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Part I: Lucas-Kanade reloaded:
End-to-End Super-resolution from Raw Image Bursts

B. Lecouat, J. Ponce, and J. Mairal. Aliasing is your Ally: End-to-End Super-resolution
from Raw Image Bursts. arXiv:2104.06191. 2021.
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A 20-megapixel innocent scene
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...taken at high ISO with low exposure time

Left: high-quality jpg output of the camera ISP.

Right: ×4 super-resolution, after processing a burst of 30 raw images (handheld camera).
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Our problem: multiframe super-resolution
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... in contrast to single-image “super-resolution”

The problem is severly ill-posed and the goal
is to “hallucinate” high frequencies.

Figure: [Dahl et al., 2017]
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... in contrast to single-image “super-resolution”

The approach is data driven, and . . .
not surprisingly. . .
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With multiple frames: our results (in the middle)

The goal is to exploit image misalign-
ments to artificially increase the number
of samples from the underlying signals.

20 images are generated from the ground
truth with synthetic random affine move-
ments and average pooling downsampling.
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The Camera raw processing pipeline (simplified view)

How does your camera process sensor data?

White
balance.

Black
substraction.

Denoising

Demosaicking

Conversion
to sRGB.
Gamma

correction.

Idea: working with raw data is important, before the camera ISP produces
irremediable damage!
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With raw data, we may leverage aliasing!

Figure: Example of aliasing: undersampled
sinusoid causes confusion with a sinusoid with
lower frequency. Picture from Wikipedia.

Aliasing is usually mitigated with some
optical / digital filters.

If we analyze the aliasing patterns from
multiple frames we can recover high
frequencies.
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Super-resolution from raw image bursts (with natural hand motion)

This is hard because it requires, simultaneously,

accurately aligning images with subpixel accuracy.

dealing with noisy data (blind denoising).

reconstructing color images from the Bayer pattern (demosaicking).
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Multiframe super resolution: prior work
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Multiframe super resolution: prior work

Siggraph 2020; unknown motion, raw data.
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Multiframe super resolution: prior work

×4, unknown motion, raw data.
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Multiframe super resolution: prior work

and, among many others:

interpolation-based methods: [Hardie, 2007], [Takeda et al., 2007];

iterative approaches: [Irani and Peleg, 1991], [Elad and Feuer, 1997],[Farsiu et al.,
2004];

(deep) learning-based approaches: [Bhat et al., 2021], [Molini et al., 2019],
[Deudon et al., 2019];

and also the literature on video super-resolution (typically not dealing with raw data).

Interesting for us: synthetic raw datasets from Bhat et al. [2021].
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The “old” world of classical inverse problems.

Latent HR image 𝑥

LR input image 𝑦!

Warped HR image Blurred HR image Decimated HR imageResampled HR image

𝑊"! 	

𝐵 𝐷

Image formation model

yk = DBWpkx+ εk.
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The “old” world of classical inverse problems.

Inverse problem given y1, . . . , yK

min
x,pk

1

K

K∑
k=1

‖yk −DBWpk︸ ︷︷ ︸
Upk

x‖2 + λφθ(x).

A natural strategy

define an appropriate prior φθ(x) for natural images.

optimize!

Simple relaxation with “half quadratic splitting”

min
x,z,pk

1

K

K∑
k=1

‖yk − Upkz‖
2 +

µt
2
‖z − x‖2 + λφθ(x).
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The “old” world of classical inverse problems.

Simple relaxation with “half quadratic splitting” + block coordinate descent

min
x,z,pk

1

K

K∑
k=1

‖yk − Upkz‖
2 +

µt
2
‖z − x‖2 + λφθ(x).

minimizing with respect to pk (parameters of an affine transformation) is performed by
Gauss-Newton steps. This is the algorithm of Lucas and Kanade [1981].

minimizing with respect to x requires computing the proximal operator of φθ.

minimizing w.r.t. z can be done by gradient descent steps.

µt increases over the iterations.

Advantage: robustness and interpretability (solves what it is supposed to solve).
Drawback: designing a good image prior by hand is hard
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The “new” world of deep learning models (Pic. https://xkcd.com/)

a form of prior knowledge is encoded in the
model architecture (e.g., a convolutional neural
network for images).

ability to train model parameters θ end to end.

state-of-the-art for many tasks (once the right
model/setup is found).

requires training data.

Advantage: task-adaptive.
Drawback: tuned to specific data distribution.
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Bridging the two worlds with trainable algorithms.

