A Kernel Perspective for Regularizing Deep Neural Networks

Julien Mairal

Inria Grenoble

Imaging and Machine Learning, IHP, 2019

Publications

Theoretical Foundations

- A. Bietti and J. Mairal. Invariance and Stability of Deep Convolutional Representations. NIPS. 2017.
- A. Bietti and J. Mairal. Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations. JMLR. 2019.

Practical aspects

 A. Bietti, G. Mialon, D. Chen, and J. Mairal. A Kernel Perspective for Regularizing Deep Neural Networks. arXiv. 2019.

Convolutional Neural Networks Short Introduction and Current Challenges

Learning a predictive model

The goal is to learn a **prediction function** $f : \mathbb{R}^p \to \mathbb{R}$ given labeled training data $(x_i, y_i)_{i=1,...,n}$ with x_i in \mathbb{R}^p , and y_i in \mathbb{R} :

empirical risk, data fit

The goal is to learn a **prediction function** $f : \mathbb{R}^p \to \mathbb{R}$ given labeled training data $(x_i, y_i)_{i=1,...,n}$ with x_i in \mathbb{R}^p , and y_i in \mathbb{R} :

What is specific to multilayer neural networks?

• The "neural network" space ${\mathcal F}$ is explicitly parametrized by:

$$f(x) = \sigma_k(W_k \sigma_{k-1}(W_{k-1} \dots \sigma_2(W_2 \sigma_1(W_1 x)) \dots)).$$

- Linear operations are either unconstrained (fully connected) or share parameters (e.g., convolutions).
- Finding the optimal W_1, W_2, \ldots, W_k yields a non-convex optimization problem in huge dimension.

Picture from LeCun et al. [1998]

What are the main features of CNNs?

- they capture compositional and multiscale structures in images;
- they provide some invariance;
- they model local stationarity of images at several scales;
- they are state-of-the-art in many fields.

The keywords: **multi-scale, compositional, invariant, local features**. Picture from Y. LeCun's tutorial:

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Picture from Olah et al. [2017]:

Edges (layer conv2d0)

Patterns (layer mixed4a)

Picture from Olah et al. [2017]:

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

Convolutional Neural Networks: Challenges

What are current high-potential problems to solve?

- Iack of stability (see next slide).
- learning with few labeled data.
- learning with no supervision (see Tab. from Bojanowski and Joulin, 2017).

Method	Acc@1
Random (Noroozi & Favaro, 2016)	12.0
SIFT+FV (Sánchez et al., 2013)	55.6
Wang & Gupta (2015)	29.8
Doersch et al. (2015)	30.4
Zhang et al. (2016)	35.2
¹ Noroozi & Favaro (2016)	38.1
BiGAN (Donahue et al., 2016)	32.2
NAT	36.0

Table 3. Comparison of the proposed approach to state-of-the-art unsupervised feature learning on ImageNet. A full multi-layer perceptron is retrained on top of the features. We compare to several self-supervised approaches and an unsupervised approach. Julien Mairal A Kernel Perspective for Regularizing NN

Convolutional Neural Networks: Challenges

Illustration of instability. Picture from Kurakin et al. [2016].

Figure: Adversarial examples are generated by computer; then printed on paper; a new picture taken on a smartphone fools the classifier.

Convolutional Neural Networks: Challenges

$$\min_{f \in \mathcal{F}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))}_{\text{empirical risk, data fit}} + \underbrace{\lambda \Omega(f)}_{\text{regularization}}.$$

The issue of regularization

- today, heuristics are used (DropOut, weight decay, early stopping)...
- ...but they are not sufficient.
- how to control variations of prediction functions?

|f(x) - f(x')| should be close if x and x' are "similar".

- what does it mean for x and x' to be "similar"?
- what should be a good regularization function Ω?

Deep Neural Networks from a Kernel Perspective

A kernel perspective

Recipe

- Map data x to high-dimensional space, $\Phi(x)$ in \mathcal{H} (RKHS), with Hilbertian geometry (projections, barycenters, angles, ..., exist!).
- predictive models f in \mathcal{H} are linear forms in \mathcal{H} : $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$.
- Learning with a positive definite kernel $K(x,x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}.$

[Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004]...

A kernel perspective

Recipe

- Map data x to high-dimensional space, $\Phi(x)$ in \mathcal{H} (RKHS), with Hilbertian geometry (projections, barycenters, angles, ..., exist!).
- predictive models f in \mathcal{H} are linear forms in \mathcal{H} : $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$.
- Learning with a positive definite kernel $K(x,x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}.$

What is the relation with deep neural networks?

• It is possible to design a RKHS \mathcal{H} where a large class of deep neural networks live [Mairal, 2016].

 $f(x) = \sigma_k(W_k \sigma_{k-1}(W_{k-1} \dots \sigma_2(W_2 \sigma_1(W_1 x)) \dots)) = \langle f, \Phi(x) \rangle_{\mathcal{H}}.$

• This is the construction of "convolutional kernel networks".

[Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004]...

A kernel perspective

Recipe

- Map data x to high-dimensional space, $\Phi(x)$ in \mathcal{H} (RKHS), with Hilbertian geometry (projections, barycenters, angles, ..., exist!).
- predictive models f in \mathcal{H} are linear forms in \mathcal{H} : $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$.
- Learning with a positive definite kernel $K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$.

Why do we care?

- Φ(x) is related to the network architecture and is independent of training data. Is it stable? Does it lose signal information?
- f is a predictive model. Can we control its stability?

$$|f(x) - f(x')| \le ||f||_{\mathcal{H}} ||\Phi(x) - \Phi(x')||_{\mathcal{H}}.$$

• $||f||_{\mathcal{H}}$ controls both stability and generalization!

Summary of the results from Bietti and Mairal [2019]

Multi-layer construction of the RKHS $\ensuremath{\mathcal{H}}$

• Contains CNNs with smooth homogeneous activations functions.

Summary of the results from Bietti and Mairal [2019]

Multi-layer construction of the RKHS $\ensuremath{\mathcal{H}}$

• Contains CNNs with smooth homogeneous activations functions.

Signal representation: Conditions for

- Signal preservation of the multi-layer kernel mapping Φ .
- Stability to deformations and non-expansiveness for Φ .
- Constructions to achieve group invariance.

Summary of the results from Bietti and Mairal [2019]

Multi-layer construction of the RKHS $\ensuremath{\mathcal{H}}$

• Contains CNNs with smooth homogeneous activations functions.

