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Inverse imaging problems: molecular microscopy
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Inverse imaging problems: ground displacement estimation

Estimating ground displacement fields from satellite imagery. Picture from [Montagnon,

Hollingsworth, Pathier, Marchandon, Dalla Mura, Giffard-Roisin, 2022].
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Inverse imaging problems: super-resolution from raw image bursts
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Inverse imaging problems: super-resolution from raw image bursts
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Classical approaches with (fake) MAP estimation

Find a reasonable model of degradation

For instance: z︸︷︷︸
observations

= A x︸︷︷︸
true signal

+ ε︸︷︷︸
noise

.

Estimate the true signal by optimizing a reasonable cost function

For instance: min
x

∥z −Ax∥2︸ ︷︷ ︸
data fitting term

+ λϕ(x)︸ ︷︷ ︸
prior information

.

Some classical priors

Smoothness ∥Lx∥2.
Total variation ∥∇x∥1.
Sparsity ∥x∥1.
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Classical approaches with (fake) MAP estimation

Probabilistic interpretation

min
x

− log p(z|x)︸ ︷︷ ︸
data fitting term

− log p(x)︸ ︷︷ ︸
log prior information

.

Classical issues

All the classical priors are part of a model and have nothing to do with the real
p(x) (assuming it exists).

We also have to trust the degradation and the noise models.

These approaches are very useful to encode a desired property in the solution.
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Supervised (deep) learning

Engineer a realistic dataset: Produce enough pairs (xi, zi) of clean/degraded
images (semi-synthetic setting).
Choose a class of parametrized models {fθ : θ ∈ Θ}.
Learn the parameters:

min
θ

1

n

n∑
i=1

∥fθ(zi)− xi∥2.

Example: U-Net
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Supervised (deep) learning

Engineer a realistic dataset: Produce enough pairs (xi, zi) of clean/degraded
images (semi-synthetic setting).

Choose a class of parametrized models {fθ : θ ∈ Θ}.
Learn the parameters:

min
θ

1

n

n∑
i=1

∥fθ(zi)− xi∥2.

Approximation of the Bayes (MMSE) estimator

fθ⋆(z) ≈ E[X|Z = z].

large capacity is required.

large amounts of data are typically easy to produce in semi-synthetic settings.

do we have the right learning theory for image processing?
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(true) MAP vs. MMSE

We are considering two types well-motivated estimators? Do we care?

MMSE

MMSE(z) = E[X|Z = z].

Interpretation: “an average of plausible solutions”.

true MAP

MAP(z) = argmin
x

{− log p(z|x)− log p(x)} .

Interpretation: “a good solution”.

In both cases, we can only obtain an approximation. true MAP requires modeling p(x),
which suggests using generative models. Do we need sampling or optimization?
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(true) MAP vs. MMSE: motivation on a simple denoising case
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Approximation of the MMSE (left) and of the true MAP (right)
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Approximation of the MMSE (left) and of the true MAP (right)
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Are these details true? approximation of the MAP
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Are these details true? ground truth
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(true) MAP vs. MMSE

approx true MAP is visually more pleasant but it hallucinates some details.

approx MMSE has fewer hallucinations but tend to be less sharp (slightly blurry).

Related work

Recently, inverse problems have been seen as a sampling task [Delbracio and
Milanfar, 2023, Chung et al., 2023, Boys et al., 2024], using diffusion tools.

Heuristic algorithms have been proposed that “may” approximate the MAP such
as Indi, Cold Diffusion [Bansal et al., 2023], ...

How to address (true) MAP estimation with convergence guarantees assuming
we have access to an optimal denoiser (MMSE)?

a few attempts: [Laumont et al., 2023, Zhang et al., 2024]
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Our problem: computing the proximal operator of −τ log p

Prox−τ log p[z] := argmin
x

{
F (x) :=

1

2
∥z − x∥2 − τ log p(x)

}
,

assuming of course the argmin is unique...
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Prox−τ log p[z] := argmin
x

{
F (x) :=

1

2
∥z − x∥2 − τ log p(x)

}
,

assuming of course the argmin is unique...

Why the prox? (i) it can serve as a swiss-army knife in almost any inverse problem;
(ii) it will yield well-grounded plug-and-play algorithms with convergence
guarantees [Venkatakrishnan et al., 2013, Hurault et al., 2021].
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Our problem: computing the proximal operator of −τ log p

Prox−τ log p[z] := argmin
x

{
F (x) :=

1

2
∥z − x∥2 − τ log p(x)

}
,

assuming of course the argmin is unique...

What is specific here?

We can neither evaluate p(x), nor ∇ log p(x).

We do not have access to classical quantities such as Lipschitz constants. The
algorithm needs to be parameter-free!

We assume we can sample from p and we have access to an optimal MMSE
denoiser:

MMSEσ(z) = E[X|X + σε = z] with ε ∼ N (0, I) and X ∼ p.
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The algorithm

Consider an input x0 = z, and sequences αk = 1
k+2 and σ2

k = τ
k+1 .

xk+1 = (1− αk)MMSEσk
(xk) + αkz. (MMSE Averaging)

Same structure as cold diffusion [Bansal et al., 2023], related to Indi [Delbracio
and Milanfar, 2023].

Related to flow matching [Liu et al., 2022] and score matching [Hyvärinen, 2005].

