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Part I: Complexity Analysis of the Lasso
Regularization Path

joint work with Bin Yu from UC Berkeley

J. Mairal and B. Yu. Complexity Analysis of the Lasso Regularization
Path. Proc. ICML. 2012.
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Early thoughts about parsimony

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be

regarded as a quality of nature; and accordingly we may infer

that it is justifiable to prefer a simple law to a more complex

one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921]. Philosophical Magazine Series.
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Historical overview of parsimony

14th century: Ockham’s razor;

1921: Wrinch and Jeffreys’ simplicity principle;

1952: Markowitz’s portfolio selection;

60 and 70’s: best subset selection in statistics;

70’s: use of the ℓ1-norm for signal recovery in geophysics;

90’s: wavelet thresholding in signal processing;

1996: Olshausen and Field’s dictionary learning;

1996–1999: Lasso (statistics) and basis pursuit (signal processing);

2006: compressed sensing (signal processing) and Lasso consistency
(statistics);
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What this work is about

another paper about the Lasso/Basis Pursuit [Tibshirani, 1996,
Chen et al., 1999]:

min
w∈Rp

1

2
‖y − Xw‖22 + λ‖w‖1; (1)

the first complexity analysis of the homotopy method [Ritter, 1962,
Osborne et al., 2000, Efron et al., 2004] for solving (1);

A story similar to

the simplex algorithm for linear programs [Klee and Minty, 1972];

the SVM regularization path [Gärtner, Jaggi, and Maria, 2010].

Julien Mairal, Inria Two talks related to sparsity 6/55



Regularizing with the ℓ1-norm

w1

w2ℓ1-ball

‖w‖1 ≤ T

The projection onto a convex set is “biased” towards singularities.
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Regularizing with the ℓ2-norm

w1

w2ℓ2-ball

‖w‖2 ≤ T

The ℓ2-norm is isotropic.
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The Lasso Regularization Path and the Homotopy

Under uniqueness assumption of the Lasso solution, the regularization
path is piecewise linear:
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Our Main Results

Theorem - worst case analysis

In the worst-case, the regularization path of the Lasso has exactly

(3p + 1)/2 linear segments.

Proposition - approximate analysis

There exists an ε-approximate path with O(1/
√
ε) linear segments.
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Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization
path λ 7→ w⋆(λ) is continuous and piecewise linear.
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Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization
path λ 7→ w⋆(λ) is continuous and piecewise linear.

Recipe of the homotopy method - main ideas

1 finds a trivial solution w⋆(λ∞) = 0 with λ∞ = ‖X⊤y‖∞;

2 compute the direction of the current linear segment of the path;

3 follow the direction of the path by decreasing λ;

4 stop at the next “kink” and go back to 2.
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Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization
path λ 7→ w⋆(λ) is continuous and piecewise linear.

Recipe of the homotopy method - main ideas

1 finds a trivial solution w⋆(λ∞) = 0 with λ∞ = ‖X⊤y‖∞;

2 compute the direction of the current linear segment of the path;

3 follow the direction of the path by decreasing λ;

4 stop at the next “kink” and go back to 2.

Caveats

kinks can be very close to each other;

the direction of the path can involve ill-conditioned matrices;

worst-case exponential complexity (main result of this work).
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Worst case analysis

Theorem - worst case analysis

In the worst-case, the regularization path of the Lasso has exactly

(3p + 1)/2 linear segments.

100 200 300

−1

0

1

2

Regularization path, p=6

Kinks

C
o

e
ff

ic
ie

n
ts

 (
lo

g
 s

c
a

le
)

Julien Mairal, Inria Two talks related to sparsity 12/55



Worst case analysis

Consider a Lasso problem (y ∈ R
n, X ∈ R

n×p).
Define the vector ỹ in R

n+1 and the matrix X̃ in R
(n+1)×(p+1) as follows:

ỹ
△

=

[
y

yn+1

]

, X̃
△

=

[
X 2αy
0 αyn+1

]

,

where yn+1 6= 0 and 0 < α < λ1/(2y
⊤y + y2n+1).

Adverserial strategy

If the regularization path of the Lasso (y,X) has k linear segments, the
path of (ỹ, X̃) has 3k − 1 linear segments.
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Worst case analysis

ỹ
△

=

[
y

yn+1

]

, X̃
△

=

[
X 2αy
0 αyn+1

]

,

Let us denote by {η1, . . . ,ηk} the sequence of k sparsity patterns in
{−1, 0, 1}p encountered along the path of the Lasso (y,X).

