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Scientific imaging

Extracting or recovering information from (raw) data image sources.

Scientific applications where interpretation is important (astronomy, Earth observation).

Dealing with various data sensors beyond RGB imaging.
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Scientific imaging

Picture from [Montagnon, Hollingsworth, Pathier, Marchandon, Dalla Mura, Giffard-Roisin, 2022].

Example: image alignment for ground deformation estimation.
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Scientific imaging

Even for personal photography, dealing with real-world degradations is hard.
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Classical modeling for image/signal restoration

Find a reasonable model of degradation

For instance: y︸︷︷︸
observations

= A x︸︷︷︸
true signal

+ ε︸︷︷︸
noise

.

Estimate the true signal by optimizing a reasonable cost function

For instance: min
x

∥y −Ax∥2︸ ︷︷ ︸
data fitting term

+ λϕ(x)︸ ︷︷ ︸
prior information

.

Some classical priors

Smoothness ∥Lx∥2.
Total variation ∥∇x∥1.
Wavelet sparsity ∥Wx∥1.
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Use of the ℓ1-norm in geophysics (Taylor et al., 1979)

Advertisment: More on the ℓ1-norm in
computer vision and image processing
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Deep learning for image restoration

Engineer a realistic dataset: Produce enough pairs (xi, yi) of clean/degraded images.
Choose a class of parametrized models {fθ : θ ∈ Θ}.
Learn the parameters:

min
θ

1

n

n∑
i=1

∥fθ(yi)− xi∥.

Example: U-Net
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Limitations/Drawbacks of both paradigms

“Classical approaches”

Advantage: robustness and interpretability (solves what it is supposed to solve).

Limitation: requires a reasonably well calibrated model.

Limitation: designing a good image prior by hand is very hard.

“Deep learning”

Advantage: automatically adapts to the task and data.

Limitation: tuned to a specific data distribution (data engineering is important).

Limitation: very hard to acquire real pairs of clean/degraded images (see next slide).
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One difficulty: unknown alignment due to floor vibrations
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What can we do?

Data engineering

use real images with realistic synthetic degradations.

take into account the physics of the sensor/task in the data generation process.

Use hybrid approches!

combine model-based approaches with trainable image priors (plug-and-play, unrolled
optimization, deep equilibrium. . . ).

Let us see how to do that with a first concrete example.
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Raw Burst Image Processing

B. Lecouat, J. Ponce, and J. Mairal. Lucas-Kanade Reloaded: End-to-End
Super-resolution from Raw Image Bursts. ICCV. 2021.

B. Lecouat, T. Eboli, J. Ponce, and J. Mairal. High Dynamic Range and
Super-Resolution From Raw Image Bursts. SIGGRAPH. 2022.
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Single-Image Super-Resolution vs...
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Super-Resolution from Raw Bursts - Handheld Camera

[Tsai and Huang, 1984], [Farsiu et al., 2004], [Wronski et al., 2019], [Bhat et al., 2021], . . .
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Picture taken at high ISO with low exposure time

Left: high-quality jpg output of the camera ISP (one frame).
Right: ×4 super-resolution from a burst of 30 raw images (handheld camera).
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Picture taken at high ISO with low exposure time
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Picture taken at high ISO with low exposure time

Left: high-quality jpg output of the camera ISP (one frame).
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Challenges

Aligning images with subpixel accuracy
(for super-resolution).

Dealing with noisy raw data
(blind denoising).

Reconstructing color images from raw data
(demosaicking).
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The Camera raw processing pipeline (simplified view)

How does your camera process sensor data?

White
balance.
Black

substraction.

Denoising

Demosaicking

Tone
mapping.
Gamma

correction.

Working with raw data is important, before the camera ISP produces irremediable
damage!
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Aliasing is your ally [Vandewalle et al. 2006], [Wronski et al., 2019]

Figure: Example of aliasing: undersampled
sinusoid causes confusion with a sinusoid with
lower frequency. Picture from Wikipedia.

Aliasing is usually mitigated with some
optical / digital filters.

But anti-aliasing removes high
frequency measurements!
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The “old” world of classical inverse problems.

Latent HR image 𝑥

LR input image 𝑦!

Warped HR image Blurred HR image Decimated HR imageResampled HR image

𝑊"! 	

𝐵 𝐷

Image formation model for a burst Y = y1, . . . , yk

yk = DBWpkx+ εk.
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The “old” world of classical inverse problems.

Image formation model for a burst Y = y1, . . . , yk

yk = DBWpkx+ εk.