We are talking about deterministic variants.
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The algorithm

Consider an input x0 = z, and sequences αk = 1
k+2 and σ2

k = τ
k+1 .

xk+1 = (1− αk)MMSEσk
(xk) + αkz. (MMSE Averaging)

Where does it come from? Remember Tweedie’s formula:

MMSEσ(z) = z + σ2∇ log pσ(z),

where pσ = p ⋆N (0, σ2I) is the density of x+ n with x ∼ p and n ∼ N (0, σ2I).
It turns out that the Lipschitz constant of ∇ log pσ(z) is upper-bounded by 1/σ2.
Then, the algorithm is equivalent to

xk+1 = xk − αk∇Fσk
(xk), with Fσk

(x) :=
1

2
∥z − x∥2 − τ log pσk

(x),

with the step-size αk = 1/LFσk
(classical step-size).
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An optimization point of view

Original problem:

min
x

{
F (x) :=

1

2
∥z − x∥2 − τ log p(x)

}
.

Algorithm:

xk+1 = xk − αk∇Fσk
(xk), with Fσk

(x) :=
1

2
∥z − x∥2 − τ log pσk

(x),

gradient descent on a smoothed objective with vanishing step-sizes and
smoothing parameters.

the algorithm does not depend on the smoothness properties of F !
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Our result: assumptions

This is a nonconvex problem with no known convergence result. It seems it can be
approached via randomized smoothing techniques (but the log changes everything).

Assumption

The density p is log-concave, and strictly positive on Rd :-(

Assumption

p is three times differentiable and the third derivative of log p is bounded:

sup
x∈Rd

∥∥∇3 log p(x)
∥∥
F
= M.

Note that

For a Gaussian density, M = 0.

log p could be ill-conditioned (no bound on second derivative).
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Our result: theorem

Theorem (Convergence to the Proximal operator)

Under the previous assumptions, the MMSE Averaging iterates with parameters
αk = 1/(k + 2), σ2

k = τ/(k + 1) and initialised at x0 = z satisfy:

∥xk − Prox−τ log p(z)∥ ≤ (log k) + 7

k + 1

[
∥z − Prox−τ log p(z)∥+ τ2M

√
d
]
.

Recipe of the proof

analysis of gradient descent with inexact gradients.

Controlling σ 7→ x⋆σ (the interesting part).
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Case of the Gaussian density

Consider a Gaussian density with covariance Σ.

A few remarks

the algorithm MMSE Averaging with αk = 1 converges in one step.

with the defaults parameters, it converges in Õ(1/ε).

if naive GD was authorized (requires access to ∇ log p(x)), it would converge in
O(L log(1/ε)) with L = ∥Σ∥ assuming L is known.
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Sketch of proof (1/2): improved conditioning

Key property: A “second-order Tweedie” identity leads to:

−∇2 ln pσ(z) ⪯ 1
σ2 Id,

which implies that the conditioning of Fσ satisfies κσ = 1 + τ
σ2 .

Now let x⋆σk
:= argminFσk

. A single gradient step on Fσk
yields:

∥xk+1 − x⋆σk
∥ ≤

(
κσk

−1

κσk
+1

)1/2
∥xk − x⋆σk

∥

≤
(
k+1
k+3

)1/2(
∥xk − x⋆σk−1

∥+
shift of the minimisers︷ ︸︸ ︷
∥x⋆σk−1

− x⋆σk
∥

)
The main challenge is to control σ 7→ x⋆σ. Assuming we can:

∥xk+1 − x⋆σk
∥ ≤

(
k+1
k+3

)1/2(
∥xk − x⋆σk−1

∥+ C (σ2
k−1 − σ2

k)
)
.

Unrolling this recursion yields the desired convergence bound.
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Sketch of proof (2/2): Lipschitz continuity of σ2 7→ x⋆σ
PDE satisfied by x⋆σ. Using the optimality conditions and the heat equation
∂σ2pσ = ∆pσ, one obtains

dx⋆
σ

dσ2
= 1

2

[
−∇2 ln pσ(x

⋆
σ) +

1
τ Id

]−1
(
2∇2 ln pσ(x

⋆
σ)∇ ln pσ(x

⋆
σ) +

annoying term︷ ︸︸ ︷
∇∆ ln pσ(x

⋆
σ)

)
.

Which immediately yields∥∥∥dx⋆
σ

dσ2

∥∥∥ ≤ ∥∇ ln pσ(x
⋆
σ)∥+ τ

2 ∥∇∆ ln pσ(x
⋆
σ)∥.

The first term is readily bounded via the optimality condition. For the second term, we
prove that (technical crux of the paper):

sup
x∈Rd

∥∇∆ ln pσ(x)∥ ≤
√
d sup

x∈Rd

∥∇3 ln p(x)∥F .

And we obtain the uniform bound∥∥∥dx⋆
σ

dσ2

∥∥∥ ≤ C = 1
τ ∥y − prox−τ ln p(y)∥+ τ

√
d supx∈Rd ∥∇3 ln p(x)∥F , which proves that

σ2 7→ x⋆σ is Lipschitz.
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Questions and perspectives

Questions

do we have the right rate of convergence?

What is the right quantity the analysis should depend on?

what is the right dependence on the dimension? Should it depend on a local
dimension?

how to deal with inexact MMSE estimators (on-going).

how to deal with non-convexity? Would stochastic variants be useful?

non-smooth distributions: uniform densities on compact sets?

Perspective

a PnP algorithm with convergence guarantees, which optimizes a natural objective
function. Finally!
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