Signal representation: Conditions for

- Signal preservation of the multi-layer kernel mapping Φ .
- Stability to deformations and non-expansiveness for Φ .
- Constructions to achieve group invariance.

On learning

 Bounds on the RKHS norm ||.||_H to control stability and generalization of a predictive model f.

$$|f(x) - f(x')| \le ||f||_{\mathcal{H}} ||\Phi(x) - \Phi(x')||_{\mathcal{H}}.$$

[Mallat, 2012]

Smooth homogeneous activations functions

$$z \mapsto \mathsf{ReLU}(w^\top z) \implies z \mapsto ||z|| \sigma(w^\top z/||z||)$$

Assume we have an RKHS \mathcal{H} for deep networks:

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2.$$

 $\|.\|_{\mathcal{H}}$ encourages smoothness and stability w.r.t. the geometry induced by the kernel (which depends itself on the choice of architecture).

Assume we have an RKHS \mathcal{H} for deep networks:

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2.$$

 $\|.\|_{\mathcal{H}}$ encourages smoothness and stability w.r.t. the geometry induced by the kernel (which depends itself on the choice of architecture).

Problem

Multilayer kernels developed for deep networks are typically intractable.

One solution [Mairal, 2016]

do kernel approximations at each layer, which leads to non-standard CNNs called convolutional kernel networks (CKNs).

Assume we have an RKHS \mathcal{H} for deep networks:

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2.$$

 $\|.\|_{\mathcal{H}}$ encourages smoothness and stability w.r.t. the geometry induced by the kernel (which depends itself on the choice of architecture).

Problem

Multilayer kernels developed for deep networks are typically intractable.

One solution [Mairal, 2016]

do kernel approximations at each layer, which leads to non-standard CNNs called convolutional kernel networks (CKNs). **not the subject of this talk.**

Consider a classical CNN parametrized by θ , which live in the RKHS:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n L(y_i, f_\theta(x_i)) + \frac{\lambda}{2} \|f_\theta\|_{\mathcal{H}}^2.$$

This is different than CKNs since f_{θ} admits a classical parametrization.

Consider a classical CNN parametrized by θ , which live in the RKHS:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n L(y_i, f_\theta(x_i)) + \frac{\lambda}{2} \|f_\theta\|_{\mathcal{H}}^2.$$

This is different than CKNs since f_{θ} admits a classical parametrization.

Problem

 $||f_{\theta}||_{\mathcal{H}}$ is intractable...

One solution [Bietti et al., 2019]

use approximations (lower- and upper-bounds), based on mathematical properties of $\|.\|_{\mathcal{H}}.$

Consider a classical CNN parametrized by θ , which live in the RKHS:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n L(y_i, f_\theta(x_i)) + \frac{\lambda}{2} \|f_\theta\|_{\mathcal{H}}^2.$$

This is different than CKNs since f_{θ} admits a classical parametrization.

Problem

 $||f_{\theta}||_{\mathcal{H}}$ is intractable...

One solution [Bietti et al., 2019]

use approximations (lower- and upper-bounds), based on mathematical properties of $\|.\|_{\mathcal{H}}.$

This is the subject of this talk.

Initial map x_0 in $L^2(\Omega, \mathcal{H}_0)$

 $x_0: \Omega \to \mathcal{H}_0$: continuous input signal

• $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images).

• $x_0(u) \in \mathcal{H}_0$: input value at location u ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images).

Initial map x_0 in $L^2(\Omega, \mathcal{H}_0)$

 $x_0: \Omega \to \mathcal{H}_0$: continuous input signal

- $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images).
- $x_0(u) \in \mathcal{H}_0$: input value at location u ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images).

Building map x_k in $L^2(\Omega, \mathcal{H}_k)$ from x_{k-1} in $L^2(\Omega, \mathcal{H}_{k-1})$ $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$P_k x_{k-1}$$
.

• P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u ($P_k x_{k-1}(u)$ is a patch centered at u).

Initial map x_0 in $L^2(\Omega, \mathcal{H}_0)$

 $x_0: \Omega \to \mathcal{H}_0$: **continuous** input signal

- $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images).
- $x_0(u) \in \mathcal{H}_0$: input value at location u ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images).

Building map x_k in $L^2(\Omega, \mathcal{H}_k)$ from x_{k-1} in $L^2(\Omega, \mathcal{H}_{k-1})$ $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$M_k P_k x_{k-1}.$$

- P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u ($P_k x_{k-1}(u)$ is a patch centered at u).
- M_k : non-linear mapping operator, maps each patch to a new Hilbert space \mathcal{H}_k with a pointwise non-linear function $\varphi_k(\cdot)$.

Initial map x_0 in $L^2(\Omega, \mathcal{H}_0)$

 $x_0: \Omega \to \mathcal{H}_0$: **continuous** input signal

- $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images).
- $x_0(u) \in \mathcal{H}_0$: input value at location u ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images).

Building map x_k in $L^2(\Omega, \mathcal{H}_k)$ from x_{k-1} in $L^2(\Omega, \mathcal{H}_{k-1})$ $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$x_k = A_k M_k P_k x_{k-1}.$$

- P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u ($P_k x_{k-1}(u)$ is a patch centered at u).
- M_k : non-linear mapping operator, maps each patch to a new Hilbert space \mathcal{H}_k with a pointwise non-linear function $\varphi_k(\cdot)$.
- A_k : (linear) **pooling** operator at scale σ_k .

Assumption on x_0

- x₀ is typically a **discrete** signal aquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Assumption on x_0

- x₀ is typically a **discrete** signal aquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Multilayer representation

$$\Phi_n(x) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, \mathcal{H}_n).$$

• σ_k grows exponentially in practice (i.e., fixed with subsampling).

Assumption on x_0

- x₀ is typically a **discrete** signal aquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Multilayer representation

$$\Phi_n(x) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, \mathcal{H}_n).$$

• σ_k grows exponentially in practice (i.e., fixed with subsampling).

Prediction layer

• e.g., linear
$$f(x) = \langle w, \Phi_n(x) \rangle$$
.

• "linear kernel" $\mathcal{K}(x,x') = \langle \Phi_n(x), \Phi_n(x') \rangle = \int_\Omega \langle x_n(u), x'_n(u) \rangle du.$

Practical Regularization Strategies

Another point of view: consider a classical CNN parametrized by θ , which live in the RKHS:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n L(y_i, f_{\theta}(x_i)) + \frac{\lambda}{2} \|f_{\theta}\|_{\mathcal{H}}^2.$$

Upper-bounds

 $\|f_{\theta}\|_{\mathcal{H}} \leq \omega(\|W_k\|, \|W_{k-1}\|, \dots, \|W_1\|) \quad \text{(spectral norms)} ,$

where the W_j 's are the convolution filters. The bound suggests controlling the spectral norm of the filters.