The new sequence of sparsity patterns for (ỹ, X̃) is

{
first k patterns

︷ ︸︸ ︷
[
η1 = 0

0

]

,

[
η2

0

]

, . . . ,

[
ηk

0

]

,

middle k patterns
︷ ︸︸ ︷
[
ηk

1

]

,

[
ηk−1

1

]

, . . . ,

[
η1=0

1

]

,

[
−η2

1

]

,

[
−η3

1

]

, . . . ,

[
−ηk

1

]

︸ ︷︷ ︸

last k−1 patterns

}

.
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Worst case analysis

We are now in shape to build a pathological path with (3p + 1)/2
linear segments. Note that this lower-bound complexity is tight.
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Approximate Complexity
Refinement of Giesen, Jaggi, and Laue [2010] for the Lasso

Strong Duality

w⋆

w κ

κ⋆

f (w), primal

g(κ), dual

b

b

b

b

Strong duality means that maxκ g(κ) = minw f (w)
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Approximate Complexity

Duality Gaps

w̃

w

κ̃

κ

f (w), primal

g(κ), dual

b

b

b

b
δ(w̃, κ̃)

Strong duality means that maxκ g(κ) = minw f (w)

The duality gap guarantees us that 0 ≤ f (w̃)− f (w⋆) ≤ δ(w̃, κ̃).
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Approximate Complexity

min
w

{

fλ(w)
△

=
1

2
‖y − Xw‖22 + λ‖w‖1

}

, (primal)

max
κ

{

gλ(κ)
△

= −1

2
κ⊤κ− κ⊤y s.t. ‖X⊤κ‖∞ ≤ λ

}

. (dual)

ε-approximate solution

w satisfies APPROXλ(ε) when there exists a dual variable κ s.t.

δλ(w,κ) = fλ(w)− gλ(κ) ≤ εfλ(w).

ε-approximate path

A path P : λ 7→ w(λ) is an approximate path if it always contains
ε-approximate solutions.

(see Giesen et al. [2010] for generic results on approximate paths)
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Approximate Complexity

Main relation

APPROXλ(0) =⇒ APPROXλ(1−√
ε)(ε)

Key: find an appropriate dual variable κ(w) + simple calculation;

Proposition - approximate analysis

there exists an ε-approximate path with at most
⌈
log(λ∞/λ1)√

ε

⌉

segments.

Approximate homotopy - main ideas

Maintain approximate optimality conditions along the path;

Make steps in λ greater than or equal to λ(1− θ
√
ε);

When the kinks are too close to each other, make a large step and
switch to first-order method;
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A Few Messages to Conclude

Despite its exponential complexity, the homotopy algorithm
remains extremely powerful in practice;

numerical stability is still an issue of the homotopy algorithm;

when one does not care about precision, the worst-case complexity
of the path can be significantly reduced.
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Part II: Isoform Discovery from RNA-Seq Data
with Network Flows

joint work with Elsa Bernard (Institut Curie), Laurent Jacob (CNRS)
and Jean-Philippe Vert (Institut Curie)

E. Bernard, L. Jacob, J. Mairal, and J-P. Vert. Efficient RNA Isoform
Identification and Quantification from RNA-Seq Data with Network
Flows. Bioinformatics. 2014.
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DNA Transcription/Translation (Central Dogma, 1958)
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Modern Biology and Challenges

DOE Joint Genome institute

biology is producing massive amount of data;

sequencing one genome now costs about 1000$ (vs 0.1 billion $ in
2001), and produces about a few gigabytes of data;

prediction from DNA data.
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Alternative Splicing: 1 Gene = Many Proteins

In human, 28k genes give 120k known transcripts (Pal et al., 2012)
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Importance of Alternative Splicing

(Pal et al., 2012)
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Opportunities for Drug Developments...

(Pal et al., 2012)
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RNA-Seq or Next-Generation Sequencing

What is RNA-Seq?

RNA-Seq measures abundance of RNA;
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The Isoform Identification and Quantification Problem

Given a biological sample can we:
1 identify the isoform(s) of each gene present in the sample?

