∇ωLouter(ω, h
⋆
ω) +∇ω,hLinner(ω, h

⋆
ω)a

⋆
ω,

where

a⋆ω = argmin
a∈H

Ladj(ω, a) :=
1

2
⟨a,∇2

hLinner(ω, h
⋆
ω)a⟩H + ⟨a,∇hLouter(ω, h

⋆
ω)⟩H.
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1st ingredient: stochastic approximations

Consider H to be an L2 space with the previous machine learning objectives, and
Ω = Rp. We still have three actors:

An inner-loop:
h⋆ω = argmin

h∈H
Linner(ω, h).

An outer-loop:
min
ω∈Ω

Louter(ω, h
⋆
ω).

A linear system (quadratic objective in H):

a⋆ω = argmin
a∈H

Ladj(ω, a).

22 / 34



1st ingredient: stochastic approximations

Consider H to be an L2 space with the previous machine learning objectives, and
Ω = Rp. We still have three actors:
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h⋆ω = argmin

h∈H
E[ℓinner(ω, h(x), y)].

An outer-loop:
min
ω∈Ω

E[ℓouter(ω, h⋆ω(x′), y′)].

A linear system (quadratic objective in H):

a⋆ω = argmin
a∈H

1

2
E
[
a(x)∂2

2ℓinner(ω, h
⋆
ω(x), y)a(x)

]
+ E

[
a(x)∂2ℓouter(ω, h

⋆
ω(x

′), y′)
]
.

22 / 34



1st ingredient: stochastic approximations

Consider H to be an L2 space with the previous machine learning objectives, and
Ω = Rp. We still have three actors:

An inner-loop:
h⋆ω = argmin

h∈H
E[ℓinner(ω, h(x), y)].

An outer-loop:
min
ω∈Ω

E[ℓouter(ω, h⋆ω(x′), y′)].

A linear system (quadratic objective in H):

a⋆ω = argmin
a∈H

1

2
E
[
a(x)∂2

2ℓinner(ω, h
⋆
ω(x), y)a(x)

]
+ E

[
a(x)∂2ℓouter(ω, h

⋆
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]
.

The first ingredient is naturally the use of stochastic approximations.
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2nd ingredient: function approximation

Since directly optimizing over H is too difficult (unless it is an RKHS), we consider a
map θ : Θ → H (e.g., a deep neural network) and optimize over Θ.

We do that both for Linner and Ladj.

Optimizing w.r.t. θ may yield multiple solutions (not a problem).

Overall algorithm can be seen as SGD with inexact gradients.

The larger the neural network, the better the approximation of the functional
bilevel formulation (use overparametrized deep neural networks).
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The algorithm
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Applications and experiments

1 instrumental variable regression.

2 model-based reinforcement learning.
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Instrumental variable regression (IV)
Example courtesy of Arthur Gretton, from his AISTATS’23 keynote

Price tickets A; Seats sold Y .

A Y
fstruct

What we observe
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Instrumental variable regression (IV)
Example courtesy of Arthur Gretton, from his AISTATS’23 keynote

ε

A Y
fstruct

We assume Y = fstruct(A) + ε with E[ε] = 0 and we want to recover fstruct.

An unobserved counfounder ε affects both Y,A making direct regression vacuous.
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Instrumental variable regression (IV)
Example courtesy of Arthur Gretton, from his AISTATS’23 keynote

ε

A YX
fstruct

X is an observed instrumental variable, independent of ε, that affects Y
through A.
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Two-stage least squares regression (2SLS)

ε

A YX
fstruct

Instrumental Variable regression exploits the problem structure to learn fstruct.

Classical approach in econometrics and recent interest in ML [Singh et al., 2019,
Xu et al., 2021] with bilevel formulations.

In practice, we need to find an instrumental variable X that strongly influences A
without being affected by ε (this is hard).
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Two-stage least squares regression (2SLS)

ε

A YX
fstruct

Given the model Y = fstruct(A) + ε, we have E[fstruct(A)|X] = E[Y |X].

This suggests the regression problem:

min
ω∈Ω

E
[
∥Y − E[fω(A)|X]∥2

]
.
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Two-stage least squares regression (2SLS)

ε

A YX
fstruct

This suggests the regression problem:

min
ω∈Ω

E
[
∥Y − E[fω(A)|X]∥2

]
.

but note that E[fω(A)|X] is the optimal least-square estimator, which suggests

min
ω∈Ω

E
[
∥Y − h⋆ω(X)]∥2

]
with h⋆ω = argmin

h∈H
E
[
∥h(X)− fω(A)]∥2

]
.
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Two-stage least squares regression (2SLS)

Experiment on the dpsrite dataset from Xu et al. [2021]:

advantage over AID/ITD (no conditioning problem due to degenerate Hessians).

close to DFIV (same perf with different sample size).
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Model-based reinforcement learning

We rely on the bilevel RL formulation of Nikishin et al. [2022]. Consider a Markov
decision process (MDP):

x = (s, a) represents a state s and an action a taken by an agent.

current state/action x = (s, a) yields a future reward r′ and next state s′,
modeled by the joint probability distribution (x, r′, s′) ∼ P.

We need to learn a model with parameters ω that can predict the next state
sω(x) and reward rω(x) given x.

We also need to learn an action-value function h⋆ω that estimates the expected
cumulative reward given a action/state pair x = (s, a).

h⋆ω = argmin
h∈H

Ex[ℓ(h(x), rω(x), sω(x))],

where ℓ is the Bellman error (lots of details hidden under the carpet).
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Model-based reinforcement learning

We need to learn an action-value function h⋆ω that estimates the expected
cumulative reward given a action/state pair x = (s, a).

h⋆ω = argmin
h∈H

Ex[ℓ(h(x), rω(x), sω(x))],

where ℓ is the Bellman error (lots of details hidden under the carpet).

The parameters of the MDP model are learned by also minimizing the Bellman
error, with true samples from P this time:

min
ω∈Ω

Ex,r′,s′ [ℓ(h
⋆
ω(x), r

′, s′)].
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Conclusion

The functional point of view solves many conceptual issues for bilevel
optimization in machine learning.

It is fully compatible with deep neural networks.

Despite the infinite dimension, it comes with concrete algorithms with
reasonable complexity.

We are just scratching the surface.
This is perhaps a new playground for machine learners/optimizers!
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