[Cisse et al., 2017, Miyato et al., 2018, Bartlett et al., 2017]...
Another point of view: consider a classical CNN parametrized by θ , which live in the RKHS:

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n L(y_i, f_{\theta}(x_i)) + \frac{\lambda}{2} \|f_{\theta}\|_{\mathcal{H}}^2.$$

Lower-bounds

$$||f||_{\mathcal{H}} = \sup_{\|u\|_{\mathcal{H}} \le 1} \langle f, u \rangle_{\mathcal{H}} \ge \sup_{u \in U} \langle f, u \rangle_{\mathcal{H}} \quad \text{for} \quad U \subseteq B_{\mathcal{H}}(1).$$

We design a set U that leads to a tractable approximation, but it requires some knowledge about the properties of \mathcal{H}, Φ .

Adversarial penalty

We know that Φ is non-expansive and $f(x) = \langle f, \Phi(x) \rangle$. Then,

$$U = \{\Phi(x+\delta) - \Phi(x) : x \in \mathcal{X}, \|\delta\|_2 \le 1\}$$

leads to

$$\lambda \|f\|_{\delta}^2 = \sup_{x \in \mathcal{X}, \|\delta\|_2 \le \lambda} f(x+\delta) - f(x).$$

The resulting strategy is related to **adversarial regularization** (but it is decoupled from the loss term and does not use labels).

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n L(y_i, f_{\theta}(x_i)) + \sup_{x \in \mathcal{X}, \|\delta\|_2 \le \lambda} f_{\theta}(x+\delta) - f_{\theta}(x).$$

[Madry et al., 2018]

Adversarial penalty

We know that Φ is non-expansive and $f(x) = \langle f, \Phi(x) \rangle$. Then,

$$U = \{\Phi(x+\delta) - \Phi(x) : x \in \mathcal{X}, \|\delta\|_2 \le 1\}$$

leads to

$$\lambda \|f\|_{\delta}^2 = \sup_{x \in \mathcal{X}, \|\delta\|_2 \le \lambda} f(x+\delta) - f(x).$$

The resulting strategy is related to **adversarial regularization** (but it is decoupled from the loss term and does not use labels). vs, for adversarial regularization,

$$\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \sup_{\|\delta\|_2 \le \lambda} L(y_i, f_\theta(x_i + \delta)).$$

[Madry et al., 2018]

Gradient penalties

We know that Φ is non-expansive and $f(x) = \langle f, \Phi(x) \rangle$. Then,

$$U = \{\Phi(x+\delta) - \Phi(x) : x \in \mathcal{X}, \|\delta\|_2 \le 1\}$$

leads to

$$\|\nabla f\| = \sup_{x \in \mathcal{X}} \|\nabla f(x)\|_2.$$

Related penalties have been used to stabilize the training of GANs and gradients of the loss function have been used to improve robustness.

[Gulrajani et al., 2017, Roth et al., 2017, 2018, Drucker and Le Cun, 1991, Lyu et al., 2015, Simon-Gabriel et al., 2018]

Adversarial deformation penalties

We know that Φ is stable to deformations and $f(x) = \langle f, \Phi(x) \rangle$. Then,

$$U = \{\Phi(L_{\tau}x) - \Phi(x) : x \in \mathcal{X}, \tau\}$$

leads to

$$\|f\|_{\tau}^{2} = \sup_{\substack{x \in \mathcal{X} \\ \tau \text{ small deformation}}} f(L_{\tau}x) - f(x).$$

This is related to data augmentation and tangent propagation.

[Engstrom et al., 2017, Simard et al., 1998]

Table: Accuracies on CIFAR10 with 1 000 examples for standard architectures VGG-11 and ResNet-18. With / without data augmentation.

Method	1k VGG-11	1k ResNet-18
No weight decay	50.70 / 43.75	45.23 / 37.12
Weight decay	51.32 / 43.95	44.85 / 37.09
SN projection	54.14 / 46.70	47.12 / 37.28
PGD - ℓ_2	51.25 / 44.40	45.80 / 41.87
$grad extsf{-}\ell_2$	55.19 / 43.88	49.30 / 44.65
$\ f\ _{\delta}^2$ penalty	51.41 / 45.07	48.73 / 43.72
$\ abla f\ ^2$ penalty	54.80 / 46.37	48.99 / 44.97
$PGD-\ell_2 + SN$ proj	54.19 / 46.66	47.47 / 41.25
$grad extsf{-}\ell_2 + SN$ proj	55.32 / 46.88	48.73 / 42.78
$\ f\ _{\delta}^2 + SN$ proj	54.02 / 46.72	48.12 / 43.56
$\ abla f\ ^2 + SN$ proj	55.24 / 46.80	49.06 / 44.92

Table: Accuracies with 300 or 1 000 examples from MNIST, using deformations. (*) indicates that random deformations were included as training examples,

Method	300 VGG	1k VGG
Weight decay	89.32	94.08
SN projection	90.69	95.01
$grad extsf{-}\ell_2$	93.63	96.67
$\ f\ _{\delta}^2$ penalty	94.17	96.99
$\ abla f\ ^2$ penalty	94.08	96.82
Weight decay (*)	92.41	95.64
grad- ℓ_2 (*)	95.05	97.48
$\ D_{ au}f\ ^2$ penalty	94.18	96.98
$\ f\ _{ au}^2$ penalty	94.42	97.13
$\ f\ _{\tau}^2 + \ \nabla f\ ^2$	94.75	97.40
$\ f\ _{\tau}^2 + \ f\ _{\delta}^2$	95.23	97.66
$\ f\ _{ au}^2 + \ f\ _{\delta}^2$ (*)	95.53	97.56
$\ f\ _{ au}^{2} + \ f\ _{\delta}^{2} + SN$ proj	95.20	97.60
$ f _{\tau}^{2} + f _{\delta}^{2} + \text{SN proj }(*)$	95.40	97.77

Table: AUROC50 for protein homology detection tasks using CNN, with or without data augmentation (DA).