2 quantify their abundance?
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From RNA-Seq Reads to Isoforms
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De Novo methods
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Genome-Based Methods
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Genome-Based Isoforms Reconstruction
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Place in the literature
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Contributions
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Contributions
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Contributions
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Isoforms are Paths in a Graph

Splicing graph for a gene with 5 exons:

1

2 3

4

5

FlipFlop graph: 1 type of read ↔ 1 node
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2 2-3 3

3-4
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5 t
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Graph adapted to long reads

Splicing graph for a gene with 5 exons:

1

2 3

4

5
1 2 3

FlipFlop graph:

s

1

t
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Graph adapted to long reads
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Graph adapted to long reads
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Graph adapted to long reads
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Graph adapted to long reads

Splicing graph for a gene with 5 exons:
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Graph adapted to long reads

Splicing graph for a gene with 5 exons:
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Graph adapted to long reads

Splicing graph for a gene with 5 exons:

1

2 3

4

5

FlipFlop graph: one path with abundance β1

s
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Graph adapted to long reads

Splicing graph for a gene with 5 exons:

1

2 3

4

5

FlipFlop graph: another path with abundance β2 ...
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Select a Small Number of Paths?

n exons →∼ 2n paths/candidate isoforms
feature selection problem with ∼ 1000 candidates for 10 exons and ∼ 1000000 for 20 exons

Minimal path cover

Cufflinks

Regularization approach

IsoLasso, NSMAP, SLIDE,
iReckon, MiTie, FlipFlop
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Select a Small Number of Paths?

Cufflinks strategy

A two-step approach

1 find a set of minimal paths to explain read positions (independent
from read counts)

2 estimate isoform abundances using read counts
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Select a small number of paths?

Regularization approach

1 Suppose there are c candidate isoforms (c large)

2 Let β the unknown c-dimensional vector of abundance
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Select a small number of paths?

Regularization approach

1 Suppose there are c candidate isoforms (c large)

2 Let β the unknown c-dimensional vector of abundance
3 Let L(β) quantify whether β explains the observed read counts

e.g., Poisson negative log-likelihood:

L(β)=
∑

node u

− log p(Xu) with Xu ∼ P(δu) and δu ∝ lu
∑

path p∋u
βp
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Select a small number of paths?

Regularization approach

1 Suppose there are c candidate isoforms (c large)

2 Let β the unknown c-dimensional vector of abundance
3 Let L(β) quantify whether β explains the observed read counts

e.g., Poisson negative log-likelihood:

L(β)=
∑

node u

− log p(Xu) with Xu ∼ P(δu) and δu ∝ lu
∑

path p∋u
βp

4 Regularization-based approaches try to solve:

min
β∈Rc

+

L(β) such that β is sparse
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Isoform Deconvolution with the ℓ1-norm

ℓ1-regularization

Estimate β sparse by solving:

min
β∈Rc

+

L(β) + λ‖β‖1 ,

with L a convex loss function.

Computationally challenging:
→ IsoLasso: strong filtering
→ NSMAP, SLIDE: number of exons cut-off

FlipFlop: Fast Lasso-based Isoform Prediction as a FLOw Problem
→ no filtering
→ no exons restrictions
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Fast Isoform Deconvolution with the lasso

Theoretical (practical) result

The isoform deconvolution problem

min
β∈Rc

+

L(β) + λ‖β‖1 ,

can be solved in polynomial time with the number of nodes of the
splicing graph.

Ideas:

1 the sum of isoform abundances correspond to a flow on the graph

2 reformulation as a convex cost flow problem (Mairal and Yu,
2012)

3 recover isoforms by flow decomposition algorithm
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Combinations of isoforms are flows

s

1 11

1

1 t

(c) Reads at every node corresponding to one isoform.

s

1

3 3 3

3

41

4

4 t

(d) Reads at every node after adding another isoform.

Linear combinations of isoforms ⇒ Flow value on every edges

Flow value on every edges ⇒
Flow Decomposition

(linear time algorithm)

Paths with given value/abundance

Flux Capacitor. 2008. A Novel Min-Cost Flow Method for Estimating Transcript Expression with RNA-Seq.
RECOMB-2013.
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Equivalent flow problem (simpler!)

s

1 11

1

1 t

(e) Reads at every node corresponding to one isoform.

s

1

3 3 3

3

41

4

4 t

(f) Reads at every node after adding another isoform.

For each edge sum abundances of isoforms that include the edge :

fuv =
∑

path p∋(u,v)
βp is a flow

Moreover
‖β‖1 =

∑

path p

βp = ft

Therefore

min
β∈Rc

+

L(β) + λ‖β‖1 is equivalent to min
f flow

L̃(f) + λft
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Technical details

Poisson Loss (with binary matrix U):

L(UTβ) =
∑

u∈V

[

Nlu(U
Tβ)u − yu log(Nlu(U

Tβ)u)
]

Flow Decomposition:

fuv =
∑

p∈P ′

βp1{(u,v)∈p}

⇒ fv =
∑

u∈V ′

fuv = (UTβ)v

Convex Cost Flow:

min
f flow

∑

u∈V
[Nlufu − yu log(fu)] + λft

Solved using ε-relaxation method (Bertsekas 1998).
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Summary