Idea 1: plug-and-play priors [Venkatakrishnan et al., 2013]

Replace proximal operator

arg min
x

1

2
‖z − x‖2 + λφθ(x),

by a convolutional neural network fθ(z).

Idea 2: unrolled optimization [Gregor and LeCun, 2010]

Consider the previous optimization procedure with T steps, producing an estimate
x̂T (Y ), given a burst Y = y1, . . . , yK .

Given a dataset of training pairs (xi, Yi)i=1,...,n, minimize

min
θ

1

n

n∑
i=1

‖x̂T (Yi)− xi‖1.
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Schematic view of our method.

Lucas-Kanade
step

Coarse 
registration

Max likelihood
step CNN

Lucas-Kanade
step

Max likelihood
step CNN

HR image

Raw LR burst

registration parameters

Shared weights
Parameters free 

differentiable modules

we keep the interpretability of the classical inverse problem formulation.

we benefit from a data-driven image prior.
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Do we get the best or the worse of both worlds?

Figure: Experiment with a synthetic RGB burst of 20 images with random affine motions.
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Extreme ×16 super-resolution.

Figure: Experiment with a synthetic RGB burst of 20 images with random affine motions.
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Experiments on real raw data - Pixel 4a.

Figure: Full scene - camera ISP - Our ×4 results.
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Experiments on real raw data - Pixel 4a.

Figure: Full scene - camera ISP - Our ×4 results.
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Experiments on real raw data - Samsung S7.

Figure: Full scene - camera ISP - Our ×4 results.
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Experiments on real raw data - Panasonic GX9.

Figure: Full scene - camera ISP - Our ×4 results.
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Quantitative experiments.

Method PSNR (db) Geom (pix) SSIM

Scores on public validation set
ETH Bhat et al. [2021] 39.09 - -
Ours (refine) 41.45 - 0.95

Scores on our own validation set to conduct the ablation study
Multiframe + TV 34.48 - -
Single Image 36.80 - -
Ours (no refinements) 40.38 0.55 0.958
Ours (refinements) 41.30 0.32 0.963

Ours (known motion) 42.41 0.00 0.971

Table: Results with synthetic raw image bursts of 14 images generated from the Zurich raw to
RGB dataset with synthetic affine motions. Results in average PSNR and geometrical registration
error in pixels for our models.
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Current issues with moving objects

full frame ISP camera Ours full frame ISP camera Ours

Figure: Misalignements artefacts due to moving objects in the scene. Our current implementation
does not handle fast moving objects and then generates visual artefacts.
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Conclusion

Take-home messages

40-years old computer vision algorithms are useful.

aliasing is good.

“classical” approaches are robust and intepretable and greatly benefit from deep
learning principles (differentiable programming).

Future work

microscopy and astronomical imaging where we want to recover “true” signals.

high-quality and high-dynamic range panoramas.

going beyond static scenes.
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Part II: End-to-End Sparse Coding Models

B. Lecouat, J. Ponce, and J. Mairal. Fully Trainable and Interpretable Non-Local
Sparse Models for Image Restoration. (ECCV). 2020.

B. Lecouat, J. Ponce, and J. Mairal. Designing and Learning Trainable Priors with
Non-Cooperative Games. (NeurIPS). 2020.
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Image denoising: classical image models

y︸︷︷︸
measurements

= x0︸︷︷︸
original image

+ ε︸︷︷︸
noise

.

Energy minimization problem - MAP estimation

E(x) =
1

2
‖y − x‖22︸ ︷︷ ︸

relation to measurements

+ ψ(x)︸︷︷︸
image model

.

Some classical priors

Smoothness λ‖Lx‖22;

total variation λ‖∇x‖21 [Rudin et al., 1992];

Markov random fields [Zhu and Mumford, 1997];

wavelet sparsity λ‖D>x‖1.
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Image denoising
The method of Elad and Aharon [2006]

Given a fixed dictionary D, a patch yi (e.g., 8× 8) is denoised as follows:

1 center yi,

yci
M
= yi − µi1m with µi

M
=

1

n
1>myi;

2 find a sparse linear combination of dictionary elements that approximates yci up to the
noise level:

min
αi∈Rp

‖αi‖0 s.t. ‖yci −Dαi‖22 ≤ ε, (1)

where ε is proportional to the noise variance σ2;

3 add back the mean component to obtain the clean estimate x̂i:

x̂i
M
= Dα?i + µi1m,
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Image denoising
The method of Elad and Aharon [2006]

An adaptive approach

1 extract all overlapping
√
m×

√
m patches yi.