Method	No DA	DA
No weight decay	0.446	0.500
Weight decay	0.501	0.546
SN proj	0.591	0.632
$PGD-\ell_2$	0.575	0.595
grad- ℓ_2	0.540	0.552
$\ f\ _{\delta}^2$	0.600	0.608
$\ \nabla f\ ^2$	0.585	0.611
$PGD-\ell_2 + SN proj$	0.596	0.627
$grad$ - ℓ_2+SN proj	0.592	0.624
$\ f\ _{\delta}^{2} + SN$ proj	0.630	0.644
$\ abla f\ ^2 + SN$ proj	0.603	0.625

Table: AUROC50 for protein homology detection tasks using CNN, with or without data augmentation (DA).

Method	No DA	DA
No weight decay	0.446	0.500
Weight decay	0.501	0.546
SN proj	0.591	0.632
PGD - ℓ_2	0.575	0.595
grad- ℓ_2	0.540	0.552
$\ f\ _{\delta}^2$	0.600	0.608
$\ \nabla f\ ^2$	0.585	0.611
$PGD-\ell_2 + SN$ proj	0.596	0.627
$grad$ - ℓ_2+SN proj	0.592	0.624
$\ f\ _{\delta}^2 + SN$ proj	0.630	0.644
$\ abla f\ ^2 + SN$ proj	0.603	0.625

Note: statistical tests have been conducted for all of these experiments (see paper).

Adversarial Robustness: Trade-offs

Figure: Robustness trade-off curves of different regularization methods for VGG11 on CIFAR10. Each plot shows test accuracy vs adversarial test accuracy Different points on a curve correspond to training with different regularization strengths.

Conclusions from this work on regularization

What the kernel perspective brings us

- gives a unified perspective on many regularization principles.
- useful both for generalization and robustness.
- related to robust optimization.

Future work

- regularization based on kernel approximations.
- semi-supervised learning to exploit unlabeled data.
- relation with implicit regularization.

Invariance and Stability to Deformations (probably for another time)

A signal processing perspective

plus a bit of harmonic analysis

- consider images defined on a continuous domain $\Omega = \mathbb{R}^d$.
- $\tau: \Omega \to \Omega$: c^1 -diffeomorphism.
- $L_{\tau}x(u) = x(u \tau(u))$: action operator.
- much richer group of transformations than translations.

[Mallat, 2012, Allassonnière, Amit, and Trouvé, 2007, Trouvé and Younes, 2005]...

A signal processing perspective

plus a bit of harmonic analysis

- consider images defined on a continuous domain $\Omega = \mathbb{R}^d$.
- $\tau: \Omega \to \Omega$: c^1 -diffeomorphism.
- $L_{\tau}x(u) = x(u \tau(u))$: action operator.
- much richer group of transformations than translations.

relation with deep convolutional representations

stability to deformations studied for wavelet-based scattering transform.

[Mallat, 2012, Bruna and Mallat, 2013, Sifre and Mallat, 2013]...

A signal processing perspective

plus a bit of harmonic analysis

- consider images defined on a **continuous** domain $\Omega = \mathbb{R}^d$.
- $\tau: \Omega \to \Omega$: c^1 -diffeomorphism.
- $L_{\tau}x(u) = x(u \tau(u))$: action operator.
- much richer group of transformations than translations.

Definition of stability

• Representation $\Phi(\cdot)$ is stable [Mallat, 2012] if:

$$\|\Phi(L_{\tau}x) - \Phi(x)\| \le (C_1 \|\nabla \tau\|_{\infty} + C_2 \|\tau\|_{\infty}) \|x\|.$$

- $\|\nabla \tau\|_{\infty} = \sup_{u} \|\nabla \tau(u)\|$ controls deformation.
- $\|\tau\|_{\infty} = \sup_{u} |\tau(u)|$ controls translation.
- $C_2 \rightarrow 0$: translation invariance.

Construction of the RKHS for continuous signals

Patch extraction operator P_k

$$P_k x_{k-1}(u) := (v \in S_k \mapsto x_{k-1}(u+v)) \in \mathcal{P}_k = \mathcal{H}_{k-1}^{S_k}.$$

- S_k : patch shape, e.g. box.
- P_k is linear, and preserves the norm: $||P_k x_{k-1}|| = ||x_{k-1}||$.
- Norm of a map: $\|x\|^2 = \int_{\Omega} \|x(u)\|^2 du < \infty$ for x in $L^2(\Omega, \mathcal{H})$.

Non-linear pointwise mapping operator M_k

$$M_k P_k x_{k-1}(u) := \varphi_k(P_k x_{k-1}(u)) \in \mathcal{H}_k.$$

Non-linear pointwise mapping operator M_k

$$M_k P_k x_{k-1}(u) := \varphi_k(P_k x_{k-1}(u)) \in \mathcal{H}_k.$$

• $\varphi_k : \mathcal{P}_k \to \mathcal{H}_k$ pointwise non-linearity on patches.

• We assume non-expansivity

 $\|\varphi_k(z)\| \le \|z\| \quad \text{ and } \quad \|\varphi_k(z) - \varphi_k(z')\| \le \|z - z'\|.$

• M_k then satisfies, for $x, x' \in L^2(\Omega, \mathcal{P}_k)$

 $||M_k x|| \le ||x||$ and $||M_k x - M_k x'|| \le ||x - x'||.$

φ_k from kernels

• Kernel mapping of homogeneous dot-product kernels:

$$K_k(z,z') = \|z\| \|z'\| \kappa_k \left(\frac{\langle z,z'\rangle}{\|z\|\|z'\|}\right) = \langle \varphi_k(z), \varphi_k(z')\rangle.$$

• $\kappa_k(u) = \sum_{j=0}^{\infty} b_j u^j$ with $b_j \ge 0$, $\kappa_k(1) = 1$.

- $\|\varphi_k(z)\| = K_k(z,z)^{1/2} = \|z\|$ (norm preservation).
- $\|\varphi_k(z) \varphi_k(z')\| \le \|z z'\|$ if $\kappa'_k(1) \le 1$ (non-expansiveness).

φ_k from kernels

• Kernel mapping of homogeneous dot-product kernels:

$$K_k(z, z') = \|z\| \|z'\| \kappa_k \left(\frac{\langle z, z' \rangle}{\|z\| \|z'\|}\right) = \langle \varphi_k(z), \varphi_k(z') \rangle.$$

$$\kappa_k(u) = \sum_{j=0}^{\infty} b_j u^j \text{ with } b_j \ge 0, \ \kappa_k(1) = 1.$$

$$\|\varphi_k(z)\| = K_k(z, z)^{1/2} = \|z\| \qquad \text{(norm preservation)}$$

$$\|\varphi_k(z)\| = \varphi_k(z) = \|z\| \qquad \text{(norm preservation)}$$

•
$$\|\varphi_k(z) - \varphi_k(z')\| \le \|z - z'\|$$
 if $\kappa'_k(1) \le 1$ (non-expansiveness).