Isoform Detection=Path Selection Problem

∼ 2n variables (all paths in the splicing graph)

m

Equivalent Network Flow Problem

∼ n2

2 variables (all exons and exon-exon junctions in the splicing graph)

↓

Network Flow Algorithms

Efficient Algorithms ! Polynomial Time.
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Performance increases with read length
Human Simulation: hg19, 1137 genes on chr1, 1million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

100 bp (1M reads) 200 bp (1M reads) 300 bp (1M reads)

25

50

75

100

40 60 80 100 40 60 80 100 40 60 80 100
PRECISION

R
E

C
A

L
L

IsoLasso
Cufflinks
FlipFlop
NSMAP
1 transcript
2 transcripts
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5−7 transcripts
8−43 transcripts
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Performance increases with coverage
Human Simulation: hg19, 1137 genes on chr1, 1million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
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Extension to paired-end reads
Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

100 bp (1M read pairs) 125 bp (1M read pairs) 150 bp (1M read pairs) 175 bp (1M read pairs)
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Speed Trial
Human Simulation: hg19, 1137 genes on chr1, 1 million reads by transcript levels.
Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
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GC bias - Precision-Recall curve
Human Simulation: hg19, chr1, 150bp single-end reads, 2 million, 4140 transcripts.

FluxSimulator, Griebel et al, 2012.

Model selection: set of solutions minimizing L(β) + λ‖β‖1 for
different values of λ → BIC criteria
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Real Data
Human: 50 million 75bp paired-end reads.

paired−end single−end
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Conclusion/Discussion

FlipFlop → transcripts reconstruction over an exponential number of
candidates in polynomial time

1 Hard combinatorial ill-posed prediction problem !

2 Model Selection: Cross Validation, Stability Selection?

3 Multiple-samples: on-going work with promising preliminary
results.

4 Differential Expression testing at the isoform level ?
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Conclusion/Discussion: get FlipFlop for free!
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Advertisement: free monographs

J. Mairal, F. Bach and J. Ponce. Sparse Modeling

for Image and Vision Processing. Foundations and
Trends in Computer Graphics and Vision. 2014.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski.
Optimization with sparsity-inducing penalties.
Foundations and Trends in Machine Learning, 4(1).
2012.
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Advertisement SPAMS toolbox (open-source)

C++ interfaced with Matlab, R, Python.

proximal gradient methods for ℓ0, ℓ1, elastic-net, fused-Lasso,
group-Lasso, tree group-Lasso, tree-ℓ0, sparse group Lasso,
overlapping group Lasso...

...for square, logistic, multi-class logistic loss functions.

handles sparse matrices, provides duality gaps.

fast implementations of OMP and LARS - homotopy.

dictionary learning and matrix factorization (NMF, sparse PCA).

coordinate descent, block coordinate descent algorithms.

fast projections onto some convex sets.

Try it! http://www.di.ens.fr/willow/SPAMS/
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Precision-Recall curves on real data
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Speed comparison on real data
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Stability study
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Human Simulation: Abundances
hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.
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Simulation: Deviation
hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.

1 transcript 2 transcripts 3−5 transcripts 5−7 transcripts
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Worst case analysis - Backup Slide

ỹ
△

=

[
y

yn+1

]

, X̃
△

=

[
X 2αy
0 αyn+1

]

,

Some intuition about the adverserial strategy:

1 the patterns of the new path must be [ηi⊤, 0]⊤ or [±ηi⊤, 1]⊤;
2 the factor α ensures the (p + 1)-th variable to enter late the path;

3 after the k first kinks, we have y ≈ Xw⋆(λ) and thus

X̃

[
w⋆(λ)

0

]

+

[
0

yn+1

]

≈ ỹ ≈ X̃

[
−w⋆(λ)
1/α

]

.
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Worst case analysis - Backup Slide 2

min
w̃∈Rp ,w̃∈R

1

2

∥
∥
∥
∥
ỹ − X̃

[
w̃
w̃

]∥
∥
∥
∥

2

2

+ λ

∥
∥
∥
∥

[
w̃
w̃

]∥
∥
∥
∥
1

=,

min
w̃∈Rp ,w̃∈R

1

2
‖(1− 2αw̃)y − Xw̃‖22 +

1

2
(yn+1 − αyn+1w̃)2 + λ‖w̃‖1 + λ|w̃ |.

is equivalent to

min
w̃′∈Rp

1

2
‖y − Xw̃′‖22 +

λ

|1− 2αw̃⋆|‖w̃
′‖1,

and then

w̃⋆ =

{

(1− 2αw̃⋆)w⋆
(

λ
|1−2αw̃⋆|

)

if w̃⋆ 6= 1
2α

0 otherwise
.
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