Inverse problem

min
x,pk

1

K

K∑
k=1

∥yk −DBWpkx∥
2 + λϕ(x).

A natural strategy

define an appropriate prior ϕ(x) for natural images and optimize!

What is a good ϕ?
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The deep learning world.

Inverse problem given Y = y1, . . . , yK

min
x,pk

1

K

K∑
k=1

∥yk −DBWpkx∥
2 + λϕ(x).

What a deep learning model would look like?

Need pairs of (LR bursts Y / SR image x), then solve

min
θ

1

n

n∑
i=1

∥fθ(Yi)− xi∥.

How to obtain realistic training data?

What is a good fθ?
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The new world of trainable algorithms.

Inverse problem given Y = y1, . . . , yK

min
x,pk

1

K

K∑
k=1

∥yk −DBWpkx∥
2 + λϕθ(x).

How to design a hybrid approach?

Idea 1 (unrolled optimization [Gregor and LeCun, 2010]): For a given burst Yi,
call fθ(Yi) the output of the optimization procedure solving the inverse problem.

min
θ

1

n

n∑
i=1

∥fθ(Yi)− xi∥.

This allows learning the parameters θ through differentiable programming.

What is a good ϕθ(x)?
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The new world of trainable algorithms.

Inverse problem given Y = y1, . . . , yK

min
x,pk

1

K

K∑
k=1

∥yk −DBWpkx∥
2 + λϕθ(x).

How to design a hybrid approach?

Sketch of Idea 2 (plug and play [Venkatakrishnan et al., 2013]): In the
optimization procedure, the effect of ϕθ is to denoise the estimate x.

Replace the “denoising” steps involving ϕθ by a classical neural network parametrized
by θ (U-net). Then, no need to define explicitly ϕθ.

How do we generate realistic training data?
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The new world of trainable algorithms.

Inverse problem given Y = y1, . . . , yK

min
x,pk

1

K

K∑
k=1

∥yk −DBWpkx∥
2 + λϕθ(x).

How to design a hybrid approach?

Data engineering [Bhat et al., 2021]: Consider an database of high-quality RGB
images xi and generate low resolution bursts Yi with synthetic degradations (random
motion, bayer pattern, noise).

Finally, you are in shape to learn your model

min
θ

1

n

n∑
i=1

∥fθ(Yi)− xi∥.
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Another Problem: Limited Range
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Another Problem: Ghosts

full frame ISP camera Ours full frame ISP camera Ours

Figure: Misalignements artefacts due to moving objects in the scene. Our implementation did not
handle fast moving objects and then generated visual artefacts.

Julien Mairal Physical Models and Machine Learning for Scientific Imaging 27/51



Solution: More Accurate Modeling

Inverse problem given y1, . . . , yK

min
x,pk

1

K

K∑
k=1

∥wk ◦ (yk −DBWpkx)∥
2 + λϕθ(x),

with

wk =
∆tkm(yk)∑K
j=1∆tjm(yj)

◦ g (yk,Wky1) ,

∆tj : Duration of exposition for frame j;

m(yj): Binary mask for saturated pixels;

g(yk,Wky1): is frame yk well aligned with y1? (weight for each pixel).
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Result with Bracketing
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Result with Bracketing
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The method now works with dynamic scenes!
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Joint (blind) denoising, demosaicking, super-resolution and HDR.

20 MPx output of the camera (pixel 4a)
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Extension to High-Dynamic Range Imaging (HDR)

20 MPx output of the camera (pixel 4a)
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Extension to High-Dynamic Range Imaging (HDR)

Ours : x4 SR+HDR (tonemapped)
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Extension to High-Dynamic Range Imaging (HDR)

20 MPx output of the camera (pixel 4a)
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Extension to High-Dynamic Range Imaging (HDR)

Our method : x4 super-resolution (300Mp) on a burst of 30 frames
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Extension to High-Dynamic Range Imaging (HDR)

20 MPx output of the camera (pixel 4a)
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Extension to High-Dynamic Range Imaging (HDR)

Ours : x4 SR+HDR (tonemapped)
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Extension to High-Dynamic Range Imaging (HDR)

Ours : x4 SR+HDR 20 frames (tonemapped)
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Multiframe super resolution: prior work

and, among many others:

interpolation-based methods: [Hardie, 2007], [Takeda et al., 2007];

iterative approaches: [Irani and Peleg, 1991], [Elad and Feuer, 1997],[Farsiu et al.,
2004];

(deep) learning-based approaches: [Bhat et al., 2021], [Molini et al., 2019],
[Deudon et al., 2019], [Luo et al., 2021];

and also the literature on video super-resolution (typically not dealing with raw data).
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Perspectives for Scientific Imaging

We develop trainable algorithm that encode prior knowledge about the problem.
The goal is to recover true signals and not hallucinate details.