Examples

•

•
$$\kappa_{\exp}(\langle z, z' \rangle) = e^{\langle z, z' \rangle - 1} = e^{-\frac{1}{2} ||z - z'||^2}$$
 (if $||z|| = ||z'|| = 1$).
• $\kappa_{\operatorname{inv-poly}}(\langle z, z' \rangle) = \frac{1}{2 - \langle z, z' \rangle}$.

[Schoenberg, 1942, Scholkopf, 1997, Smola et al., 2001, Cho and Saul, 2010, Zhang et al., 2016, 2017, Daniely et al., 2016, Bach, 2017, Mairal, 2016]...

Pooling operator A_k

Pooling operator A_k

$$x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u-v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k.$$

•
$$h_{\sigma_k}$$
: pooling filter at scale σ_k .

•
$$h_{\sigma_k}(u) := \sigma_k^{-d} h(u/\sigma_k)$$
 with $h(u)$ Gaussian.

• linear, non-expansive operator: $||A_k|| \le 1$ (operator norm).

Recap: P_k , M_k , A_k

Invariance, definitions

- $\tau: \Omega \to \Omega$: C^1 -diffeomorphism with $\Omega = \mathbb{R}^d$.
- $L_{\tau}x(u) = x(u \tau(u))$: action operator.
- Much richer group of transformations than translations.

44444444444 7777717777

[Mallat, 2012, Bruna and Mallat, 2013, Sifre and Mallat, 2013]...

Invariance, definitions

- $\tau: \Omega \to \Omega$: C^1 -diffeomorphism with $\Omega = \mathbb{R}^d$.
- $L_{\tau}x(u) = x(u \tau(u))$: action operator.
- Much richer group of transformations than translations.

Definition of stability

• Representation $\Phi(\cdot)$ is stable [Mallat, 2012] if:

$$\|\Phi(L_{\tau}x) - \Phi(x)\| \le (C_1 \|\nabla \tau\|_{\infty} + C_2 \|\tau\|_{\infty}) \|x\|.$$

- $\|\nabla \tau\|_{\infty} = \sup_{u} \|\nabla \tau(u)\|$ controls deformation.
- $\|\tau\|_{\infty} = \sup_{u} |\tau(u)|$ controls translation.
- $C_2 \rightarrow 0$: translation invariance.

[Mallat, 2012, Bruna and Mallat, 2013, Sifre and Mallat, 2013]...

Representation

$$\Phi_n(x) \stackrel{\vartriangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

How to achieve translation invariance?

• Translation:
$$L_c x(u) = x(u-c)$$
.

Representation

$$\Phi_n(x) \stackrel{\triangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

How to achieve translation invariance?

- Translation: $L_c x(u) = x(u-c)$.
- Equivariance all operators commute with L_c : $\Box L_c = L_c \Box$.

$$\begin{aligned} \|\Phi_n(L_c x) - \Phi_n(x)\| &= \|L_c \Phi_n(x) - \Phi_n(x)\| \\ &\leq \|L_c A_n - A_n\| \cdot \|M_n P_n \Phi_{n-1}(x)\| \\ &\leq \|L_c A_n - A_n\| \|x\|. \end{aligned}$$

Representation

$$\Phi_n(x) \stackrel{\triangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

How to achieve translation invariance?

- Translation: $L_c x(u) = x(u-c)$.
- Equivariance all operators commute with L_c : $\Box L_c = L_c \Box$.

$$\begin{split} \|\Phi_n(L_c x) - \Phi_n(x)\| &= \|L_c \Phi_n(x) - \Phi_n(x)\| \\ &\leq \|L_c A_n - A_n\| \cdot \|M_n P_n \Phi_{n-1}(x)\| \\ &\leq \|L_c A_n - A_n\| \|x\|. \end{split}$$

• Mallat [2012]: $||L_{\tau}A_n - A_n|| \le \frac{C_2}{\sigma_n} ||\tau||_{\infty}$ (operator norm).

Representation

$$\Phi_n(x) \stackrel{\triangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

How to achieve translation invariance?

- Translation: $L_c x(u) = x(u-c)$.
- Equivariance all operators commute with L_c : $\Box L_c = L_c \Box$.

$$\begin{split} \|\Phi_n(L_c x) - \Phi_n(x)\| &= \|L_c \Phi_n(x) - \Phi_n(x)\| \\ &\leq \|L_c A_n - A_n\| \cdot \|M_n P_n \Phi_{n-1}(x)\| \\ &\leq \|L_c A_n - A_n\| \|x\|. \end{split}$$

• Mallat [2012]: $||L_cA_n - A_n|| \le \frac{C_2}{\sigma_n}c$ (operator norm). • Scale σ_n of the last layer controls translation invariance.

Representation

$$\Phi_n(x) \stackrel{\triangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

How to achieve stability to deformations?

• Patch extraction P_k and pooling A_k do not commute with L_{τ} !

Representation

$$\Phi_n(x) \stackrel{\triangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

- Patch extraction P_k and pooling A_k do not commute with L_{τ} !
- $||A_kL_{\tau} L_{\tau}A_k|| \le C_1 ||\nabla \tau||_{\infty}$ [from Mallat, 2012].

Representation

$$\Phi_n(x) \stackrel{\triangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

- Patch extraction P_k and pooling A_k do not commute with L_{τ} !
- $||[A_k, L_{\tau}]|| \le C_1 ||\nabla \tau||_{\infty}$ [from Mallat, 2012].

Representation

$$\Phi_n(x) \stackrel{\triangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

- Patch extraction P_k and pooling A_k do not commute with L_{τ} !
- $||[A_k, L_{\tau}]|| \le C_1 ||\nabla \tau||_{\infty}$ [from Mallat, 2012].
- But: $[P_k, L_{\tau}]$ is unstable at high frequencies!