2 dictionary learning: learn D on the set of centered
noisy patches [yc1, . . . , y

c
n].

3 final reconstruction: find an estimate x̂i for every
patch using the approach of the previous slide;

4 patch averaging: x̂ = 1
m

∑n
i=1 R

>
i x̂i.
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Parenthesis on sparsity-inducing penalties

`1-ball

‖α‖1 ≤ 1

α[2]

α[1]
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Parenthesis on sparsity-inducing penalties

α[2]

α[1]
`2-ball

‖α‖22 ≤ 1
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Parenthesis on sparsity-inducing penalties

elastic-net

ball

(1− γ)‖α‖1 + γ‖α‖22 ≤ 1

α[2]

α[1]
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Parenthesis on sparsity-inducing penalties

α[2]

α[1]
`q-ball

‖α‖q ≤ 1 with q < 1

Julien Mairal Trainable Algorithms for Inverse Imaging Problems 38/57



Other patch modeling approaches

Non-local means and non-parametric approaches

Image pixels are well explained by a Nadaraya-Watson estimator:

x̂[i] =

n∑
j=1

Kh(yi − yj)∑n
l=1Kh(yi − yl)

y[j], (2)

with successful application to

texture synthesis: [Efros and Leung, 1999]

image denoising (Non-local means): [Buades et al., 2005]

image demosaicking: [Buades et al., 2009].
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Other patch modeling approaches

BM3D

a state-of-the-art image denoising approach [Dabov et al., 2007]:

block matching: for each patch, find similar ones in the image;

3D wavelet filtering: denoise blocks of patches with 3D-DCT;

patch averaging: average estimates of overlapping patches;

second step with Wiener filtering: use the first estimate to perform again and
improve the previous steps.

Further refined by Dabov et al. [2009] with shape-adaptive patches and PCA filtering.
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Other patch modeling approaches

Non-local sparse models [Mairal et al., 2009]

Combine the non-local means principle with dictionary learning.

The main idea is that similar patches should admit similar decompositions by using
group sparsity:

The approach uses group sparse coding and patch averaging.
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How to derive a trainable algorithm from sparse coding principles?

Consider the Lasso problem

min
α∈Rp

1

2
‖x−Dα‖2 + λ‖α‖1

A classical algorithm to solve the optimization problem is the proximal gradient descent
method

αt ← proxλ‖.‖1

[
αt−1 − ηD>(Dαt−1 − x)

]
This motivates the LISTA approach consisting of unrolling T steps of

αt ← proxλ‖.‖1

[
αt−1 + C>(Dαt−1 − x)

]
,

and see the resuling iterate αT (x) as a parametric function of D and C.

Remark: One steps performs an affine transformation of αt−1 + prox.
Remark 2: proxλ‖.‖1 [u] = sign(u) ∗RELU(|u| − λ)
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End-to-end sparse coding models

Denoising with the `1-norm

Then, we can “unroll” the patch-based sparse coding denoising approach and learn the
matrices D and C in a supervised fashion, given training pairs of noisy/clean images, as
done by Simon and Elad [2019].

Denoising with non-local sparse models (our work)

deal with the proximal operator of the Group Lasso penalty.

take into account self-similarities via similarity matrix Σ.

end-to-end learning with unrolled optimization.
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Group Lasso and mixed norms
[Turlach et al., 2005, Yuan and Lin, 2006, Zhao et al., 2009]
[Grandvalet and Canu, 1999, Bakin, 1999]

the `1/`q-norm : ψ(α) =
∑
g∈G
‖α[g]‖2.

G is a partition of {1, . . . , p};
q = 2 or q =∞ in practice;
can be interpreted as the `1-norm of [‖α[g]‖2]g∈G .

ψ(α) = ‖α[{1, 2}]‖2 + |α[3]|.
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End-to-end sparse coding models

Algorithm 1 Pseudo code for the inference model of GroupSC.