Scientific applications

astronomical images and microscopy.

software-based adaptive optics.

remote sensing.

Technological challenges

data fusion from heterogeneous sensors.

focus stacking.

depth estimation and 3D reconstruction (ongoing).
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Machine Learning for Astronomy
Very short version

O. Flasseur, T. Bodrito, J. Mairal, J. Ponce, M. Langlois and A.-M. Lagrange. Deep
PACO: Combining Statistical Models with Deep Learning for Exoplanet Detection and
Characterization in Direct Imaging at High Contrast. to appear in Monthly Notices of
the Royal Astronomical Society (MNRAS). 2023.

Slides courtesy of Théo Bodrito
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Exoplanet detection: current progress
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Challenge: contrast 106 ∼ 105

A coronagraph blocks light emitted by the star. Image credit: NASA
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Challenge: atmospheric disturbances - adaptive optics

Image credit: Damian Peach and ESO
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Direct imaging: ongoing ground-based projects
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Image data in practice

Speckles are temporally quasi-static but spatially non-stationary. Image credit: Olivier Flasseur
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How to train a discriminative machine learning model?

Problem: very few positive samples

use real data and inject synthetic sources.

we have very good models of planetary PSF.

shuffling trick during training to “remove” unknown sources.

A glimpse at the deep PACO algorithm (Flasseur et al., 2023)

Whitening: remove speckles structure using PACO (Flasseur et al., 2020).

Derotation: align the sources.

Supervised learning (U-net) with Dice loss.
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Deep PACO results

Julien Mairal Physical Models and Machine Learning for Scientific Imaging 50/51



Perspectives and on-going work

Extensions

Multi-spectral extension (done).

Flux estimation (done).

Better uncertainty estimation (desired).

Exploitation of huge databases of past observations (upcoming).
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Appendix
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The “old” world of classical inverse problems.

Simple relaxation with “half quadratic splitting” + block coordinate descent

min
x,z,pk

1

K

K∑
k=1

∥yk − Upkz∥
2 +

µt

2
∥z − x∥2 + λϕθ(x).

minimizing with respect to pk (parameters of an affine transformation) is performed by
Gauss-Newton steps. This is the algorithm of Lucas and Kanade [1981].

minimizing with respect to x requires computing the proximal operator of ϕθ.

minimizing w.r.t. z can be done by gradient descent steps.
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Bridging the two worlds with trainable algorithms.

Idea 1: plug-and-play priors [Venkatakrishnan et al., 2013]

Replace proximal operator

argmin
x

1

2
∥z − x∥2 + λϕθ(x),

by a convolutional neural network fθ(z).
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Replace proximal operator

argmin
x

1

2
∥z − x∥2 + λϕθ(x),

by a convolutional neural network fθ(z).

Idea 2: bi-level optimization

Given a dataset of training pairs (xi, Yi)i=1,...,n, consider

min
θ

1

n

n∑
i=1

∥x̂θ(Yi)− xi∥1

such that x̂θ(Y ) ∈ argmin
x

min
pk

1

K

K∑
k=1
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2 + λϕθ(x).
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Bridging the two worlds with trainable algorithms.

Idea 1: plug-and-play priors [Venkatakrishnan et al., 2013]

Replace proximal operator

argmin
x

1

2
∥z − x∥2 + λϕθ(x),

by a convolutional neural network fθ(z).

Idea 3: unrolled optimization [Gregor and LeCun, 2010]

Consider the previous optimization procedure with T steps, producing an estimate
x̂θ,T (Y ), given a burst Y = y1, . . . , yK .

Given a dataset of training pairs (xi, Yi)i=1,...,n, minimize

min
θ

1

n

n∑
i=1

∥x̂θ,T (Yi)− xi∥1.
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Schematic view of our method.

Lucas-Kanade
step

Coarse 
registration

Max likelihood
step CNN

Lucas-Kanade
step

Max likelihood
step CNN

HR image

Raw LR burst

registration parameters

Shared weights
Parameters free 

differentiable modules

we keep the interpretability of the classical inverse problem formulation.

we benefit from a data-driven image prior.
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