Representation

$$\Phi_n(x) \stackrel{\triangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

- Patch extraction P_k and pooling A_k do not commute with L_{τ} !
- $||[A_k, L_{\tau}]|| \le C_1 ||\nabla \tau||_{\infty}$ [from Mallat, 2012].
- But: $[P_k, L_{\tau}]$ is unstable at high frequencies!
- Adapt to current layer resolution, patch size controlled by σ_{k-1} :

$$\|[P_k A_{k-1}, L_{\tau}]\| \le C_{1,\kappa} \|\nabla \tau\|_{\infty} \qquad \sup_{u \in S_k} |u| \le \kappa \sigma_{k-1}$$

Representation

$$\Phi_n(x) \stackrel{\triangle}{=} A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 A_0 x.$$

How to achieve stability to deformations?

- Patch extraction P_k and pooling A_k do not commute with L_{τ} !
- $||[A_k, L_{\tau}]|| \le C_1 ||\nabla \tau||_{\infty}$ [from Mallat, 2012].
- But: $[P_k, L_{\tau}]$ is unstable at high frequencies!
- Adapt to current layer resolution, patch size controlled by σ_{k-1} :

$$\|[P_k A_{k-1}, L_{\tau}]\| \le C_{1,\kappa} \|\nabla \tau\|_{\infty} \qquad \sup_{u \in S_k} |u| \le \kappa \sigma_{k-1}$$

• $C_{1,\kappa}$ grows as $\kappa^{d+1} \implies$ more stable with small patches (e.g., 3x3, VGG et al.).
Stability to deformations: final result

Theorem

If $\|\nabla \tau\|_{\infty} \leq 1/2$,

$$\|\Phi_n(L_\tau x) - \Phi_n(x)\| \le \left(C_{1,\kappa}\left(n+1\right)\|\nabla \tau\|_{\infty} + \frac{C_2}{\sigma_n}\|\tau\|_{\infty}\right)\|x\|.$$

- translation invariance: large σ_n .
- stability: small patch sizes.
- signal preservation: subsampling factor pprox patch size.
- \implies needs several layers.

related work on stability [Wiatowski and Bölcskei, 2017]

Stability to deformations: final result

Theorem

If $\|\nabla \tau\|_{\infty} \leq 1/2$,

$$\|\Phi_n(L_{\tau}x) - \Phi_n(x)\| \le \left(C_{1,\kappa} \left(n+1\right) \|\nabla \tau\|_{\infty} + \frac{C_2}{\sigma_n} \|\tau\|_{\infty}\right) \|x\|.$$

- translation invariance: large σ_n .
- stability: small patch sizes.
- ullet signal preservation: subsampling factor pprox patch size.
- \implies needs several layers.
- requires additional discussion to make stability non-trivial.

related work on stability [Wiatowski and Bölcskei, 2017]

Beyond the translation group

Can we achieve invariance to other groups?

- Group action: $L_g x(u) = x(g^{-1}u)$ (e.g., rotations, reflections).
- Feature maps x(u) defined on $u \in G$ (G: locally compact group).

Beyond the translation group

Can we achieve invariance to other groups?

- Group action: $L_g x(u) = x(g^{-1}u)$ (e.g., rotations, reflections).
- Feature maps x(u) defined on $u \in G$ (G: locally compact group).

Recipe: Equivariant inner layers + global pooling in last layerPatch extraction:

$$Px(u) = (x(uv))_{v \in S}.$$

- Non-linear mapping: equivariant because pointwise!
- **Pooling** (*µ*: left-invariant Haar measure):

$$Ax(u) = \int_G x(uv)h(v)d\mu(v) = \int_G x(v)h(u^{-1}v)d\mu(v).$$

related work [Sifre and Mallat, 2013, Cohen and Welling, 2016, Raj et al., 2016]...

Group invariance and stability

Previous construction is similar to Cohen and Welling [2016] for CNNs.

A case of interest: the roto-translation group

- $G = \mathbb{R}^2 \rtimes SO(2)$ (mix of translations and rotations).
- Stability with respect to the translation group.
- Global invariance to rotations (only global pooling at final layer).
 - Inner layers: only pool on translation group.
 - Last layer: global pooling on rotations.
 - Cohen and Welling [2016]: pooling on rotations in inner layers hurts performance on Rotated MNIST

- Discrete signal $\bar{x_k}$ in $\ell^2(\mathbb{Z}, \bar{\mathcal{H}}_k)$ vs continuous ones x_k in $L^2(\mathbb{R}, \mathcal{H}_k)$.
- \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

 $\bar{x}_k[n] = \bar{A}_k \bar{M}_k \bar{P}_k \bar{x}_{k-1}[ns_k].$

- Discrete signal $\bar{x_k}$ in $\ell^2(\mathbb{Z}, \bar{\mathcal{H}}_k)$ vs continuous ones x_k in $L^2(\mathbb{R}, \mathcal{H}_k)$.
- \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = \bar{A}_k \bar{M}_k \bar{P}_k \bar{x}_{k-1}[ns_k].$$

• Claim: We can recover \bar{x}_{k-1} from \bar{x}_k if factor $s_k \leq \text{patch size}$.

- Discrete signal $\bar{x_k}$ in $\ell^2(\mathbb{Z}, \bar{\mathcal{H}}_k)$ vs continuous ones x_k in $L^2(\mathbb{R}, \mathcal{H}_k)$.
- \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = \bar{A}_k \bar{M}_k \bar{P}_k \bar{x}_{k-1}[ns_k].$$

Claim: We can recover x
_{k-1} from x
_k if factor s_k ≤ patch size.
How? Recover patches with linear functions (contained in H
_k)

$$\langle f_w, \bar{M}_k \bar{P}_k \bar{x}_{k-1}(u) \rangle = f_w(\bar{P}_k \bar{x}_{k-1}(u)) = \langle w, \bar{P}_k \bar{x}_{k-1}(u) \rangle,$$

and

$$\bar{P}_k \bar{x}_{k-1}(u) = \sum_{w \in B} \langle f_w, \bar{M}_k \bar{P}_k \bar{x}_{k-1}(u) \rangle w.$$

- Discrete signal $\bar{x_k}$ in $\ell^2(\mathbb{Z}, \bar{\mathcal{H}}_k)$ vs continuous ones x_k in $L^2(\mathbb{R}, \mathcal{H}_k)$.
- \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = \bar{A}_k \bar{M}_k \bar{P}_k \bar{x}_{k-1}[ns_k].$$

Claim: We can recover x
_{k-1} from x
_k if factor s_k ≤ patch size.
How? Recover patches with linear functions (contained in H
_k)

$$\langle f_w, \bar{M}_k \bar{P}_k \bar{x}_{k-1}(u) \rangle = f_w(\bar{P}_k \bar{x}_{k-1}(u)) = \langle w, \bar{P}_k \bar{x}_{k-1}(u) \rangle,$$

and

$$\bar{P}_k \bar{x}_{k-1}(u) = \sum_{w \in B} \langle f_w, \bar{M}_k \bar{P}_k \bar{x}_{k-1}(u) \rangle w.$$

Warning: no claim that recovery is practical and/or stable.

$$K_k(z, z') = \|z\| \|z'\| \kappa \left(\frac{\langle z, z' \rangle}{\|z\| \|z'\|}\right), \qquad \kappa(u) = \sum_{j=0}^{\infty} b_j u^j.$$

What does the RKHS contain?