1: Extract patches Y = [y1, . . . , yn] and center them;
2: Initialize the codes αi to 0;
3: Initialize image estimate x̂ to the noisy input y;
4: Initialize pairwise similarities Σ between patches of x̂;
5: for k = 1, 2, . . .K do
6: Compute pairwise patch similarities Σ̂ on x̂;
7: Update Σ← (1− ν)Σ + νΣ̂;
8: for i = 1, 2, . . . , N in parallel do
9: αi ← proxΣ,Λk

[
αi + C>(yci −Dαi)

]
;

10: end for
11: Update the denoised image x̂ by averaging;
12: end for
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For the young generation

convtranspose2d 
𝒔 × 𝒔 (W)  

unfolding 
(im2col) 

Proximal iteration 

conv2d 
𝟏 × 𝟏 (C)  

Conv2d 𝟏 × 𝟏  
(D) 

𝑩  
 prox group lasso 

- 

+ 

Self-similarities 

𝒚    
𝐻 × 𝑊 × 𝐶 

𝒀𝒄    
𝐻 × 𝑊 × 𝑁 

𝑨 

𝒙ෝ     
𝐻 × 𝑊 × 𝐶 

𝚺(𝐢)  
 (𝐻 × 𝑊) × (𝐻 × 𝑊) 

𝐻 × 𝑊 × 𝑝 

Non-local self-similarity module 

𝑨(𝒊) 
 
 

𝚺(𝐢) 

convtranspose2d 
𝒔 × 𝒔 (W)  

unfolding 
patch pairwise 

distance 𝐻 ×𝑊 × 𝑝 

𝒙ෝ 

ν 
 𝚺(𝐢ା𝟏) (1-ν) 

 

𝐻 ×𝑊 × 𝐶 𝐻 ×𝑊 ×𝑁 

(𝐻 ×𝑊) × (𝐻 ×𝑊) 

Julien Mairal Trainable Algorithms for Inverse Imaging Problems 46/57



Demosaicking. Sparse coding vs. non-local sparse coding
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Denoising. Sparse coding vs. non-local sparse coding
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JPEG Deblocking. Sparse coding vs. non-local sparse coding
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Interesting conclusion: parameter-efficient models

Table: Demosaicking. Training on CBSD400 unless a larger dataset is specified between parenthesis.
Performance is measured in terms of average PSNR.

Method Trainable Params Kodak24 BSD68 Urban100

LSSC 7 - 41.39 40.44 36.63

IRCNN (BSD400+Waterloo ) - 40.54 39.9 36.64
Kokinos (MIT dataset ) 380k 41.5 - -
MMNet (MIT dataset ) 380k 42.0 - -
RNAN 8.96M 42.86 42.61 -

SC (ours) 119k 42.34 41.88 37.50
CSR (ours) 119k 42.25 - -
GroupSC (ours) 119k 42.71 42.91 38.21
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Interesting conclusion: parameter-efficient models
Table: Grayscale Denoising on BSD68, training on BSD400 for all methods. Performance is
measured in terms of average PSNR.

Method Trainable Params
Noise Level (σ)

5 15 25 50

BM3D 7 - 37.57 31.07 28.57 25.62
LSSC 7 - 37.70 31.28 28.71 25.72
BM3D PCA 7 - 37.77 31.38 28.82 25.80

TNRD - - 31.42 28.92 25.97
CSCnet 62k 37.84 31.57 29.11 26.24
LKSVD 45K - 31.54 29.07 26.13
FFDNet 486k - 31.63 29.19 26.29
DnCNN 556k 37.68 31.73 29.22 26.23
NLRN 330k 37.92 31.88 29.41 26.47

SC (baseline) 68k 37.84 31.46 28.90 25.84
GroupSC (ours) 68k 37.95 31.71 29.20 26.17
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Interesting conclusion: leveraging interpretability

Table: Blind denoising on CBSD68, training on CBSD400. Performance is measured in terms of
average PSNR. Best is in bold, second is underlined.

Noise
level

CBM3D CDnCNN-B CUNet CUNLnet SC (ours) GroupSC (ours)
- 666k 93k 93k 115k 115k

5 40.24 40.11 40.31 40.39 40.30 40.43
10 35.88 36.11 36.08 36.20 36.07 36.29
15 33.49 33.88 33.78 33.90 33.72 34.01
20 31.88 32.36 32.21 32.34 32.11 32.41
25 30.68 31.22 31.03 31.17 30.91 31.25

learn common D,C parameters for different noise levels.

learn noise-specific regularization parameters λ

min
α∈Rp

1

2
‖x−Dα‖2 + λ‖α‖1.
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Conclusion

On trainable algorithms

this is a hybrid point of view between deep learning black boxes and classical inverse
problem formulations.

This is a natural way to encode a priori knowledge in the model and obtain smaller
models.

Intepretability is useful!

Caveats

unrolled optimization is often unstable and requires heuristics for training.

not much theory (leading to exciting new challenges).
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