Homogeneous version of [Zhang et al., 2016, 2017]

$$K_k(z, z') = \|z\| \|z'\| \kappa \left(\frac{\langle z, z' \rangle}{\|z\| \|z'\|}\right), \qquad \kappa(u) = \sum_{j=0}^{\infty} b_j u^j.$$

What does the RKHS contain?

• RKHS contains homogeneous functions:

$$f:z\mapsto \|z\|\sigma(\langle g,z\rangle/\|z\|).$$

Homogeneous version of [Zhang et al., 2016, 2017]

$$K_k(z, z') = \|z\| \|z'\| \kappa \left(\frac{\langle z, z' \rangle}{\|z\| \|z'\|}\right), \qquad \kappa(u) = \sum_{j=0}^{\infty} b_j u^j.$$

What does the RKHS contain?

• RKHS contains homogeneous functions:

$$f: z \mapsto \|z\|\sigma(\langle g, z \rangle / \|z\|).$$

- Smooth activations: $\sigma(u) = \sum_{j=0}^{\infty} a_j u^j$ with $a_j \ge 0$.
- Norm: $||f||^2_{\mathcal{H}_k} \le C^2_{\sigma}(||g||^2) = \sum_{j=0}^{\infty} \frac{a_j^2}{b_j} ||g||^2 < \infty.$

Homogeneous version of [Zhang et al., 2016, 2017]

Examples:

- $\sigma(u) = u$ (linear): $C^2_{\sigma}(\lambda^2) = O(\lambda^2)$.
- $\sigma(u) = u^p$ (polynomial): $C^2_{\sigma}(\lambda^2) = O(\lambda^{2p}).$
- $\sigma \approx \sin$, sigmoid, smooth ReLU: $C^2_{\sigma}(\lambda^2) = O(e^{c\lambda^2})$.

Constructing a CNN in the RKHS $\mathcal{H}_{\mathcal{K}}$

Some CNNs live in the RKHS: "linearization" principle

 $f(x) = \sigma_k(W_k \sigma_{k-1}(W_{k-1} \dots \sigma_2(W_2 \sigma_1(W_1 x)) \dots)) = \langle f, \Phi(x) \rangle_{\mathcal{H}}.$

Constructing a CNN in the RKHS $\mathcal{H}_{\mathcal{K}}$

Some CNNs live in the RKHS: "linearization" principle

 $f(x) = \sigma_k(W_k \sigma_{k-1}(W_{k-1} \dots \sigma_2(W_2 \sigma_1(W_1 x)) \dots)) = \langle f, \Phi(x) \rangle_{\mathcal{H}}.$

• Consider a CNN with filters $W_k^{ij}(u), u \in S_k$.

- k: layer;
- *i*: index of filter;
- *j*: index of input channel.
- "Smooth homogeneous" activations σ .
- The CNN can be constructed hierarchically in $\mathcal{H}_{\mathcal{K}}$.
- Norm (linear layers):

 $||f_{\sigma}||^{2} \leq ||W_{n+1}||_{2}^{2} \cdot ||W_{n}||_{2}^{2} \cdot ||W_{n-1}||_{2}^{2} \dots ||W_{1}||_{2}^{2}.$

• Linear layers: product of spectral norms.

Link with generalization

Direct application of classical generalization bounds

• Simple bound on Rademacher complexity for linear/kernel methods:

$$\mathcal{F}_B = \{ f \in \mathcal{H}_{\mathcal{K}}, \| f \| \le B \} \implies \operatorname{\mathsf{Rad}}_N(\mathcal{F}_B) \le O\left(\frac{BR}{\sqrt{N}}\right).$$

Link with generalization

Direct application of classical generalization bounds

• Simple bound on Rademacher complexity for linear/kernel methods:

$$\mathcal{F}_B = \{ f \in \mathcal{H}_{\mathcal{K}}, \|f\| \le B \} \implies \operatorname{\mathsf{Rad}}_N(\mathcal{F}_B) \le O\left(\frac{BR}{\sqrt{N}}\right).$$

- Leads to margin bound $O(\|\hat{f}_N\|R/\gamma\sqrt{N})$ for a learned CNN \hat{f}_N with margin (confidence) $\gamma > 0$.
- Related to recent generalization bounds for neural networks based on **product of spectral norms** [e.g., Bartlett et al., 2017, Neyshabur et al., 2018].

[see, e.g., Boucheron et al., 2005, Shalev-Shwartz and Ben-David, 2014]...

Conclusions from the work on invariance and stability

Study of generic properties of signal representation

- Deformation stability with small patches, adapted to resolution.
- Signal preservation when subsampling \leq patch size.
- Group invariance by changing patch extraction and pooling.

Conclusions from the work on invariance and stability

Study of generic properties of signal representation

- Deformation stability with small patches, adapted to resolution.
- Signal preservation when subsampling \leq patch size.
- Group invariance by changing patch extraction and pooling.

Applies to learned models

- Same quantity ||f|| controls stability and generalization.
- "higher capacity" is needed to discriminate small deformations.

Conclusions from the work on invariance and stability

Study of generic properties of signal representation

- Deformation stability with small patches, adapted to resolution.
- Signal preservation when subsampling \leq patch size.
- Group invariance by changing patch extraction and pooling.

Applies to learned models

- Same quantity $\|f\|$ controls stability and generalization.
- "higher capacity" is needed to discriminate small deformations.

Questions:

- How does SGD control capacity in CNNs?
- What about networks with no pooling layers? ResNet?

References I

- Stéphanie Allassonnière, Yali Amit, and Alain Trouvé. Towards a coherent statistical framework for dense deformable template estimation. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 69(1): 3–29, 2007.
- Francis Bach. On the equivalence between kernel quadrature rules and random feature expansions. *Journal of Machine Learning Research (JMLR)*, 18:1–38, 2017.
- Peter Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural networks. *arXiv preprint arXiv:1706.08498*, 2017.
- Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and complexity of deep convolutional representations. *Journal of Machine Learning Research*, 2019.
- Alberto Bietti, Grégoire Mialon, Dexiong Chen, and Julien Mairal. A kernel perspective for regularizing deep neural networks. *arXiv*, 2019.

References II

- Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey of some recent advances. ESAIM: probability and statistics, 9:323–375, 2005.
- Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. *IEEE Transactions on pattern analysis and machine intelligence (PAMI)*, 35 (8):1872–1886, 2013.
- Y. Cho and L. K. Saul. Large-margin classification in infinite neural networks. *Neural Computation*, 22(10):2678–2697, 2010.
- Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval networks: Improving robustness to adversarial examples. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2017.
- Taco Cohen and Max Welling. Group equivariant convolutional networks. In *International Conference on Machine Learning (ICML)*, 2016.

References III

- Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity. In Advances In Neural Information Processing Systems, pages 2253–2261, 2016.
- Harris Drucker and Yann Le Cun. Double backpropagation increasing generalization performance. In *International Joint Conference on Neural Networks (IJCNN)*, 1991.
- Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and a translation suffice: Fooling cnns with simple transformations. *arXiv preprint arXiv:1712.02779*, 2017.
- Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of Wasserstein GANs. In *Advances in Neural Information Processing Systems (NIPS)*, 2017.
- Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. *arXiv preprint arXiv:1607.02533*, 2016.
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *P. IEEE*, 86(11):2278–2324, 1998.

References IV

Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A unified gradient regularization family for adversarial examples. In *IEEE International Conference on Data Mining (ICDM)*, 2015.

- Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *Proceedings of the International Conference on Learning Representations* (ICLR), 2018.
- J. Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In *Advances in Neural Information Processing Systems (NIPS)*, 2016.
- Stéphane Mallat. Group invariant scattering. *Communications on Pure and Applied Mathematics*, 65(10):1331–1398, 2012.
- Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2018.

References V

- Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A PAC-Bayesian approach to spectrally-normalized margin bounds for neural networks. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2018.
- Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. 2017.
- Anant Raj, Abhishek Kumar, Youssef Mroueh, P Thomas Fletcher, and Bernhard Scholkopf. Local group invariant representations via orbit embeddings. *preprint arXiv:1612.01988*, 2016.
- Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of generative adversarial networks through regularization. In Advances in Neural Information Processing Systems (NIPS), 2017.
- Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Adversarially robust training through structured gradient regularization. *arXiv preprint arXiv:1805.08736*, 2018.
- I. Schoenberg. Positive definite functions on spheres. Duke Math. J., 1942.

References VI

- B. Scholkopf. *Support Vector Learning*. PhD thesis, Technischen Universität Berlin, 1997.
- Bernhard Schölkopf and Alexander J Smola. *Learning with kernels: support vector machines, regularization, optimization, and beyond.* MIT press, 2002.
- Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms.* Cambridge university press, 2014.
- John Shawe-Taylor and Nello Cristianini. An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, 2004.
- Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering for texture discrimination. In *Proceedings of the IEEE conference* on computer vision and pattern recognition (CVPR), 2013.
- Patrice Y Simard, Yann A LeCun, John S Denker, and Bernard Victorri. Transformation invariance in pattern recognition-tangent distance and tangent propagation. In *Neural networks: tricks of the trade*, pages 239–274. Springer, 1998.

References VII

- Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard Schölkopf, Léon Bottou, and David Lopez-Paz. Adversarial vulnerability of neural networks increases with input dimension. *arXiv preprint arXiv:1802.01421*, 2018.
- Alex J Smola and Bernhard Schölkopf. Sparse greedy matrix approximation for machine learning. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2000.
- Alex J Smola, Zoltan L Ovari, and Robert C Williamson. Regularization with dot-product kernels. In *Advances in neural information processing systems*, pages 308–314, 2001.
- Alain Trouvé and Laurent Younes. Local geometry of deformable templates. *SIAM journal on mathematical analysis*, 37(1):17–59, 2005.
- Thomas Wiatowski and Helmut Bölcskei. A mathematical theory of deep convolutional neural networks for feature extraction. *IEEE Transactions on Information Theory*, 2017.
- C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In *Advances in Neural Information Processing Systems (NIPS)*, 2001.

References VIII

- Kai Zhang, Ivor W Tsang, and James T Kwok. Improved nyström low-rank approximation and error analysis. In *International Conference on Machine Learning (ICML)*, 2008.
- Y. Zhang, P. Liang, and M. J. Wainwright. Convexified convolutional neural networks. In *International Conference on Machine Learning (ICML)*, 2017.
- Yuchen Zhang, Jason D Lee, and Michael I Jordan. ℓ_1 -regularized neural networks are improperly learnable in polynomial time. In *International Conference on Machine Learning (ICML)*, 2016.

φ_k from kernel approximations: CKNs [Mairal, 2016]

• Approximate $\varphi_k(z)$ by projection (Nyström approximation) on

[Williams and Seeger, 2001, Smola and Schölkopf, 2000, Zhang et al., 2008]...

 φ_k from kernel approximations: CKNs [Mairal, 2016]

• Approximate $\varphi_k(z)$ by projection (Nyström approximation) on

$$\mathcal{F} = \mathsf{Span}(\varphi_k(z_1), \dots, \varphi_k(z_p)).$$

- Leads to tractable, p-dimensional representation $\psi_k(z)$.
- Norm is preserved, and projection is non-expansive:

$$\begin{aligned} \|\psi_k(z) - \psi_k(z')\| &= \|\Pi_k \varphi_k(z) - \Pi_k \varphi_k(z')\| \\ &\leq \|\varphi_k(z) - \varphi_k(z')\| \leq \|z - z'\|. \end{aligned}$$

• Anchor points z_1, \ldots, z_p (\approx filters) can be learned from data (K-means or backprop).

[Williams and Seeger, 2001, Smola and Schölkopf, 2000, Zhang et al., 2008]...

φ_k from kernel approximations: CKNs [Mairal, 2016]

Convolutional kernel networks in practice.

Discussion

• norm of $\|\Phi(x)\|$ is of the same order (or close enough) to $\|x\|$.

• the kernel representation is non-expansive but not contractive

$$\sup_{x,x'\in L^2(\Omega,\mathcal{H}_0)}\frac{\|\Phi(x)-\Phi(x')\|}{\|x-x'\|} = 1.$$